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ABSTRACT: Whole cell biosensors are genetic systems that link the
presence of a chemical, or other stimulus, to a user-defined gene
expression output for applications in sensing and control. However, the
gene expression level of biosensor regulatory components required for
optimal performance is nonintuitive, and classical iterative approaches
do not efficiently explore multidimensional experimental space. To
overcome these challenges, we used a design of experiments (DoE)
methodology to efficiently map gene expression levels and provide
biosensors with enhanced performance. This methodology was applied
to two biosensors that respond to catabolic breakdown products of
lignin biomass, protocatechuic acid and ferulic acid. Utilizing DoE we
systematically modified biosensor dose−response behavior by increasing
the maximum signal output (up to 30-fold increase), improving dynamic
range (>500-fold), expanding the sensing range (∼4-orders of magnitude), increasing sensitivity (by >1500-fold), and modulated the
slope of the curve to afford biosensors designs with both digital and analogue dose−response behavior. This DoE method shows
promise for the optimization of regulatory systems and metabolic pathways constructed from novel, poorly characterized parts.
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A whole cell biosensor is a biosynthetic system of cellular
components designed to convert a stimulus (e.g., the

presence of chemical, a change in osmolality or redox state)
into a measurable cellular response. Biosensors enable fast,
simple sensing of small molecule effectors through measure-
ment of a relatively easy quantifiable output. Compared to the
low or medium throughput of standard chemical analytical
techniques, biosensors can be constructed that allow easy,
high-throughput assessment of the stimuli in question.
Allosteric transcription factors (aTFs) have been widely co-
opted for biosensing applications for the detection of a wide
range of stimuli.1−4 Repression based aTFs bind their cognate
promoter-operator in the absence of a specific effector, thus
inhibiting transcription. Binding of the effector molecule to the
aTF induces a conformational change, causing a loss of DNA
binding and derepression leading to the expression of a
reporter gene, such as gfp. Biosensors have been exploited to
control protein expression, monitor metabolism, identify novel
genes in metagenomics libraries, and have found application in
biotechnological and biomedical sensing, and diagnostic
devices.5−7

Following initial construction of a biosensor system, further
iterative refinement is often required to achieve a highly
performing system in its new genetic context. Several
parameters must be optimized for good biosensor perform-
ance: output in the OFF-state (leakiness) should be minimized
to allow accurate measurements at low signal levels; output in

the ON-state (reporter expression level) should be maximized
to allow signal detection in the presence of background noise
and to achieve high levels of gene expression for sensing and
control applications; dynamic range is the ratio of the system’s
ON and OFF states and a high dynamic range allows more
confident “hit” identification due to a high signal-to-noise ratio.
Additionally, for certain applications the sensitivity, the sensing
range, and specificity of a biosensor should be considered. For
primary screening applications biosensors should display high
sensitivity to permit analyte detection at low levels (<μM), and
allow binary (yes/no) classification of positive hits. For
secondary screening applications biosensors that respond
over a wide range of inducer concentrations would allow
clustering of primary hits and separation into different
subgroups based on analyte concentration. For biotransforma-
tion and other diagnostic applications the biosensor must also
be highly specific to minimize false detection from analytes
with closely related chemical structures or properties. Generic
biosensor design and engineering rules are currently lacking,
which limits the broader adoption of biosensors in sensing and
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control applications.2 Biosensors have been optimized using
directed evolution, mechanistic modeling, and rational
engineering.8−14 While these approaches have been successful
in elucidating biosensors, they often require resource intensive,
iterative directed evolution using technically challenging
selection methods, or the use of well characterized sensory
elements. Structured, multivariate experimentation, and
statistical modeling have not been previously applied to this
problem but could offer rapid, resource-efficient means of
optimizing biosensors and elucidating universal design rules.
Structured multivariate experimentation and statistical

modeling is widely used in various engineering and process
industries.15−17 This combined experimentation and modeling
approach, referred to as design of experiments (DoE), is a
statistical tool used to systematically explore multidimensional
experimental space with the minimum number of experimental
runs (Figure 1A). It allows researchers to optimize poorly
understood processes and decipher nonintuitive interactions
with a series of statistically designed experiments.18 DoE is
commonly used to optimize environmental factors such as
temperature, time, and concentration during bioprocess
development. The continuous nature of these factors makes
structured experimental exploration over a range of multi-
variate conditions facile. More recently DoE has also been used
successfully in a growing number of applications in optimizing
genetic factors for metabolic engineering of biosynthetic
pathways;19−22 its utilization is a powerful means of
dramatically improving the performance of metabolic path-
ways. While these studies show the utility of DoE for linear
biosynthetic pathways, it has not yet been applied to more
complex genetic systems consisting of multiple protein−

protein and protein−DNA interactions that are more likely
to display nonlinear effects. Confounding this is the challenge
of converting different closely related, but discrete, genetic
designs into so-called continuous factors. Without this
conversion, assessment of all experimentation conditions
would need to be repeated for all genetic designs, limiting
the potential for a reduction in the number of required
experiments. By applying a modern DoE framework23 to
biosensor development we demonstrate the utility of this
approach to the optimization of regulatory systems.
Here we applied DoE to address the challenge of standard

iterative design-build-test-learn experimental approaches for
the optimization of genetic systems, which can be costly both
in terms of resources and time. To assess this methodology we
sought to explore and optimize the performance of various
aTF-based small-molecule-responsive biosensors. Three regu-
latory component libraries, two promoters and one RBS, were
generated and assessed for expression performance. Linear
regression modeling and fractional sampling were used to
explore a highly efficient, structured coarse-grained map of
experimental space. This workflow was applied to optimize
performance of a two-gene protocatechuic acid (PCA)
responsive biosensor.24 PCA is an aromatic chemical derived
from lignocellulosic biomass, and a central intermediate of
lignin catabolic pathways in microorganisms, making it of
biotechnological interest for the valorization of lignin into high
value chemicals.25,26 An enhanced PCA biosensor was then
benchmarked against the commonly used E. coli recombinant
expression systems. The sensitivity of the PCA biosensor, was
then increased by incorporation the pcaK transporter. The
DoE concept and regulatory components were then used to

Figure 1. Application of design of experiments (DoE) to modulate biosensor dose response curves. (A) An experiment can be considered as a point
in multidimensional space. DoE is a statistical tool that enables the proper exploration of experimental space to understand and optimize biology.
(B) Modulation of biosensor dose response curves by increasing maximum output in the ON state while minimizing output in the OFF state
(vertical extension; left), increasing sensitivity (middle), and conversion of a digital response to an analogue one (horizontal extension; right).

Table 1. Definitive Screening Design of Screen Genetic Factors Constituting a PCA Biosensora

construct trial Preg Pout RBSout OFF ON ON/OFF

pD1 1 0 0 0 593.9 ± 17.4 1035.5 ± 18.7 1.7 ± 0.08
pD2 2 0 1 1 397.9 ± 3.4 62070.6 ± 1042.1 156.0 ± 1.5
pD3 3 −1 −1 −1 28.9 ± 0.7 45.7 ± 4.7 1.6 ± 0.16
pD4 4 1 −1 0 479.8 ± 2.0 860.5 ± 15.1 1.8 ± 0.04
pD5 5 −1 1 0 1543.3 ± 46.2 5546.2 ± 101.7 3.6 ± 0.11
pD6 6 0 −1 −1 16.3 ± 4.1 36.0 ± 5.4 2.2 ± 0.68
pD7 7 1 1 1 1282.1 ± 37.9 47138.5 ± 1702.8 36.8 ± 1.6
pD8 8 1 0 −1 41.0 ± 5.1 49.7 ± 2.9 1.2 ± 0.11
pD9 9 1 −1 1 608.8 ± 19.6 1032.9 ± 6.5 1.7 ± 0.06
pD10 10 −1 0 1 3304.9 ± 88.6 17212.1 ± 136.6 5.2 ± 0.13
pD11 11 1 1 −1 37.7 ± 4.9 100.0 ± 2.7 2.7 ± 0.29
pD12 12 −1 −1 1 659.7 ± 20.6 1841.4 ± 113.3 2.8 ± 0.21
pD13 13 −1 1 −1 71.9 ± 10.7 226.6 ± 17.7 3.2 ± 0.6

aOFF and ON measurements were made in the absence or presence of 1 mM PCA, respectively. The values for OFF, ON, and OFF/ON indicate
the mean of three biological replicates with ± denoting the standard deviation of those replicates. The raw data for this table can be found in
Supplementary Table S1.
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engineer biosensors operating under an analogue dose
response modality, by placing pcaK under the control of a
PCA-responsive inverter. Finally the DoE concept and
regulatory components were assessed using a more complex
enzyme coupled biosensor, consisting of three functional genes
that allow detection of ferulic acid,27 a major aromatic
chemical building block derived from lignin.26 The results of
this optimization effort suggest that this approach could also be
applied to enhance the performance of other biosensors.
Collectively the approach demonstrated the ability of DoE to
efficiently map experimental space and develop genetic
systems, with greatly enhanced output signal, basal control,
dynamic range (signal-to-noise), and sensitivity.

■ RESULTS AND DISCUSSION
Design of a PCA Biosensor. In previous work we

constructed a two-plasmid PCA biosensor (PAB)24 composed
of the PCA-responsive allosteric transcription factor (aTF),
PcaV from Streptomyces coelicolor, under control of a
constitutive PlacI promoter on one plasmid, and the PcaV
repressible PPV promoter upstream from a reporter gene
(GFP) on a second plasmid. To simplify its deployment the
PAB was combined into a single plasmid (pPPV-GFP-pcaV).
This single plasmid PAB displayed a good dynamic range
(ON/OFF = 417; Table 1). However, only modest GFP
expression was observed compared to other commonly used
E. coli expression systems.28

To explore whether biosensor performance could be
improved, we sought to optimize signal output and dynamic
range by refactoring the PAB and systematically varying the

genetic elements making up this biosensor using DoE to guide
the process (Figure 2A). By using DoE to optimize the PAB
and improve the performance of various iterations, we aimed
to build a statistical model describing the interaction of the
genetic components, which could serve as a guide in further
efforts to construct, optimize, and modulate biosensors.

Refactoring of the PCA Biosensor Guided by DoE.
DoE consists of distinct phases: a screening phase is carried
out initially to identify those factors that are most important to
the process under investigation, which is followed by an
optimization phase whereby those factors are adjusted to
obtain the desired optimum. These factors are set at discrete
“levels” that span a defined range: the low level is coded as −1,
the middle level as 0 and the high level as +1. With this in
mind, to refactor the PAB and apply DoE, we first had to
decide on which factors were likely to influence biosensor
performance and then convert those factors into levels suitable
for DoE. Three genetic regulatory components controlling the
transcription and translation of the components constituting
the PAB were selected and modified: (i) the constitutive proB
promoter (henceforth Preg) controlling pcaV expression; (ii)
the PcaV-repressible PPV promoter (henceforth Pout); and (iii)
the G10 RBS (henceforth RBSout), controlling the expression
of the sensor output sf GFP (Figure 2A). These three factors
have all been shown to be important for the response of a
biosensor1 so were selected for systematic investigation
through Design of Experiments. We decided to modify these
independently as RNAP binding and translation rate, set by the
promoter and RBS, respectively, could have different effects on
the response curve of the system.1 We kept the transcriptional

Figure 2. Configuration of PCA biosensor and construction of promoter and RBS libraries. (A) The PCA biosensor consists of the PcaV repressor,
which binds to the PPV promoter controlling sfGFP expression. In the presence of PCA the system is derepressed. (B) The genetic elements
regulating expression of the system components were renamed as shown and mutated with degenerate oligonucleotides to make individual libraries.
pcaV was substituted with mCherry to facilitate library screening. (C−E) Transcriptional (C, D) and translational activity (E) of library variants
assessed by fluorescent protein synthesis rate (upper panels). Synthesis rates were transformed into logarithmically scaled values (lower panels) and
“levels” for DoE were set at −1, 0, and +1.
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terminators, gene orientation, antibiotic selection marker and
plasmid copy constant throughout the initial set of experi-
ments, although we did modify copy number in later
experiments by converting a stable multicopy system to
single-copy system (see below).
Having selected three factors for study, we converted them

into continuous variables by generating, screening and ranking
the performance of libraries for each of these components
(Preg, Pout, and RBSout). This step facilitates statistical-model
based optimization by converting categorical variables, in this
case a particular promoter or RBS, into continuous variables
that span a wide expression range. Rather than use previously
published libraries29 we decided to generate new libraries to
provide greater confidence of the component performance
within the genetic context of the biosensor, and to ensure that
the expression level of the library was finely resolved and
covered a broad range. The libraries were constructed in the
pSEVA131 vector containing sf GFP as the biosensor output
and mCherry substituted for pcaV to serve as a proxy for
regulator expression. Following library construction and
performance assessment mCherry was replaced with pcaV to
reconstitute a functional biosensor (see below). The genes
encoding sf GFP and mCherry were arranged in a divergent
configuration to prevent transcriptional read-through and
separated by a ∼150 bp spacer. Pout and RBSout were used to
control expression of sf GFP and Preg and a strong RBS
(gaaataaggaggtaatacaa) were used for to control expression of
mCherry, yielding a construct termed p131B, which served as
the starting point for library generation. To generate the
individual libraries, we chose to randomize the nucleotides at
the following positions: (i) for Preg, 3 Ns were introduced at
the −10 hex-box to make Preg-lib (Figure 2B); (ii) for Pout, 3
Ns were introduced at both the −10 and −35 hex-boxes to
make Pout-lib (Figure 2B); and (iii) for RBSout, 6 Ns were
introduced at the core RBS binding region to make RBSout-lib
(Figure 2B). This produced total theoretical library sizes of 64
(43), 4096 (46), and 4096 (46) for Preg-lib, Pout-lib, and RBSout-
lib, respectively. The mutant libraries were screened for sfGFP
fluorescence in E. coli for Pout-lib and RBSout-lib and for
mCherry fluorescence for Preg-lib. Following the initial screen,
22 members from each library were selected to span a wide
range of fluorescence values. Promoter and RBS activity was
calculated by determining the rate of fluorescent protein (FP)
production according to previously published work29,30 with
the following equation:

=
−

X
x x

x
Synthesis rate

FP( )tp2 FP( )tp1
OD ( )average700 (1)

The constructed libraries spanned a wide range of FP synthesis
rates (Figure 2C,D,E) with Pout-lib having a 46-fold range
(maximum of 17 340 and minimum 377), RBSout-lib having a
160-fold range (maximum of 15 860 and a minimum of 99),
and Preg-lib having a 46-fold range (maximum of 8101.3 and
minimum of 177). The expression data from libraries
generated were rescaled using a linlog transformation
described previously19 with the following equation:

=
− +

+XLinlog FP synthesis rate
P P

P P

logP log log
2

log log
2

max min

max min
(2)

• P = Pmax, X = 1
• P = Pmin, X = −1

• = + =P P P X, 0max min

The linlog transformation was previously found to be essential
for successful application of a DoE-based optimization process
as logarithmic variables better reflect the cellular biophysics of
transcription and translation,19 hence its implementation here.
Library members were rank-ordered from −1 to +1 with the
strongest member of each library recoded as +1, the weakest as
−1, and the midpoint level 0 the geometric average of level +1
and −1 (Figure 2C,D,E).
Given the size of the screened libraries, a total of 10 648 (22

× 22 × 22) combinations would be needed to fully explore the
gene expression space. DoE aims to reduce the number of
combinations needed to properly explore an experimental
space (Figure 1A) and determine the importance of different
factors by using structured screening designs.18 A range of
screening designs are available in a DoE methodology, here
definitive screening design (DSD) was selected as it allows the
identification of main (linear) factors and two-factor
interactions with a relatively small number of experimental
runs while avoiding confounding of pairs of second-order
effects.23 DSD designs use 3 levels instead of 2 levels, thereby
permitting some estimation of curvature (nonlinearity) in a
factor-response relationship, which are likely to be found in
biological systems. Here using DSD was employed to reduce
the total experimental configurations from 10 648 to 13, a
compression ratio of 819:1 (Table 1).

Statistical Modeling of PCA Biosensor Variants. The
constructs were designed according to the DSD shown in
Table 1 (see Supplementary Table S1 for the raw data), which
was generated with statistical software (Materials and
Methods). Additional runs over the minimum required (2n
+ 1 = total run number, n (number of factors) = 3) were
included to account for the predicted high number of
statistically significant factors and interactions. Following the
replacement of mCherry with pcaV, all 13 constructs (Figure 3

and Table 1) were assembled correctly and transformed into
E. coli. Next, we assessed the performance of each of the
different permutations of the PAB by measuring end-point
sfGFP fluorescence when uninduced (OFF) and induced with
1 mM PCA (ON), and calculated the biosensor dynamic range
(ON/OFF). The results from these trials are shown in Figure
4A,B and Table 1 and give a broad range of values for the

Figure 3. Genetic configuration of biosensor designs conforming to
definitive screening design. Following library construction pcaV was
reinstalled to create a functioning biosensor and regulatory elements
were cloned at the appropriate levels. Three out of 13 constructs are
shown, and the full table can be found in Table 1.
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measured responses. The best performing candidate (pD2),
displayed an excellent maximum signal (62 071 RFU/OD) and
good dynamic range (156-fold) while maintaining tight basal
control, whereas the poorest performer (pD8) produced
negligible output signal (50 RFU/OD) and was barely
responsive, with a dynamic range of 1.2-fold, highlighting the
importance of a library-based optimization approach.
Factor screening analysis was used to assess the importance

of each main effect and their interactions. Significant factors
were selected based on half-normal plots, which allows
interpretation of factor effect on each of the three responses
(OFF, ON, ON/OFF). Factor screening analysis revealed that
the strongest significant effects for dynamic range (ON/OFF)
were from Pout (p < 0.0001), Pout × RBSout (p < 0.0001), and

Preg (p = 0.0004). For both the ON and OFF biosensor output
responses, Pout, RBSout and Pout × RBSout showed the strongest
significant effect (Supplementary Figure S1). Using those
factors shown to be significant (p < 0.05) for biosensor
performance, we carried out statistical modeling of the data
using a standard least-squares regression (SLSR) model and
analysis of variance (ANOVA) (Materials and Methods).
Comparison of effect sizes in the SLSR shows the factors

and interactions with the greatest impact upon the three
responses (Supplementary Figure S1, Supplementary Table S2
and S3). A prediction profile of the model is shown in Figure
4C. As expected, for maximum output (ON) Pout and RBSout
are predicted to have the greatest effect and should be set at +1
for maximum signal output, while for basal output (OFF)
RBSout is the strongest determinant and should be reduced if
the basal output signal is too high. Increasing Pout and RBSout
improves ON/OFF, but in a nonlinear manner when changing
the expression level from midpoint to maximal (0 vs +1). Here
the model indicates an interesting trade-off shown when
comparing the effect of RBSout at −1 vs 0: both OFF and ON
are scaled proportionality leading to no significant change in
ON/OFF. At high expression levels of RBSout (+1) the OFF
level indicates a plateau, whereas the ON level increases
leading to vertical extension and increased ON/OFF.
Interestingly for the ON/OFF response a nonlinear effect is
also observed from changing the level of Preg controlling the
expression of pcaV (Figure 4C). The optimal level of PcaV to
achieve highest dynamic range lies near the middle level (0)
and the system operates with poorer dynamic range at high
(+1) and low levels (−1) for Preg. A lower biosensor dynamic
range at low levels of aTF expression is unsurprising as there is
insufficient transcription factor in the system to fully interfere
with RNAP-promoter complex formation.31 However, in-
creased output signal at high levels of PcaV was unexpected
and suggests that excessive PcaV interferes with stable
regulator-promoter complex formation. Collectively, these
findings highlight the importance of a 3-level DSD as the
nonlinear effect of Preg level would have been overlooked in a
two level design consisting solely of a high and low level.19,20

Through the use of the DSD we were able to confidently
identify nonlinear effects within the design space and assign the
nonlinear effects to the RBSout and Preg levels. This assignment
of nonlinear effects is not possible with traditional DoE
screening designs due to heavy aliasing between nonlinear
effect terms within the designed data structure. This means
that while traditional screening designs can indicate the
presence of a nonlinear effect, it is not possible to assign this
nonlinearity to a causative factor, without augmenting the DoE
design with additional experimental data, which would require
further use of time and resources. This highlights a significant
advantage of the definitive screening design employed here.
The reliable resolution of this nonlinear effect removes the
need for further rounds of experimentation to identify the
cause of the nonlinear response.
Following identification of nonlinearity within the explored

expression space we sought to further resolve the curvature
within the promoter activity landscape of Preg. To do so we
carried out additional trials in which Pout and RBSout were set at
the highest level (+1) and the level of Preg was set at 4 different
levels (−0.56, −0.28, 0.36, and 0.67) to explore the landscape
around the Preg midpoint (Figure 5A). The responses for these
iterations of the PAB were measured and their dynamic range
is displayed. The results pointed to an optimum for dynamic

Figure 4. Experimental trials and statistical modeling. (A) GFP
fluorescence for PCA biosensor variants in the ON state (1 mM PCA;
green bars) and OFF state (no PCA; orange bars). (B) The dynamic
range for PCA biosensor variants (ON/OFF). Error bars represent
the standard deviation of three biological replicates. Each experiment
was repeated a minimum of two times and typical results are shown.
(C) Prediction profile of standard least-squares regression model
based on experimental data.
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range between level 0 and 0.36, so a final construct, p131C−
B10, was created in which Preg was set at 0.14 with Pout and
RBSout kept at +1. This construct gave the best performance of
all tested with a dynamic range of 276-fold (Figure 5A and
Supplementary Table S14).
The results of the validation trials were used to modify the

model to generate a new prediction profile describing the data
(Figure 5B). From this model we are able to elucidate some
design rules that should be applicable to other repression based
aTF biosensor systems: (i) Construct the strongest chimeric
promoter-operator and RBS combination possible, then (ii)
fine-tune the level of regulator with a wide range of expression
levels. If a satisfactory dynamic range cannot be met after
tuning the regulator, then (iii) weaken the RBS driving signal
output. Importantly, we were able to map the optima and
develop this statistical model in a small number of
experimental runs (18 constructs). Also, as the experimental
space has been efficiently mapped through this DoE approach,
we can be confident that an optimal configuration of the PAB
has been achieved. We carried out a titration of the best variant
(p131C−B10) and the original PAB with full induction at 4
mM PCA (Figure 5C and Supplementary Table S5), which
showed that we had improved the output signal over 30-fold
(3121 to 97 099 RFU/OD) and the dynamic range by 25%
(417- to 521-fold).
Copy Number Effects upon Biosensor Performance.

Next, we investigated the effect of copy number on the
performance of the PAB by transferring the plasmid-based
multicopy biosensor system into single-copy system on the

chromosome. Different permutations of the biosensor were
cloned into a pKIKO vector and inserted into the arsB locus
(Materials and Methods). As before, Pout and RBSout were set
at the highest level and the level of Preg was varied. The
responses of the chromosomal PABs were assessed. We found
that the maximum level of output signal was reduced ∼10-fold
from the plasmid-based biosensor (Supplementary Table S6),
consistent with the copy number reduction from the pBBR1
origin, which is reported to have 5−10 copies per E. coli
cell.32,33 As shown in Figure 5D, the level Preg needed for the
optimal dynamic range was increased from 0.14 to 0.61 (Figure
5A,D) and the overall dynamic range of the system was
reduced (276-fold to 42-fold; Supplementary Table S6). It is
well-known that expression correlates proportionally with
gene-dosage;34,35 however, this relationship is complex,
nonlinear,36 and copy reduction is believed to perturb the
equilibrium of aTF-based systems due to a reduction in the
steady state aTF concentration.37 Mechanistic based ap-
proaches have attempted to rationalize these observations
and indicate that increasing strength of the RBS or promoter
controlling the aTF is required to restore steady-state levels to
functionality.37 This explains the requirement for a stronger
promoter for pcaV to decrease basal expression of sfGFP from
the biosensor when implemented as a single-copy system. The
wide range of expression space covered by the calibrated
regulatory component libraries enabled us to quickly refactor
the biosensor in order to retune biosensor performance of the
genome-integrated PAB.

Figure 5. Optimization of PCA biosensor and effect of copy number. (A) The level of aTF was tuned to determine optimal dynamic range. Shown
is the dynamic range (ON/OFF) for the PCA biosensor when induced with 1 mM PCA with Preg set at different levels. The blue circles represent
the initial trials, the red squares represent the first iteration with Preg set at different levels and the green triangle represents the final iteration of Preg
level. (B) Prediction profile of standard least-squares regression model based on data from new trials. (C) Comparison of original PCA biosensor
with the optimized version (p131C−B10) in an end point assay. Cells were induced with varying concentration of PCA for 3 h at 37 °C then
measured for GFP fluorescence. (D) Performance of PCA biosensor when present as one-copy in the genome. The level of repressor was tuned to
determine optimal dynamic range when present as a single copy. Shown is the dynamic range (ON/OFF) for the PCA biosensor when induced
with 1 mM PCA with Preg set at different strengths. Error bars represent the standard deviation of three biological replicates. Each experiment was
repeated a minimum of two times and typical results are shown.
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Enhancing the Sensitivity of the PCA Biosensor and
Modulating the Dose−Response Curve. Having demon-
strated the applicability of DoE to improve the fold change and
maximum, we turned our attention to modifying the sensitivity
and slope of response curve. Using the DoE approach and the
associated genetic libraries none the PAB variants demon-
strated a marked difference in sensitivity (EC50) or slope of the
response curve (nH); therefore we first investigated whether
the sensitivity of the PAB could be attenuated by altering the
internal PCA concentration. E. coli cannot metabolize PCA
and has no known transport mechanisms. Therefore, we
inserted the high affinity PCA transporter, pcaK from
Pseudomonas putida, downstream of pcaV to form a synthetic
operon (Figure 6A). Expression of pcaK led to increased
sensitivity of the PAB to PCA of over 1500-fold (EC50 from
557 μM to 0.335 μM; Figure 6B and Supplementary Table
S7).

Following the dramatic increase in performance and
sensitivity achieved we were satisfied that we had constructed
a robust and highly functional biosensor system. Given these
attributes we are confident that this biosensor is adequate for
high-throughput screening method as its high sensitivity, large
dynamic range and high output signal make it ideally suited for
detecting low concentrations of PCA. The highly digital dose
response gives an impressive signal-to-noise ratio, allowing
great confidence when assigning positive analyte concentration
above a required threshold for applications is screening genetic
libraries and others applications in environmental monitoring
and medical diagnostics.2−7 While these characteristics are
ideal for primary screening, the binary nature of the dose−

response means that this sensor is not well suited for
determining between variants or samples with similar activities
(i.e., as a result of protein engineering). For these applications
it would be desirable to have a system, which gives a shallow,
more analogue dose response, to allow accurate distinction
between different analyte concentrations.
We hypothesized that by regulating the expression of the

pcaK transporter, and therefore PCA uptake in the cell, we
could expand the sensing range of the biosensor and transform
the digital dose−response into an analogue response. We
reasoned that by enhancing PCA uptake at low concentrations
and repressing uptake at high concentrations we would be able
to achieve this linear response (Figure 7A). To achieve
conversion of the dose response curve from a digital to a more
analogue signal a genetic system consisting of two plasmids
(Figure 7B) was designed to provide negative feedback control
of pcaK expression. The biosensor system consists of the lacI
gene downstream of Pout and pcaK downstream of PLlac‑O1.
Using the negative feedback control of pcaK expression we
expected that at low PCA concentrations pcaK would be
maximally expressed (Pout controlling lacI repressed, PLlac‑O1
controlling pcaK derepressed), giving greatest PCA uptake,
accumulation inside the cell and therefore biosensor
sensitivity/linearity. In contrast when PCA is at a higher
concentration pcaK would be minimally expressed (lacI
derepressed, pcaK repressed), leading to reduced PCA uptake
and therefore an extended biosensor response linearity. As
designed the negative feedback control should lead to
horizontal extension of the dose response curve giving a less
binary, more linear/analogue response over a large concen-
tration range.
Rather than designing a single extender system ad hoc and

relying on iterative redesign we chose to construct nine
variants of the extender system. These constructs contain the
full factorial variants of three RBS sites, upstream of pcaK
((−1), (0) and (+1)) and lacI ((−1), (0) and (+1)) each
selected from the RBSout library described earlier in this study.
These combinatorial plasmids were constructed using iso-
thermal assembly of ssDNA containing the respective RBS
sequences, into a linear, PCR amplified backbone
(pSEVA261). During assembly we were not able to assemble
the 3 constructs containing the LacI (+1) RBS variant,
presumably due to the potential toxic of very high lacI
expression.
Following cotransformation of the six negative feedback

controller plasmids (p261_PcaK_LacI) and the sensor plasmid
(p131C−B10) we measured sf GFP expression following
induction with varying concentrations of PCA. Testing of the
six biosensors, showed successful transformation of the digital
dose response of the PcaK-sensitized PCA biosensor to an
analogue system that is linearly titratable with increasing PCA
concentration and gives a response over ∼4 orders of
magnitude (see Figure 9C). The digital vs analogue behavior
can be determined by calculation of the dynamic range of
ligand response (DRLR; EC90/EC10). While all of the RBS
variants showed modified dose−response behavior, the
biosensor with most digital behavior, PcaK(+1)_LacI(−1),
was effective at sensing PCA over a small concentration range
(DRLR = 11.7, nH = 1.8) (Supplementary Table S8). Whereas,
the biosensor with most analogue behavior, PcaK(−1)
_LacI(0), was effective at sensing PCA over a larger
concentration range (DRLR = 117.8, nH = 0.9). Demonstrating
that PCA responsive inversion of pcaK expression was

Figure 6. Increasing the sensitivity of the PCA biosensor. (A) The
pcaK gene from Pseudomonas putida was inserted downstream of the
Preg promoter and strong G10 RBS (+1) and pcaV. (B) The
expression of a high-affinity, PCA permease leads to a reduction in
EC50 of the PCA biosensor, as shown here. We observed a shift of the
dose response curve to the left when pcaK is expressed (orange),
compared to the p131C−B10 biosensor (green). Error bars represent
the standard deviation of three biological replicates.
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successful in expanding the sensing range of and converting the
biosensor response into a linear signal.
The diverse performances of the different extender PAB

variants, and the successful conversion of a digital to analogue
dose−response curves demonstrate the importance of correctly
balancing the expression of components within a regulatory
system. By sparsely sampling the expression landscape using
the RBS library we were able to rapidly identify a construct

with the desired performance. Had we simply selected a pair of
RBSs, which did not give such a pronounced conversion in
dose response, it would have been easy to dismiss the system
design as nonfunctional. The objective approach taken here
allowed proper assessment of the expression landscape and
selection of a functional extender system.

Benchmarking of the Refactored PAB against
Commonly Used Expression Systems. Given the high

Figure 7. Extending biosensor linear range through transport modulation. (A) Biosensors with analogue dose−responses have application in
protein engineering as they allow more accurate identification of enzyme variants with improved function. To this end we designed a regulatory
network to convert the digital-like dose response to an analogue output. (B) This circuit consists of a PcaV repressed Pout::lacI, which in turn
repress pcaK expression. In the presence of high concentrations of PCA LacI is produced, leading to restricted pcaK expression, reducing ligand
uptake, which ultimately reduces sfGFP output. Without PCA, lacI expression is repressed, pcaK is induced, leading to increased PCA uptake and
accumulation inside the cell, thus increasing derepression of sf GFP expression. (C) Six variants of the dose−response extender circuit were
designed and tested. The variants have different strength RBSs upstream of the lacI (−1, 0) and pcaK (−1, 0, +1). Expression testing under
different concentrations of PCA show the different dose response performance of the construct variants. Error bars represent the standard error of
three biological replicates, and the area fill denotes the 95% confidence interval for the fitted curve.

Figure 8. Benchmarking of PCA biosensor with popular inducible expression systems. (A,B) The PCA biosensor (p131C−B10; green circles) was
tested against three common expression systemsT7 RNAP/IPTG (pET44-sfGFP; orange squares), ParaBAD/arabinose (pBAD-sfGFP; blue
triangles), and PrhaBAD/mannose (pCK302; purple diamonds)in an end point assay. Cells were induced with varying concentrations of inducers
for 3 h (A) and 24 h (B) at 37 °C then measured for GFP fluorescence. Error bars represent the standard deviation of three biological replicates.
Each experiment was repeated a minimum of two times, and typical results are shown.
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expression levels produced from the refactored PAB we were
interested in benchmarking the PAB against popular inducible
expression systems in. The low sensitivity PAB (i.e., lacking the
PcaK transporter) was used for benchmarking as it displayed a
superior dynamic range and maximum output (Supplementary
Table S7). We selected three commonly used bacterial
expression systems: (i) the pET vector system utilizing a
chromosome-integrated copy of T7 RNA polymerase to
express the target gene, both regulated by P/Olac/LacI and
induced with IPTG; (ii) the arabinose-inducible plasmid-based
system in which expression of the target gene is controlled by
ParaBAD/AraC; and (iii) the pCK302 rhamnose-inducible
plasmid-based system in which expression of the target gene
is controlled by PrhaBAD/RhaS. To benchmark the PAB against
these systems, sf GFP was cloned into pET44 and pBAD
expression plasmids. pCK302 already contains the sfGFP
reporter so was not modified.38 The pBAD-sfGFP, pCK302,
and p131C−B10 vectors were transformed into E. coli BL21
and pET44 was transformed into E. coli BL21(DE3) carrying
the T7-RNA polymerase. Titrations were carried out for each
of the expression systems using the appropriate inducer with
samples analyzed for end-point fluorescence at 3 h and 24 h
after induction. The PAB afforded comparable expression
levels to the pBAD and BL21(DE3) expression systems in
terms of maximum protein produced per cell (RFU/OD) after
induction for 3 h (Figure 8A and Supplementary Table S9)
and only the T7-RNAP system gave comparable amounts of

protein at 24 h postinduction (Figure 8B and Supplementary
Table S9). The PAB showed a consistently high dynamic range
(>200-fold) at both time-points whereas the other systems
displayed unwanted (leaky) expression during the longer
induction time, presumably due to endogenous effects
associated with catabolite derepression.39,40 Taken together,
these findings demonstrate the utility of a properly optimized
expression system from a heterologous source and highlight
the potential of the PAB as tool for producing recombinant
protein using PCA as a cheap, nonmetabolizable and
orthogonal inducer.

Optimization of a Ferulic Acid Biosensor Guided by
Statistical Modeling. Given the outstanding performance
achieved for the PAB (Figure 8), we applied the above design
rules to improve a ferulic acid biosensor, (henceforth FAB)27

to demonstrate the wider utility of the DoE approach. The
ferulic acid biosensor is a three gene system, and also differs
from the PAB in that in addition to an aTF (FerC) and
inducible promoter (PLC), an activating enzyme, feruloyl CoA
ligase (FerA), is required to convert ferulic acid into feruloyl-
CoA (FA-CoA), which is the effector able to bind to FerC
leading to derepression (Figure 9A).27 To optimize this
biosensor, first, the original promoter-operator PLC controlling
the reporter gene was reengineered based on the strong
promoter from the Anderson library (BBa_J23119)30 to
generate the PLC2 aiming to improve the maximum expression

Figure 9. Optimization of a FA biosensor. (A) Schematic representation of a refactored FA biosensor. The FerC aTF (orange) represses sfGFP
(green) expression by regulating the PLC2 promoter. The FerA enzyme (purple) metabolizes the sensed chemical ferulic acid into the ligand effector
feruloyl-CoA, which binds to FerC derepressing sf GFP. (B) Dynamic range (ON/OFF) of the 9 DoE variants of the FA biosensor, in the first
iteration, set with combinations of promoter strength levels of the FerC regulator (PregC at levels −1, 0, +1) and the FerA enzyme (PenzA at levels
−1, 0, +1). (C) Performance of the 3 additional DoE variants of the FAB in the second iteration. The best variant of the first iteration pFABs9,
PregC/PenzA/RBSout levels +1/+1/+1 (green circles), was compared to a group of new variants that had RBSout set at decreasing levels while the level
of both PregC and PenzA was fixed at +1: pFABsG21, PregC/PenzA/RBSout levels +1/+1/+0.94 (red diamonds); pFABsG19, PregC/PenzA/RBSout levels
+1/+1/+0.89 (orange triangles); and pFABsG12, PregC/PenzA/RBSout levels +1/+1/+0.81 (blue hexagons). The fluorescent signal (RFU/OD) is
shown for the induction with increasing concentrations of ferulic acid. (D) The dynamic range (ON/OFF) is shown for the signal ratio of the
variants at ON induced state (presence of ferulic acid at 1 mM) or OFF uninduced state (absence of ferulic acid). Error bars represent the standard
deviation of three biological replicates.
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level that could be achieved by the reporter gene
(Supplementary Figure S3).
Following the DoE strategy used for the PAB biosensor, the

original FAB design27 was refactored and combined into a
single plasmid system where the expression of the reporter
sfGFP, driven by the promoter-operator (PLC2) and strong
RBS (RBSout + 1), was initially fixed and the expression levels
of ferC and ferA were optimized using a full factorial design.
The promoters controlling the production of the transcription
factor FerC (PregC) and the enzyme FerA (PenzA) were set at 3
levels (−1, 0, and +1) using the promoter sequences from the
Preg library, which led to 9 different designs (Figure 9A and
Table 2). As described for PAB, performance of the designs
was assessed by measuring end-point fluorescence when
uninduced (OFF) and induced by 1 mM FA (ON), and
calculating the dynamic range (ON/OFF). The expression
level of PregC was the main factor determining the increase of
dynamic range (ON/OFF) and expression level of PenzA had
smaller influence as observed by the ON/OFF of the
intermediate designs (Figure 9B and Table 2) as shown on
the analysis of a full factorial model for the expression
(Supplementary Figure S4). The pFABs9 construct (PregC/
PenzA/RBSout levels +1/+1/+1), which had PregC and PenzA both
set at the highest levels (+1) displayed the best dynamic range
(52-fold), with an ON signal of 74 893 RFU/OD and OFF
signal of 1433 RFU/OD (Figure 9B, Table 2; see
Supplementary Table S10 for the raw data).
However, we felt that further reduction of leakiness would

be important for a high performance FAB biosensor.
Therefore, following the design rules elucidated for the PAB
biosensor earlier we reduced the strength of RBS controlling
sf GFP expression. For this second iteration the RBS upstream
of the reporter was replaced with variants from the RBSout
library set at +0.94, +0.89, +0.81, generating pFABsG12
(PregC/PenzA/RBSout pattern at levels +1/+1/+0.81),
pFABsG19 (PregC/PenzA/RBSout pattern at levels +1/+1/
+0.89), and pFABsG21 (PregC/PenzA/RBSout pattern at levels
+1/+1/+0.94). As expected, when compared to the best
previous FAB variant pFABs9, these FAB variants showed a
reduction of the minimum and maximum signals, and the
dynamic range was increased significantly due to a greater
relative reduction of the OFF signal versus the ON signal
(Figure 9C, and Supplementary Table S11). In summary, we
improved the performance of the FAB biosensor, relative to
previously published designs,27 for both max output signal by
31-fold (992 RFU/OD to 30,783 RFU/OD) and dynamic

range by 5-fold (23-fold to 118-fold) in a small number of
experimental runs (12 constructs and two iterations).
In summary, by applying a DoE approach to the genetic

factors constituting a biosensor, we were able to increase the
maximum signal output from the PCA biosensor over 30-fold
(3121 to 97 099 RFU/OD) and the dynamic range by 25%
(417- to 521-fold). Further, we took advantage of a high-
affinity PCA permease, PcaK, to vary the slope of the dose−
response curve of the PAB and construct a whole cell biosensor
with a linear responsivity to analyte concentration ∼4-orders of
magnitude. We achieved coverage of the experimental space
with 13 constructs and were able to fully optimize the PCA
biosensor with an extra five constructs thereby demonstrating
the efficient use of time and cost that a DoE approach can
provide. The statistical model built from the experimental data
allowed us to elucidate some design rules that we applied to
improve the performance of a ferulic acid-biosensor in a small
number of experimental runs. The following design rules
should be applicable to other repression based aTF biosensor
systems: (i) Construct the strongest chimeric promoter/RBS
combination possible, then (ii) fine-tune the level of regulator
with a wide range of expression levels. (iii) If a satisfactory
dynamic range cannot be met after (ii), weaken the RBS
driving signal output. The Preg and RBSout libraries we
developed for optimizing the PAB were successfully applied
to improve the FAB demonstrating the reusability of these
parts in a different genetic context and abrogating the need for
library construction/screening each time a biosensor is
optimized. If library development is required, say for the
application of DoE in a different context, we would advocate
the use of empirically validated promoters/RBSs or validation
of promoters/RBSs designed using predictive tools,41−43 to
allow for greater confidence in the resulting data and model.
The PCA and FA whole cell biosensors we developed can

detect key aromatic chemicals in the lignin biomass valor-
ization, permitting applications for the renewable production
of high value chemicals, materials and fuels from biomass.25,26

These systems can be employed for the high-throughput
screening and of new enzymes,27,44 dynamic-regulation of
metabolic pathways for production of target chemicals,45,46

adaptive evolution of new phenotypes,47 and the integration of
regulated individual components in a whole cell bioprocess
context.48 Furthermore, as demonstrated for PCA, the high
performance comparable to traditional inducible systems
would allow broader synthetic biology applications such as
regulation of complex networks and cellular computation.49,50

Table 2. Full Factorial Screening of Screen Genetic Factors Constituting a FA Biosensora

construct trial PregC PenzA RBSout OFF ON ON/OFF

pFABs1 1 −1 −1 1 14821.8 ± 307.2 96497.4 ± 5257.5 6.5 ± 0.4
pFABs2 2 −1 0 1 7829.3 ± 497.6 90917.2 ± 3861.1 11.6 ± 0.5
pFABs3 3 −1 1 1 33501.3 ± 213.6 93754.5 ± 2550.6 2.8 ± 0.1
pFABs4 4 0 −1 1 6649.1 ± 180.7 88905.3 ± 1381.2 13.4 ± 0.5
pFABs5 5 0 0 1 6776.3 ± 96.5 87954.6 ± 1154.7 13.0 ± 0.4
pFABs6 6 0 1 1 6369.9 ± 286.3 88764.7 ± 751.5 13.9 ± 0.6
pFABs7 7 1 −1 1 2140.5 ± 55.7 82976.5 ± 2964.9 38.8 ± 0.5
pFABs8 8 1 0 1 1960.9 ± 87.3 77072.3 ± 1609.9 39.3 ± 1.4
pFABs9 9 1 1 1 1432.8 ± 99.9 74892.8 ± 3048.0 52.4 ± 3.4

aOFF and ON measurements were made in the absence or presence of 1 mM FA, respectively. The values for OFF, ON, and OFF/ON indicate the
mean of three biological replicates with ± denoting the standard deviation of those replicates. The raw data for this table can be found in
Supplementary Table S10.
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By applying statistical modeling we are able to optimize
biosensor performance without needing to carry out
modification to the repressor protein or understanding of
binding affinities of the DNA and ligand binding domains,
making this objective approach ideally suited to building
regulatory networks from uncharacterized genetic parts. By
systematically sampling the expression space of these multipart
genetic systems we can use statistical modeling approaches,
which do not rely on detailed mechanistic and/or kinetic
knowledge, to guide rapid iteration and performance
optimization. These models also allow us to identify nonlinear
effects and trade-offs, which aid selection of highly functional
regulatory networks and pathways, enabling robust, data-led
decision making. The DSD framework developed here shows
great potential for the optimization of genetic systems by
tuning component expression level in a systematic and highly
efficient way.

■ METHODS
Materials. Escherichia coli DH5α (NEB, #C2987U) was

used for cloning, in vivo DNA assembly,51−54 plasmid
propagation, promoter/RBS characterization and biosensor
assays. For benchmarking studies, E. coli BL21 (NEB,
#C2530H) was used with different non-T7 expression systems
and E. coli BL21 (DE3) (NEB, #C2527H) with a genomic
copy of T7 RNAP was used for the T7 RNAP-based expression
systems. E. coli BW25113 was used as a host for the redesigned
ferulic acid-responsive biosensor. E. coli strains were grown
Luria−Bertani (LB) media for all experiments except for the
promoter/RBS library characterization where EZ rich (EZ rich
defined medium kit, Teknova, #M2105) was used. Unless
noted, LB and EZ rich were supplemented with ampicillin
(100 μg/mL), kanamycin (50 μg/mL for plasmid selection and
25 μg/mL for genome integration), or hygromycin (100 μg/
mL). Water was from a Milli-Q filtration system (Millipore).
Protocatechuic acid, isopropyl β-D-1-thiogalactopyranoside
(IPTG), L-arabinose, and L-mannose stock solutions were
prepared in sterile water and a ferulic acid stock solution was
prepared in dimethyl sulfoxide (DMSO). Chemicals and
antibiotics were purchased from Sigma, Fisher, or Formedium.
DNA oligos and synthetic genes were purchased from IDT
and/or GeneArt.
Molecular Cloning. Primer sequences and a list of

plasmids can be found in Supplementary Table S12 and S13,
respectively. Restriction enzymes were purchased from NEB
and digestions were carried out according to standard
protocols. Q5 polymerase (NEB, #M0491S) was used to
produce DNA fragments for cloning purposes and Phire II
(Thermo Fisher, #F126S) was used for genotyping of genomic
insertions. Isothermal assembly55 was performed using
NEBuilder (NEB, #E2621S). PCR-generated fragments were
treated with DpnI (NEB). All constructs were Sanger
sequenced to verify sequence identity. pSEVA131,56,57

containing the BBR1 origin and ampicillin selection marker,
was used for the PCA biosensor. pSEVA 261 containing the
p15A origin and kanamycin selection marker was used for the
inverter system. pET28a (Novagen) containing the pBR322
origin and kanamycin selection marker was used for the ferulic
acid biosensor. Full details for the molecular cloning can be
found in the Supporting Information.
Promoter/RBS Library Screening. Clones from the Preg-

lib, Pout-lib and RBSout-lib libraries were selected and
characterized in two rounds. For the first round, 960 individual

clones from each library were picked from transformation
plates and arrayed into square-welled 96 deep-well plate
(DWP) fitted with breathable seals, containing media (0.5 mL
LB plus ampicillin) using a Hamilton Star robotic platform.
The plates were grown for 16 h at 30 °C at 950 rpm, 75%
humidity in a shaker-incubator (Infors HT). The next day, 2
μL of the cultures were subcultured into 198 μL of EZ rich
media plus ampicillin in black, clear flat-bottomed 96-well
microtiter plates (MTP; Grenier) and were incubated for 3 h
at 37 °C at 1000 rpm in microtiter plate shaker (Stuart).
Fluorescence and optical density (OD λ = 700 nm) were
measured in a ClarioStar microplate reader (BMG) to obtain
an end-point measurement. GFP fluorescence was measured at
λEx/λEm = 488/520 nm and mCherry fluorescence was
measured at λEx/λEm = 570/620 nm. OD700 was measured
instead of OD600 to avoid bleed-through from mCherry
fluorescence.58 Fluorescence was normalized to optical density
and the normalized value was used to select 22 clones from
each library that spanned a wide range of RFU/OD. For all
RFU/OD measurements, the background signal for autofluor-
escence was corrected for by subtracting the RFU/OD value of
the empty vector negative control.
For the second round, selected clones from each library were

streaked onto ampicillin plates and grown overnight. Individual
colonies were arrayed in triplicate in DWPs containing 0.5 mL
LB plus ampicillin (with breathable seals) and grown for 16 h
at 30 °C at 950 rpm, 75% humidity in a shaker-incubator
(Infors HT). The overnight cultures were used to make “one-
shot” stock solutions for cryopreservation by transferring 75ul
of culture to a black microtiter plate containing 50 μL of 50%
glycerol. These plates were mixed briefly in a MTP shaker
(1000 rpm, 1 min) then stored at −80 °C. To determine
promoter activity the cryopreserved MTPs were thawed in a
MTP shaker (37 °C, 1000 rpm) for 30 min then 5 μL of each
well was inoculated into a DWP containing 495 μL of LB plus
ampicillin. The DWP plates were grown for 16 h at 30 °C at
950 rpm, 75% humidity in a shaker incubator. The overnight
precultures were used to make the main culture by transferring
4 μL of cells into a black, clear flat-bottomed 96-well MTP
containing 196 μL of EZ rich plus ampicillin and incubated in
a MTP shaker at 1000 rpm at 37 °C. OD700 and FP
(fluorescent protein) fluorescence was read at 2 and 3 h, which
was previously determined to the period of maximum growth
rate for E. coli in our experimental conditions. Promoter
activity was calculated according to the literature29,30 (see eq
1). Promoter activity was transformed into a logarithmic
dimensionless variable according to the literature19 (see eq 2).

Genomic Integrations. Genomic cassettes were inserted
into the chromosome of E. coli DH5α using lambda red
recombineering.59 Selected PAB variants were transferred to
the pKIKOarsBKM integration vector,60 and then the
integration cassette was amplified with primers AB 39/40
and cleaned up with a Qiagen PCR purification column. E. coli
DH5α was transformed with the pSIM18 vector, grown to an
OD600 of ∼0.3 and heat-shocked at 42 °C for 15 min to induce
expression of the λ Red recombinase proteins. The cells were
washed 5 times in ice-cold sterile water then electroporated
with 300 ng of PCR product and the transformants selected on
LB plates supplemented with kanamycin at 37 °C. Con-
firmation of cassette insertion at the correct locus was
confirmed by colony PCR with primers AB 34/61. To cure
the strains of pSIM18, clones were subcultured overnight on
LB plus kanamycin at 42 °C and restreaked onto LB plates
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containing kanamycin (growth) or hygromycin (no growth) to
confirm loss of pSIM18.
DoE Trials. E. coli DH5α strains bearing the plasmid or

chromosome-based PAB variants were streaked on LB plus
ampicillin or LB plus kanamycin plates, respectively. Individual
clones from each strain were used to make “one-shot” stock
solutions for cryopreservation as described above. For DoE
trials the cryopreserved MTPs were thawed in a MTP shaker
(37 °C, 1000 rpm) for 30 min then 10 μL of each well was
inoculated into a DWP containing 190 μL of LB plus
ampicillin (for plasmid-based variants) or LB only (for
chromosomally integrated variants). The DWP plates were
grown for 16 h at 30 °C at 950 rpm, 75% humidity in a shaker
incubator to make precultures, which were subsequently used
to make the main culture by transferring 5 μL of cells into a
DWP containing 445 μL of LB plus ampicillin. DWPs were
incubated in a MTP shaker at 1000 rpm at 37 °C for 2 h. The
clones were then induced by adding 50 μL of PCA (10 mM)
for a final concentration of 1 mM PCA and grown for another
3 h. The DWPs were centrifuged at 2250g for 10 min to pellet
the cells and the spent medium was replaced with 500 μL PBS
and mixed by pipetting. The cells were pelleted and washed
again, 50 μL of cell suspension was transferred to a flat, clear-
bottomed black MTP containing 150 μL of PBS, and GFP
fluorescence and OD700 were measured.
Biosensor Titrations and Expression System Bench-

marking. Strains containing inducible expression systems
were streaked onto LB plates supplemented with ampicillin
and individual clones from each strain were used to inoculate 5
mL of LB plus ampicillin in a 50 mL conical tube, which was
grown for 16 h at 37 °C at 180 rpm in a shaking incubator
(New Brunswick I26). The overnight cultures were diluted 1/
100 into LB plus ampicillin in a DWP, incubated in a MTP
shaker (Stuart) at 1000 rpm at 37 °C for 2 h then induced by
adding the appropriate inducer and grown for a further 3 h.
The final inducer concentrations for the titration were as
follows: 4000, 1000, 250, 62.5, 15.6, 3.9 μM, and no inducer.
The FA Biosensor titration was carried out in the same way,
expect that concentrations were 1000, 200, 40, 8, 1.6, 0.32 μM
and no inducer. The cells were pelleted, washed, and measured
for OD700 and fluorescence as described above.
Dose Response Extender. E. coli DH5α bearing the

p131C−B10 biosensor and p261-lacI-pcaK variants were
plated onto solid LB medium containing ampicillin and
kanamycin (25 μg/mL and 12.5 μg/mL, respectively) and 1
mM PCA. Single isolated colonies were inoculated into 5 mL
of LB supplemented with the required antibiotics, in a 50 mL
conical tube and incubated at 37 °C for 16 h shaking at 180
rpm. Cells were then diluted 100-fold in fresh LB media
containing antibiotics and transferred to a 96 well DWP then
incubated at 37 °C in a MTP shaker at 1000 rpm for 2 h.
Following this outgrowth period the appropriate concentration
of inducer was added bringing the final culture volume to 500
μL. Cells were incubated as before for a further 24 h. An
extended induction time was required as the two plasmid
inverter system and expression of the system components had
significant deleterious effect on the growth. Final concen-
trations of inducer were as follows: 1000, 200, 40, 8, 1.6, 0.32,
0.064, 0.0128, and 0 μM PCA.
Data Processing and Modeling. All data processing and

statistical analysis was carried out in JMP Pro 12 (SAS Institute
Inc.), including design of experiments, factor screening, and
standard least-squares regression. Response data were trans-

formed to log10. The DSD data table was constructed using
the DoE definitive screening function and factors were selected
based on the Lenth’s t-ratio and Half-Normal plot analysis of
the factor contrast and Lenth’s pseudo standard error (PSE).
Factor contrasts which deviated from the half-normal
distribution were deemed important for the model and so
were included in SLSR fitting. Factor significance was assessed
by analysis of simultaneous p-values, allowing the assessment of
factor importance in the model. Effect heredity was maintained
and so if a factor was not deemed significant individually but
was included in a significant interaction term with another
factor then both terms contained in this interaction were
included in model fitting. Simultaneous p-values were
generated using the PSE, which is derived from an estimation
of the residual standard error using inactive terms within the
model. From this PSE a 10 000 run Monte Carlo simulation
was carried out to allow estimation of the p-value. Graphs were
generated in PRISM 7 (GraphPad Software) and fit using a
Hill fit.
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