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ABSTRACT

The power of a genome-wide disease association
study depends critically upon the properties of the
marker set used, particularly the number and
physical spacing of markers, and the level of inter-
marker association due to linkage disequilibrium.
Extending our previously devised theoretical frame-
work for the entropy-based selection of genetic
markers, we have developed a local measure of
the efficacy of a marker set, relative to including
a maximally polymorphic single nucleotide poly-
morphism (SNP) at the map position of interest.
Using this quantitative criterion, we evaluated five
currently available SNP sets, namely Affymetrix
100K and 500K, and Illumina 100K, 300K and 550K
in the CEU, YRI and JPT+CHB HapMap populations.
At 50% relative efficacy, the commercial marker
sets cover between 19 and 68% of the human
genome, depending upon the population under
study. An optimal technology-independent 500K
marker set constructed from HapMap for
Caucasians, in contrast, would achieve 73% cover-
age at the same relative efficacy.

INTRODUCTION

Genome-wide association studies with large sets of single
nucleotide polymorphisms (SNP) (1) are a new option for
mapping the genetic variants underlying complex human
diseases. However, the power and cost-effectiveness of
such studies depends critically upon the properties of the
SNP sets used. Consequently, the choice between one
of the commercially available marker panels and the
construction of a new set is of strong practical significance.
No objective criteria other than descriptive measures
(e.g. marker number) have so far been used to compare

the utility of genome-wide marker sets. More importantly,
any sensible assessment of a marker panel requires that
recent discoveries about the biology of meiotic recombi-
nation are appropriately taken into account (2–4).
For example, it has been shown (2) that the ‘geodesy’ of
the human genetic map is fairly homogenous above the
centi-Morgan level, but that the correlation between
physical and genetic distance is weak at a finer scale,
due to rapidly evolving recombination hotspots.
Consequently, SNP selection strategies that are based
upon the assumption of static linkage disequilibrium (LD)
blocks, or that merely employ pairwise LD, may result in
sub-optimal marker sets.
The utility of a marker set for disease association

analysis is determined by a number of factors, including
marker number, informativity and spacing, in addition to
the local level of LD. In practice, genotyping technologies
may pose serious restrictions upon the usability of an
individual SNP, irrespective of whether its inclusion might
be desirable or not. If such limitations can be ignored,
however, then the utility of a marker set should ideally
be evaluated by a criterion that:

(i) allows the assessment of the coverage of a genomic
region in a single quantity,

(ii) is computationally practicable,
(iii) is applicable to the limited genotype information

typically available for large marker sets and
(iv) draws upon a theoretical framework that allows

meaningful interpretation of the numerical results.

Shannon entropy (5) is a well-established mathematical
concept for assessing the utility of genetic markers.
We have recently devised an entropy-based SNP selection
approach (6) that can in principle be adapted to a genome-
wide setting. Furthermore, the methodology facilitates
estimation of the relative, region-specific efficacy of a
given marker set by �, a quantity that approximates to the
relative sample size required to map a causative variant
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at a given map position, compared to including a
maximally polymorphic SNP at the same position (see
Methods section). We calculated � across the genome
using publicly available genotype data for HapMap
(Phase 2, built 35) (7) and for the five commercial
marker sets of Affymetrix (8) (100K and 500K) and
Illumina (9) (100K, 300K and 550K). The results were
compared to an ‘ideal’ SNP set constructed from HapMap
via entropy-based marker selection.

METHODS

Estimation of inverse swept radii

Parameter ", which denotes the inverse of the swept
radius, was used as a local measure of LD strength (10,11)
and was estimated from HapMap genotype data on the
basis of all markers with a minor allele frequency �10%.
To this end, pairwise haplotype frequencies were esti-
mated from the genotype data using an EM algorithm.
Then, the pairwise allelic association was quantified as

� ¼
det Pj j

Qð1� RÞ
, ð1Þ

where P is the haplotype frequency matrix (pij)i,j=1. . .2,
Q= p11+ p12 and R= p11+ p21 (10), and where det|P|
denotes the determinant of P. Marker-specific " values
were estimated by a log-linear regression analysis of � and
the physical distance to all other markers Xi in a 500 kb
window surrounding the marker Y of interest (12), i.e. by
fitting model log(�)=�"�|xi� y| to marker locations
xi and y.
Here and in the following, we assumed that the

population of interest was characterized by monophyletic
inheritance and by a lack of association between unlinked
loci, a simplification of the original model of LD decay
that was justified by empirical observations made for
autosomal markers in Europe and the US (11).
At inter-marker positions z1< z< z2, "(z) was estimated

by linear interpolation, i.e.

"ðzÞ ¼
"ðz2Þ � "ðz1Þ

z2 � z1
� ðz� z1Þ þ "ðz1Þ: ð2Þ

Entropy-based SNP selection

We have previously devised a method for assessing the
utility of marker sets for disease association studies (6),
based upon Shannon entropy (5). In brief, for a locus X
with k alleles of frequency pi (i=1. . .k), entropy H(X) is
defined as

HðXÞ ¼ �
Xk
i¼1

pi log2 pi ð3Þ

For the purposes of disease association analysis, a
genomic region is assumed to be covered by markers
X1, . . . ,Xn at map positions x1< . . .< xn. Then, the
problem of SNP selection reduces to deciding, on the
basis of existing genotype or haplotype data, which single
marker out of some additional markers Y1, . . . ,Ym to

include in order to maximize the mapping utility of the
extended panel. Without loss of generality, it can be
assumed that this choice is confined to maximizing the
utility of the marker set in a given interval, centred at map
position z. A utility score �(Y:X, z) is then constructed that
reflects the benefit, with respect to mapping a disease gene
at position z, of adding Y to a single marker X,

�ðY : X,zÞ ¼ e�e�"ðzÞ� y�zj j �HðYjXÞ: ð4Þ

Here, H(Y|X)=H(X,Y)�H(X) denotes the conditional
entropy of Y given X. The quantity in formula (4) can be
calculated directly from pairwise haplotype frequencies,
known swept radii and known marker locations. The best
marker to include into the existing marker panel X1, . . . ,
Xn is then chosen according to

Ymax ¼ arg max
j¼1::m

min
i¼1::n

�ðYj : Xi,zÞ

� �
: ð5Þ

Application to genome-wide marker panels

Application of the above-mentioned framework to large-
scale genome-wide data sets poses additional computa-
tional problems since the comprehensive evaluation of all
pairwise haplotype frequencies, as required by formulas
(4) and (5), is no longer feasible. Thus, k(Y:X, z) was
replaced by

�ðY : zÞ ¼ e�e�"ðzÞ� y�zj j �HðY Þ ð6Þ

when the distance between Y and z exceeded 3/"(z) (11).
In this way, the number of pairwise haplotype frequency
estimations was limited and the computing time scaled
linearly (instead of quadratically) with marker number.
Formula (6) was also used for selecting the first few
markers on a given chromosome, successively breaking
the chromosome down into shorter intervals by applying
formula (6) to the corresponding interval centers. Marker
selection according to formula (4) commenced for an
interval when it was shorter than three times the internal
median swept radius.

Evaluation of genome-wide marker sets

Following Hampe et al. (6), we define criterion �(z) for the
local evaluation of a marker set around map position z as

�ðzÞ ¼ e�2�"ðzÞ�jx�zj �
qXðzÞ

1� qXðzÞ
ð7Þ

where qX(z) is the minor allele frequency of that marker,
X(z), that maximizes the right-hand side of formula (7)
[note that �(z) is similar, but not equivalent, to 1� �min(z)
as defined in the original paper (6)]. Since

� ¼ e�"ðzÞ�jx�zj ð8Þ

equals the predicted allelic association (11) between X and
a maximally informative biallelic marker Z at map
position z, it follows that

�ðzÞ ¼ �2 �
qX

1� qX
: ð9Þ
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On the other hand, the number n of individuals required
to detect association � between X and Z at significance
level a and with power 1� b is approximately equal to

nðq,�Þ �
z1��=2 þ z1��

� �2
2

�
1� q

q�2
ð10Þ

where z1�a/2 and zb are the respective quantiles of the
Gaussian distribution (for a detailed derivation of formula
(10), see Appendix). For any two marker sets A and B,
let �A(z) and �B(z) be the � values obtained with respect to
the same location z. Then,

�AðzÞ

�BðzÞ
¼

�A
�B

� �2

�
qA � ð1� qBÞ

qB � ð1� qAÞ
�

nðqB,�BÞ

nðqA,�AÞ
ð11Þ

which implies that �(z) is a good approximation of the
relative efficacy of a marker set, measured by the inverse
of the sample size required to map a maximally
informative SNP at position z.

Computer implementation

The methodology described above has been implemented
into a suite of JAVA programs interacting with a MySQL
relational database for the storage of genotypes and
intermediate results. Since the HapMap data set was the
most exhaustive one, calculation of swept radii was based
upon these markers and genotypes. The software is
available as a web service under http://www.ikmb.uni-
kiel.de/snpselection/.

SNP data sources and genotyping

Caucasian genotype data for HapMap (Phase II, built 35),
Affymetrix 100K and 500K were retrieved from the
respective web sites (www.hapmap.org, www.affymetrix.
com). The marker identities of the Illumina 100K, 300K
and 500K sets were retrieved from the Illumina website
(www.illumina.com); the corresponding genotypes were
taken from HapMap or from the Illumina website.

RESULTS

Quantity � measures the relative efficacy of a given marker
set to map a causal variant at a specified map position,
compared to including a maximally polymorphic SNP at
the very same position (see Methods section). Therefore,
�=1 corresponds to full local efficacy of a marker panel
whereas �=0 indicates that no information can be
extracted locally. For the purpose of comparing different
marker sets, � was calculated here at 10 kb intervals along
the human genome (NCBI build 34), except for annotated
gaps, heterochromatic, telomeric and centromeric regions.
Y chromosomal SNPs were also excluded. Variation of
the interval size between 5 and 10 kb for chromosomes
3 and 19 did not yield notably different results (data not
shown). It may be argued that, in many instances, only
markers located in gene-coding regions are of practical
interest for genome-wide disease association studies.
In order to take this issue into account, ‘coding’ regions
were defined here as all sequences containing one of the

‘RefSeq’ genes of the Golden Path (http://genome.
ucsc.edu), including exons, introns and 10 kb of flanking
sequence. Marker sets were evaluated on the basis of
publicly available genotype data (Table 1). Our analyses
included CEPH samples from Northern and Western
Europe (CEU), from Yoruba in Nigeria (YRI) and from
Japanese and Han Chinese people (JPT+CHB).
Swept radii 1/" were estimated for different genomic

regions on the basis of the available HapMap genotype
data. As is exemplified by chromosomes 12 and 19 in the
CEU population (Figures 1A and 2A), the distribution of
1/" was found to vary considerably along chromosomes
and therefore resembled recently published recombination
plots in this respect (2). The median 1/" of �500 kb
corresponds closely to previous estimates (11). A graphical
representation of all swept radii and � values obtained
in the present study is available at http://www.ikmb.
unikiel.de/snpselection. In the following, our results will
be exemplified by a more detailed consideration of
chromosomes 12 and 19, which are typical in terms of
their size and gene density.
When all 180 613 HapMap SNPs on chromosome

12 were included in the analysis, � values larger than 0.5
were obtained for most of the chromosome (Figure 1C).
By contrast, the 5253 chromosome 12 markers of the
Affymetrix 100K set left many intervals with � close to 0,
indicating low efficacy (Figure 1B). Similar results were
obtained for chromosome 19 (Figure 2). Figures 3 and 4
provide an overview of the distribution of � along the
coding’ regions and the full genomic sequences of the two
chromosomes. When all HapMap SNPs were included,
the median � values obtained were 0.70 (interquartile
range: 0.56–0.82) for chromosome 12 and 0.66 (inter-
quartile range: 0.52–0.78) for chromosome 19. By
contrast, the best commercial marker sets yielded a
median � of 0.59 (interquartile range: 0.45–0.73) for
chromosome 12, and of 0.56 (interquartile range:
0.41–0.70) for chromosome 19 in the case of Illumina
550K, and of 0.52 (interquartile range: 0.36–0.67) for
chromosome 12 and of 0.41 (interquartile range: 0.26–0.58)
for chromosome 19 with the Affymetrix 500K set.
A comparison of the two commercially available 100K

sets revealed the impact of both, the genotyping

Table 1. Sources of marker and genotype data

Marker set SNPs Used SNPsa N URL

HapMap (release 19) 3 719 872 2 496 932 60 www.hapmap.org
Affymetrix 100K 115 353 104 081 60 www.affymetrix.com
Affymetrix 500K 500 568 448 867 60 www.affymetrix.com
Illumina 100K 109 150 104 365b 32c www.illumina.com
Illumina 300K 315 510 315 316b 60 www.illumina.com
Illumina 550K 548 944 527 207b 60 www.illumina.com

Column ‘N’ refers to the number of unrelated individuals (CEU, YRI.
JPT+CHB) for whom genotypes were available. Founder individuals
were used whenever possible. All data were retrieved from the listed
URLs. Since HapMap release 19 was based upon the NCBI build 35
genome assembly, all marker positions were transformed accordingly.
aExcluding non-biallelic SNPs.
bExcluding SNPs that could not be identified in HapMap.
cGenotypes were available for only 32 of the Caucasian individuals.
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technology and the selection strategy upon the mapping
efficacy. If only the coding sequence was considered on
chromosome 12, the median � for Affymetrix 100K was
0.21 (interquartile range: 0.08–0.41), as compared to 0.44
(interquartile range: 0.27–0.61) for Illumina 100K
(Figure 4). The Illumina 100K set, designed primarily
for a good coverage of sequences containing annotated
transcripts, provides essentially the same efficacy for the
coding sequence on this gene-rich chromosome as the
Affymetrix 500K set (median �: 0.41, interquartile range:
0.26–0.58). Similar, albeit less pronounced results were
obtained for chromosome 12 (Figure 3). A genome-wide
overview of the efficacy of all SNP sets is given in Table 2
and, on a chromosome-wise basis, in Figure 5.
Let Cx denote the local coverage of a chromosome

or chromosomal region at relative efficacy x, achieved by
a particular marker set (i.e. Cx equals the proportion of
a given genomic region for which �� x). For the coding
regions of chromosome 12, for example, C0.5=0.16 for
the Affymetrix 100K set and C0.5=0.48 for Affymetrix
500K (Figure 3). This means that the two sets cover 16
and 48% of the gene containing sequence, respectively, at
50% or higher relative efficacy. At 80% relative efficacy,
the respective figures decrease to 2 and 8%, respectively.
A genome-wide overview of the coverage of the different
marker sets at 50 and 80% efficacy is given in Table 2 and,
on a chromosome-wise basis, in Figures 6 and 7.

The HapMap markers provide the ‘gold standard’ for
the currently achievable coverage of the human genome
with informative SNPs. If a fully flexible genotyping
technology were available, optimal SNP sets could thus be
constructed from HapMap using, for example, entropy-
based marker selection. As exemplified for chromosomes
12 (Figure 3) and 19 (Figure 4), such customized panels
would significantly improve the coverage provided by a
given number of markers. With 5253 SNPs on chromo-
some 12, which corresponds to the size of the respective
Affymetrix 100K set, HapMap would yield C0.5=0.81,
i.e. a more than four times higher coverage than the
commercial product. Replacing the Affymetrix 500K set
by a similarly sized HapMap set would increase C0.5 from
0.48 to 0.81 whereas C0.8 would increase from 0.07 to 0.21.

More detailed information about the present study can
be found on our web server at http://www.ikmb.unikiel.
de/snpselection. The same site also provides routines for
the customized selection of optimal SNP sets from
HapMap build 19, using the available Caucasian, Asian
and Yoruba genotype data.

DISCUSSION

Justification of an entropy-based SNP selection framework

Currently available technologies do not allow full
re-sequencing of the human genome in samples that are
appropriately sized for mapping complex disease genes.
Instead, the success of genome-wide association studies
depends heavily upon the presence of sufficient LD

Figure 1. Distribution of local LD and SNP set efficacy on chromo-
some 19 in the CEU population. Panel A: swept radius 1/" as estimated
around each marker from the HapMap genotype data (median 1/":
191 kb, interquartile range: 166–230 kb). Panel B: relative efficacy � of
the HapMap set, calculated at 10 kb intervals, excluding gaps,
centromers, telomers and heterochromatin. Panel C: as Panel B, but
for the Affymetrix 100K set. Note: physical positions (in Megabases,
Mb) are given according to NCBI build 35.

Figure 2. Distribution of local LD and SNP set efficacy on chromo-
some 12 in the CEU population. Panel A: swept radius 1/" as estimated
around each marker from the HapMap genotype data (median 1/":
181 kb, interquartile range: 159–214 kb). Panels B and C: see legend to
Figure 1.

e113 Nucleic Acids Research, 2007, Vol. 35, No. 17 PAGE 4 OF 10



between the causal variant(s) and at least one marker in
the study panel. Whilst the level of inter-marker LD may
indeed be fully known, however, LD is inherently
unknown in relation to the causal variant itself, and
therefore has to be extrapolated. This implies that the
markers of an ideal study panel should be selected in such
a way as to maximize the information extracted about
any possible location of a disease variant in the genome.

Under a model of spatially homogenous LD, with
constant recombination and mutation rates and a
common evolutionary history shared by all chromosomal
regions, disease association markers would ideally be
spread evenly along the genome. However, the systematic
evaluation of both LD and local recombination rates has
revealed an inherent non-uniformity of these character-
istics (2,13,14). Thus, recombination rates differ between
chromosomal segments and between populations, which

implies that even closely linked genomic regions may be of
substantially different ancestry in individuals from one
and the same population (15). Consequently, the relation-
ship between LD and physical distance is complex, and
combinations of unevenly spaced SNPs may prove more
informative than equally spaced markers, depending upon
the genomic region of interest.(16)
Previous studies have suggested the existence of

‘haplotype blocks’, i.e. clearly identifiable chromosomal
segments that are characterized by a reduced rate of
recombination, low haplotype diversity and a high level of
internal LD (2–4). In addition, haplotype-tagging SNPs
(htSNPs) have been proposed to be capable of identifying
haplotypes for substantially larger marker sets from
within these blocks (17–19). The practical relevance of
this block concept arises from the expectation that htSNPs
extract sufficient information from an LD block with

Figure 3. Relative efficacy of SNP sets on chromosome 12 in the CEU population. For each marker set, the blue histogram depicts the distribution
of relative efficacy � in the full genomic sequence and the coding regions, respectively (for definition, see main text). Frequencies have been
normalized such that the modal frequency equals unity. The distribution of � as obtained for a similarly sized, hypothetical marker set, constructed
from HapMap by entropy-based marker selection, is included for each marker set (open histograms).

Figure 4. Relative efficacy of SNP sets on chromosome 19 in the CEU population. For details, see legend to Figure 3.
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respect to co-ancestry while, at the same time, reducing
genotyping costs (2–4). A number of computational
methods for the construction of htSNP sets have been
developed (16,19,20) but for these techniques to be
efficient, detailed knowledge of the extended haplotype
frequency distribution in the population of interest is
required. Moreover, the size and location of haplotype
blocks depend critically upon the SNP density and the
method of marker selection (13,14,21–24). Therefore,
haplotype tagging appears feasible only when large
samples and appropriate family structures are avail-
able for the necessary (deterministic or probabilistic)
haplotype assignments, the reliability of which decreases
with the number and complexity of the haplotypes
present (25–27).
The idealized picture of static LD blocks, separated by

hot spots of recombination, (28) has recently been
challenged by new insights into the biology of meiotic
recombination (2–4). The correlation between physical
and genetic distance is weak below the centi-Morgan level
so that the inference of marker genotypes from htSNP

haplotypes is far from being reliable (24). Moreover,
block-like structures may even occur merely because of
genetic drift (29). It thus appears as if the tacit assumption
underlying the use of the haplotype block concept
for disease association mapping, namely that all genetic
variation in a block follows the same hierarchical
pattern, is often not fulfilled. As a consequence, the
usefulness of htSNPs for such studies has generally been
questioned (30–32).

SNP selection based upon pairwise LD alone has been
suggested to avoid the conceptual and computational
problems of extended haplotype (or ‘block’) approaches.
The use of some SNPs as proxies for other SNPs that are
in high LD with the former (2–4), measured by r2, reduces
the redundancy of a SNP set. Thresholds for r2 of at least
0.8 are generally regarded as sufficient to provide good
marker coverage for association studies (21,33–38).
The rationale underlying the pairwise approach is the
expectation that high inter-marker LD translates into high
LD between some of the markers and potentially causative
variants, an assumption that is however unlikely to hold

Table 2. Median estimated efficacy and coverage of the human genome (excluding the Y chromosome) in different populations, provided by different

marker sets.

Population Marker set Full genomic sequence ‘Coding’ regions

� (interquartile range) C0.5 C0.8 � (interquartile range) C0.5 C0.8

CEU HapMap (total) 0.71 (0.57–0.84) 83% 33% 0.7 (0.55–0.83) 82% 30%
Affymetrix 100K 0.26 (0.11–0.47) 23% 7% 0.23 (0.09–0.44) 20% 5%
Affymetrix 500K 0.52 (0.35–0.69) 53% 13% 0.5 (0.34–0.67) 50% 12%
Illumina 100K 0.37 (0.21–0.58) 33% 9% 0.44 (0.27–0.63) 42% 10%
Illumina 300K 0.55 (0.4–0.71) 59% 14% 0.54 (0.39–0.7) 58% 13%
Illumina 550K 0.6 (0.45–0.75) 68% 18% 0.6 (0.44–0.74) 66% 17%

YRI HapMap (total) 0.74 (0.62–0.85) 91% 36% 0.73 (0.61–0.84) 90% 34%
Affymetrix 100K 0.25 (0.1–0.45) 21% 6% 0.22 (0.08–0.42) 19% 5%
Affymetrix 500K 0.53 (0.38–0.69) 55% 13% 0.51 (0.37–0.68) 53% 12%
Illumina 100K 0.29 (0.15–0.49) 24% 7% 0.37 (0.22–0.56) 32% 7%
Illumina 300K 0.52 (0.37–0.68) 53% 12% 0.51 (0.36–0.67) 52% 11%
Illumina 550K 0.59 (0.45–0.74) 67% 16% 0.58 (0.44–0.73) 65% 15%

JPT+CHB HapMap (total) 0.68 (0.52–0.82) 77% 28% 0.67 (0.51–0.81) 76% 26%
Affymetrix 100K 0.22 (0.08–0.42) 19% 6% 0.19 (0.06–0.39) 17% 5%
Affymetrix 500K 0.48 (0.31–0.66) 47% 12% 0.47 (0.3–0.65) 45% 11%
Illumina 100K 0.27 (0.12–0.47) 23% 7% 0.34 (0.18–0.54) 29% 7%
Illumina 300K 0.5 (0.33–0.67) 50% 12% 0.49 (0.33–0.66) 48% 11%
Illumina 550K 0.56 (0.39–0.72) 60% 15% 0.55 (0.38–0.71) 58% 14%

CEU Hyp. Affymetrix 100K 0.50 (0.32–0.68) 50% 12% 0.47 (0.29–0.65) 46% 10%
Hyp. Affymetrix 500K 0.64 (0.49–0.78) 73% 22% 0.62 (0.47–0.76) 71% 19%
Hyp. Illumina 100K 0.46 (0.25–0.63) 44% 7% 0.44 (0.24–0.62) 42% 7%
Hyp. Illumina 300K 0.62 (0.46–0.76) 70% 19% 0.60 (0.44–0.74) 67% 17%
Hyp. Illumina 550K 0.66 (0.52–0.79) 77% 24% 0.65 (0.50–0.78) 75% 21%

YRI Hyp. Affymetrix 100K 0.55 (0.36–0.71) 57% 14% 0.52 (0.33–0.69) 53% 12%
Hyp. Affymetrix 500K 0.69 (0.57–0.8) 85% 26% 0.68 (0.55–0.79) 82% 23%
Hyp. Illumina 100K 0.51 (0.32–0.69) 52% 13% 0.49 (0.3–0.67) 48% 11%
Hyp. Illumina 300K 0.66 (0.53–0.78) 79% 22% 0.64 (0.5–0.77) 75% 19%
Hyp. Illumina 550K 0.69 (0.57–0.8) 85% 26% 0.68 (0.55–0.79) 83% 23%

JPT+CHB Hyp. Affymetrix 100K 0.42 (0.2–0.63) 40% 10% 0.4 (0.19–0.6) 37% 9%
Hyp. Affymetrix 500K 0.6 (0.42–0.76) 65% 19% 0.59 (0.4–0.74) 63% 17%
Hyp. Illumina 100K 0.4 (0.18–0.61) 37% 10% 0.38 (0.16–0.58) 35% 8%
Hyp. Illumina 300K 0.53 (0.28–0.71) 54% 15% 0.51 (0.27–0.69) 52% 13%
Hyp. Illumina 550K 0.59 (0.4–0.74) 63% 15% 0.58 (0.39–0.73) 62% 14%

All estimates refer to NCBI build 35, excluding annotated gaps, centromers, heterochromatin and telomers. ‘Coding’ regions were defined by the
‘RefSeqs’ provided in the Golden Path (http://genome.ucsc.edu), including introns, exons and 10 kb of flanking sequence.
� genome-wide median of the relative efficacy; C0.5, (C0.8): percentage of the autosomal genome covered with �� 0.5 (�� 0.8); Hyp.: hypothetical.
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true in general (2–4). Selection of SNPs based upon
pairwise LD alone is therefore likely to perform well only
with a particularly high and uniform SNP density (6).
Irrespective of the approach taken, the inherently
unknown LD between markers and unknown causal
variants has to be extrapolated in one way or another
from both physical distance and the local strength of LD.
However, marker selection based upon pairwise LD alone
does not take distance or individual marker informativity
into account. As a consequence, simple pairwise ‘haplo-
type tagging’ potentially leads to inhomogeneous marker
spacing with less than maximum efficacy.

Here, we have adapted a recently proposed method for
selecting maximally informative marker sets for associa-
tion studies (6) to a genome-wide comparison of marker
sets. The original approach combines the information
content, physical spacing and pairwise LD of individual
markers with information on the local LD structure,
extracted from available data in the form of swept

radii (10,11). All of these determinants are included in a
single, position-specific utility measure that corresponds to
the distance-weighted haplotype entropy of the marker
set, approximated however by a pairwise score of the same
form (see Methods section). The approach is therefore not
affected by the computational and conceptual problems of
block-based methods and, at the same time, takes physical
distance and local LD structure into account when
extrapolating LD between markers and causal variants
from pairwise inter-marker LD. An extension of the
approach has led to the development of a quantitative
criterion (�) that approximates the efficacy of a given
marker set to map a disease-causing variant at a position
of interest. It should be emphasized that the interpretation
of � as a measure of efficacy is only valid in relative terms,
i.e. by comparison to the inclusion of a maximally

Figure 6. SNP set coverage of full genomic (Panel A) and coding
(Panel B) sequences at 50% relative efficacy. The chromosome-wide
coverage C0.5 is plotted in chromosomal order. HYP 500K: hypothe-
tical, optimal marker set constructed from HapMap so as to include the
same number of SNPs per chromosome as the Affymetrix 500K set.

Figure 5. Chromosome-specific estimates of relative SNP set efficacy in
full genomic (Panel A) and coding (Panel B) sequences. Chromosome-
wide median � values and interquartile ranges obtained for the CEU
population are plotted in chromosomal order.
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polymorphic SNP at the site of the causal variant.
In general, since the properties of the underlying disease
model are unknown, no marker-based quantity can on its
own provide information about the absolute power of
a marker set to map genetic variants underlying a given
phenotype.

Quality of currently available marker sets

Owing to recent successes (39) and its theoretical appeal
(1), significant funds have been allocated to the concept
of genome-wide association analysis in the context of
various phenotypes. Researchers are however facing the
practical problem of choosing the ‘right’ genotyping
technology. In many countries, universal control geno-
type pools are in the process of being established, and
these pools will pre-determine the choice of technology

for future studies. Of the currently available marker sets,
the Affymetrix 500K (C0.5=0.68, C0.8=0.19) and
Illumina 550K (C0.5=0.79, C0.8=0.29) products pro-
vide the best genomic coverage in Caucasians. The
Illumina 550K marker set provides a higher coverage
than the 500K Affymetrix set, probably because of the
higher flexibility of the Illumina genotyping technology.
Pronounced differences between full genomic and
‘coding’ region coverage were only observed for the
100K sets, probably because of the relatively small
marker numbers. The good ‘coding’ region coverage
provided by the Illumina 100K set highlights the fact
that this panel was primarily designed for gene-based
association mapping. It should be emphasized, however,
that all of the above conclusions were based upon the
assumption that all markers were callable, and that
practical factors such as genotyping quality, departure
from Hardy–Weinberg equilibrium and DNA require-
ments could be neglected. Furthermore, interesting
differences became apparent in terms of in different
ethnic groups. Whilst their relative efficacy was approxi-
mately the same in the Caucasian and African popula-
tions, SNP coverage was notably poorer for all products
for the East Asian populations.

The analytical method used here to compare the utility
of different marker sets provides a means to weight the
costs and benefits of closing gaps in a given marker set.
Additional genotyping costs incurred by a flexible (and
thus more expensive) genotyping method can be con-
trasted directly with the relative efficacy gained from
using additional, customized SNPs. If genotyping costs
would be negligible, the complete current HapMap
set would provide 90% coverage of the genome with
at least 50% relative efficacy, and 47% coverage with
at least 80% relative efficacy. These figures represent
the gold standard with which all other marker panels have
to be compared. Interestingly, when our entropy-based
SNP selection approach was used to construct an
optimum SNP set, the size of the Affymetrix 500K
product from HapMap, this technology-independent,
hypothetical set would nearly double the coverage at
80% relative efficacy.

In summary, we have devised a methodology that
helps researchers make rational choices between different
marker sets for genome-wide disease association studies
and to assess the trade-off between genotyping costs and
gain in power when expanding existing marker sets.
Furthermore, use of the � criterion facilitates judging the
position-specific ‘completeness’ of a genome-wide associa-
tion study and may thus help to improve the practicability
of complex disease gene mapping.
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APPENDIX

In general, the sample size n required to detect the
difference between proportions �1 and �2 by means of a �2

test can be approximated by

n¼
½z1��=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1��ð Þ

p
þ z1�� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 1� �1ð Þ þ �2 1� �2ð Þ

p
�
2

�1 � �2ð Þ
2

ðA:1Þ

where �=(�1+�2)/2, a and 1� b are the significance
level and power of the applied test, respectively, and z1�a/2
and z1�b denote the corresponding quantiles of the
Gaussian distribution (40). If q is the minor allele
frequency of marker X, and if the two alleles of marker
Z are equally frequent, then the corresponding haplotype
frequency matrix equals

P ¼ pij
� 	

i, j¼ 1::2
¼

1
2�1

1
2 ð1� �1Þ

1
2�2

1
2 ð1� �2Þ

� �
ðA:2Þ

with

1

2
�1 þ

1

2
�2 ¼ 1� q: ðA:3Þ

Furthermore, since Q= p11+ p12=0.5�1+0.5(1��1)
=0.5 and R= p11+ p12=0.5�1+0.5�2, it follows that

� ¼
det jPj

Q � ð1� RÞ
¼

1
2�1 �

1
2 1� �2ð Þ � 1

2�2 �
1
2 1� �1ð Þ

1
2 � 1� 1

2�1 �
1
2�2

� 	

¼
�1 � �2

2� �1 � �2
:

ðA:4Þ

Solving Equations (A.3) and (A.4) for �1 and �2 yields
�1=1� q(1 – �) and �2=1� q(1+ �), so that �=1� q
and �1��2=2q�. Replacing �1, �2 and � by these
expressions in formula (A.1) yields

n ¼
½z1��=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qð1� qÞ

p
þ z1�� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q 1� q½1þ �2�ð Þ

p
�
2

ð2q�Þ2

�
½z1��=2 þ z1���

2

2
�
1� q

q�2
ðA:5Þ

for sufficiently small �. This proves formula (10) of the
main text.
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