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A B S T R A C T

Background: Hepatocellular carcinoma (HCC) is among the most prevalent digestive system ma
lignancies and is associated with a poor prognosis. Necroptosis, a form of regulated death 
mediated by death receptors, exhibits characteristics of both necrosis and apoptosis. Long non- 
coding RNAs (lncRNAs) have been identified as crucial regulators in tumor necroptosis. This 
study aims to identify the necroptosis-related lncRNAs (np-lncRNA) in HCC and investigate their 
relationships with prognosis.
Method: The RNA-sequencing data, along with clinicopathological and survival information of 
HCC patients were sourced from The Cancer Genome Atlas (TCGA) database. The np-lncRNAs 
were analyzed to assess their potential in predicting HCC prognosis. Prognostic signatures 
related to necroptosis were constructed using stepwise multivariate Cox regression analysis. The 
prognosis of patients was compared using Kaplan-Meier (KM) analysis. The accuracy of the 
prognostic signature was evaluated using Receiver operating characteristic (ROC) analysis and 
decision curve analysis (DCA). Quantitative real-time polymerase chain reaction(qPCR) was 
employed to validate the lncRNAs expression levels of lncRNAs among samples from an inde
pendent cohort.
Results: The np-lncRNAs ZFPM2-AS1, AC099850.3, BACE1-AS, KDM4A-AS1 and MKLN1-AS were 
identified as potential prognostic biomarkers. The prognostic signature constructed from these 
np-lncRNAs achieved an Area Under the Curve (AUC) of 0.773. Based on the risk score derived 
from the signature, patients were divided into two groups, with the high-risk group exhibiting 
poorer overall survival. Gene Set Enrichment Analysis (GSEA) revealed significantly different 
between the low risk and high risk groups in tumor-related pathways (such as mTOR, MAPK and 
p53 signaling pathways) and immune-related functions (like T cell receptor signaling pathway 
and natural killer cell mediated cytotoxicity). The increased expression of np-lncRNAs was 
confirmed in another independent HCC cohort.
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Conclusions: This signature offers a dependable method for forecasting the prognosis of HCC 
patients. Our findings indicate a subset of np-lncRNA biomarkers that could be utilized for 
prognosis prediction and personalized treatment strategies of HCC patients.

1. Introduction

Liver cancer ranks among the most common digestive malignancies, with hepatocellular carcinoma (HCC) representing over 90 % 
of primary liver cancers [1]. It poses a significant threat to public health due to its high incidence and mortality rates [2]. Although 
surgical resection remains the most effective treatment option for early-stage HCC patients, the elevated rate of postoperative 
recurrence contributes to an overall poor prognosis. Although surgical resection remains the most effective treatment option for 
early-stage HCC patients, the elevated rate of postoperative recurrence contributes to an overall poor prognosis [3,4]. Recently, the rise 
of high-throughput sequencing technologies has facilitated the discovery of various HCC-specific molecular biomarkers. A more 
comprehensive understanding of the molecular mechanisms driving HCC is essential for improving early detection, prognostic 
assessment, and the creation of new molecular-targeted therapies.

Necroptosis, a recently discovered form of regulated programmed cell death, is morphologically characterized by necrosis [5]. This 
process is essential in cancer progression, as it promotes the death of tumor cells and modulates the activity of immune cells. Targeting 
necroptosis has opened new avenues for cancer therapy [6–8]. Research indicates that necroptosis-inducing agents may be more 
effective in eradicating hepatoma cells compared to apoptosis-inducing agents [9]. In the study by Xiang et al., HCC cells with high 
expression of connexin32 were found to resist streptonigrin-induced apoptosis [10]. However, when treated with the necroptosis 
inducer shikonin, a significant induction of necroptosis was observed in this subset of HCC cells [9].

Long non-coding RNAs (lncRNAs) are non-coding transcripts of at least 200 nucleotides that play key roles in regulating various 
tumor biological processes [11]. Research has demonstrated that, compared to normal liver tissues, several classic lncRNAs are notably 
dysregulated in tumor tissues [12]. For instance, lncSox4 pertains to the regulation of transcription factors, while lncRNA-PXN-AS1 is 
linked to post-transcriptional mRNA regulation [13]. Moreover, several liver cancer-related lncRNAs, such as lncRNA-H19 and lncRNA 
PCBP1-AS1, have been found to be stably expressed in plasma, making them easily accessible and promising as novel biomarkers for 
HCC diagnosis and treatment [14,15,16]. Recent studies have shown that necroptosis-related lncRNA (np-lncRNA) signatures have 
strong predictive potential in cancers such as stomach adenocarcinoma, breast cancer, and lung adenocarcinoma [17,18,19]. However, 
the potential of np-lncRNAs in predicting HCC prognosis and their underlying mechanisms remain unclear. In this study, we developed 
a novel prognostic signature for HCC using np-lncRNAs that are differentially expressed.

2. Materials and methods

2.1. Datasets selection

To identify differentially expressed genes between HCC and adjacent normal tissue samples, RNA sequencing (RNA-seq) data from 
patients were extracted from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) database. The corresponding 
clinicopathological information, including age, gender, TNM stage, tumor stage, grade, survival status, and survival duration, was also 
obtained.

2.2. Identification of np-lncRNAs

A gene set containing 67 necroptosis-associated mRNAs was compiled based on prior research [20]. These genes were selected from 
the necroptosis gene set M24779.gmt (https://www.gsea-msigdb.org/gsea/msigdb/geneset_page.jsp? geneSet Na me = GOBP_NE
CROPTOTIC_SIGNALING_PATHWAY), previously recognized for their role in necroptosis. The "LIMMA" package in R software was 
employed to identify differentially expressed lncRNAs and mRNAs between HCC and normal tissues, with FDR <0.01 and |logFC| >
1.5 as the cutoff criteria. Pearson correlation analysis was conducted to confirm the relationship between np-lncRNAs and 
necroptosis-related genes, with significance defined by a correlation coefficient |R|>0.5 and P < 0.001. Venn diagrams were utilized to 
identify the intersection of these differentially expressed lncRNAs and mRNAs for further analysis.

2.3. Construction of the prognostic signature based on np-lncRNAs

Univariate and stepwise multivariate Cox regression analyses [21] were applied to evaluate the impact of np-lncRNAs on patient 
prognosis. The np-lncRNA risk score for each patient was calculated using the formula: Risk score =

∑
(Coefficient × Expression)

Patients were categorized into low-risk and high-risk groups based on whether their risk scores were below or above the median 
value.

2.4. Gene set enrichment analysis (GSEA)

GSEA version 3.0 software was used to perform gene set enrichment analysis, identifying functions or pathways with statistically 
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significant and consistent differences between the two risk groups. A positive enrichment score (ES) and normalized enrichment score 
(NES) indicated that the majority of genes in a set were positively correlated with the predefined group status. Statistical significance 
was defined by a normalized P-value (NOM P-value) < 0.05.

2.5. Immunity analysis and related gene expression

To assess differences in cellular components and immune responses between the two patient groups, algorithms including TIMER, 
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC were employed. Results were visualized using heat
maps [21]. Additionally, single-sample GSEA (ssGSEA) was utilized to quantify differences in tumor-infiltrating immune cells between 
the groups, extending the GSEA methodology to the single-sample level.

Fig. 1. Screening of differently expressed np-lncRNAs in HCC. (A) Schematic of the workflow used to establish the necroptosis-related signature 
in HCC. (B) Venn diagram illustrating the overlap of 40 differentially expressed genes associated with necroptosis. (C) Volcano plot displaying the 
differentially expressed lncRNAs in HCC patients.
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2.6. Quantitative real-time polymerase chain reaction(qPCR)

Total RNA was isolated using Trizol (Invitrogen, USA), and cDNA synthesis was performed with the HiScript III All-in-one RT 
SuperMix Perfect for qPCR (Vazyme, Nanjing, China). qPCR was conducted using the ChamQ SYBR Color qPCR Master Mix (Vazyme, 
Nanjing, China) as per the manufacturer’s instructions. U6 was used as an internal control. The primers used in this study were as 
follows: ZFPM2-AS1 (F: 5′- GCAACTGTAGACAAGGAGGAAG-3′, R: 5′-CAGAGAGCATCCATGGTCAATTA-3′); AC099850.3 (F: 5′- 
TCGCTATGTTTCCCAGGCTGTATT-3′, R: 5′-TGCCAAGGAATCTCTGAAGTCCAT-3′); BACE1-AS (F: 5′-GGCACCTCCTAA GTGTACCTGC- 
3′, R: 5′-CTCTCTGCTGGGCACGATTC-3′); KDM4A-AS1 (F: 5′-TTGCCTGGATGGCTGAGAATC-3′, R: 5′-TTCCTTTCACCCTCCTT CCTTC- 
3′); MKLN1-AS (F: 5′-CTGGAGTAAGTCAGCAGGATTC-3′, R: 5′-CTCGTATTACGTCCACCTGATG-3′). The relative expression levels were 
calculated using the 2− ΔΔCTmethod.

2.7. Statistical analysis

Statistical analysis was performed using R software and its appropriate packages (V 4.0.2) and relevant packages. Differences 
between the two groups were calculated by Student’s t-test. Statistical significance was denoted as *P < 0.05, **P < 0.01 or ***P <
0.001.

3. Results

3.1. Screening for differentially expressed np-lncRNAs in HCC

To investigate necroptosis-related genes in HCC, RNA-seq data from the TCGA-LIHC dataset was utilized. The expression profiles of 
mRNA and lncRNA were analyzed, revealing 3264 mRNAs and 2136 lncRNAs that were differentially expressed between HCC samples 
(N = 374) and normal liver samples (N = 50; Fig. 1A). Upon intersecting the differentially expressed mRNAs with necroptosis-related 
mRNAs [20], we identified 10 differentially expressed mRNAs linked to necroptosis (Fig. 1B). We further identified 103 np-lncRNAs 
through Pearson’s correlation analysis between these necroptosis-related mRNAs and lncRNAs (Fig. 1C). Differentially expressed genes 
intersecting with necroptosis-related genes were subsequently subjected to stepwise multivariate Cox regression analysis (Fig. 1A and 
C), leading to the selection of 103 np-lncRNAs for deeper investigation.

3.2. Development of necroptosis-based lncRNAs prognostic signature and multivariate examination

Subsequently, univariate COX analysis identified 16 of the 103 np-lncRNAs as significant risk factors for HCC patient prognosis. 
Following incorporation into stepwise multivariate Cox regression, five differentially expressed np-lncRNAs were confirmed as in
dependent prognostic indicators for HCC (Table 1). The total risk score for each patient was calculated using the following formula: 
Risk score(patients) = (0.0560*ZFPM2-AS1) + (0.0777*AC099850.3) + (0.0997*BACE1-AS) + (0.5056*KDM4A-AS1) +

(0.8065*MKLN1-AS)
Based on these risk scores, patients were categorized into two groups (Table S1). A detailed analysis of the regulatory patterns and 

functional implications of these five np-lncRNAs in HCC and other cancers was provided (Table 2). Notably, the five np-lncRNAs were 
significantly upregulated in the high-risk group. Additionally, the histologic grade, pathologic stage, and TNM categories were 
elevated in the high-risk group, suggesting a positive correlation between these np-lncRNAs and the malignant phenotype of HCC 
(Fig. 2A). Kaplan-Meier (KM) analysis revealed that HCC patients with higher risk scores exhibited poorer survival outcomes compared 
to those with lower scores (P < 0.01, Fig. 2B). Consistently, a risk survival status plot indicated a higher mortality rate in the high-risk 
group (Fig. 2C). Interestingly, the area under the curve (AUC) for the np-lncRNA signature was 0.773, surpassing traditional clini
copathological characteristics in prognostic accuracy for HCC patients (Fig. 3A). Furthermore, decision curve analysis (DCA) validated 
that the np-lncRNA signature outperformed other variables (Fig. 3B). The AUC prediction values of the np-lncRNA signature for 1, 2, 
and 3-year survival rates of HCC patients were 0.773, 0.719, and 0.694, respectively (Fig. 3C).

Considering the high prevalence of HCC in Asia, particularly due to HBV, which accounts for 60 % of cases [42]. As HBV and HCV 
infection are well-established risk factors for HCC [43], we conducted stratification analysis for patients with HBV (HBV-HCC) and 
HCV (HCV-HCC) using the np-lncRNA signature. Kaplan-Meier analysis showed that HBV-HCC patients in the high-risk group had 
significantly shorter survival times than those in the low-risk group (p < 0.001, Fig. S1A). The np-lncRNA signature’s AUC prediction 
values for 1, 2, and 3-year survival rates for HBV-HCC patients were 0.755, 0.785, and 0.792, respectively (Fig. S1B). However, no 

Table 1 
Stepwise multivariate Cox regression analysis of np-lncRNAs.

ID Coef HR HR.95L HR.95H p value

ZFPM2-AS1 0.0560 1.0576 1.0107 1.1066 0.0155
AC099850.3 0.0777 1.0808 1.0163 1.1494 0.0133
BACE1-AS 0.0997 1.1048 0.9782 1.2479 0.1085
KDM4A-AS1 0.5056 1.6581 1.0241 2.6845 0.0397
MKLN1-AS 0.8065 2.2400 1.4151 3.5459 0.0006
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significant difference was observed between high and low-risk groups for HCV-HCC patients based on Kaplan-Meier analysis 
(Fig. S1C). For patients without HBV and HCV, Kaplan-Meier analysis indicated that those in the low-risk group had longer survival 
times than those in the high-risk group (p = 0.02, Fig. S1D), with a 1-year survival AUC of 0.721 (Fig. S1E).

In summary, we developed a necroptosis-based lncRNA prognostic signature with robust predictive accuracy for assessing overall 
survival in HCC patients.

3.3. The prognostic signature as an independent prognostic factor in HCC

To further validate the reliability of the signature, we conducted univariate and multivariate COX analyses. The results confirmed 
that the risk score derived from the np-lncRNA signature was an independent prognostic factor (HR: 1.318, 95CI: 1.220–1.423) 
(Fig. 4A and B). Specifically, higher signature scores were associated with poorer prognoses. Subsequently, we developed a nomogram 
that integrates all prognostic variables to predict overall survival in HCC patients (Fig. 4C). The nomogram assigned specific points to 
each factor, including tumor grade, gender, TNM stage, age, and risk score. By summing the points of each variable, the total score 
indicated the survival probability of HCC patients. For example, a patient with a total score of 402 had probabilities of less than 1-year, 
3-year, and 5-year survival of 0.235, 0.418, and 0.531, respectively (Fig. 4C). This nomogram may serve as a valuable tool for pre
dicting HCC patient prognosis.

In summary, our findings suggest that the np-lncRNA risk score independently predicts prognosis in HCC patients.

3.4. Construction of co-expression network and gene set enrichment analysis

To elucidate the biological significance of these lncRNAs in HCC, we investigated co-expression networks between lncRNAs and 
their associated mRNAs. We identified correlations between lncRNAs KDM4A-AS and AC099850.3 with the DNA-binding protein gene 
TARDBP. Additionally, lncRNA AC099850.3 was associated with epigenetic regulators (DNMT1, HAT1), serine/threonine kinases 
(MAP3K7, PLK1), and mitochondrial-related genes (DIABLO). For lncRNA BACE1-AS, co-expression was observed with tumor sup
pressor TSC1 and E3 ubiquitin ligase TRIM11. Moreover, lncRNA MKLN1-AS and AFPM2-AS1 were correlated with protease CASP8 
and scaffolding/adaptor protein SQSTM1, respectively (Fig. 5A).

Next, we conducted GSEA on samples with high lncRNA signature scores. Consistent with co-expression analysis, we found that 
genetic information in HCC samples with high lncRNA signature scores was enriched in the mTOR signaling pathway, critically 
regulated by TSC1, the MAPK signaling pathway induced by MAP3K7, and the well-known apoptosis-related p53 pathway. Notably, 
genes in HCC samples with high-risk scores were also enriched in immune-related pathways, such as FC gamma R-mediated phago
cytosis, natural killer cell-mediated cytotoxicity, and the T cell receptor signaling pathway (Fig. 5B).

In conclusion, these findings suggest that the np-lncRNA signature, with its diverse genetic characteristics, may significantly in
fluence various signaling pathways in HCC.

3.5. Immune analysis and related gene expression

Given that the np-lncRNA signature was correlated with multiple immune-related pathways, we further investigated these ob
servations. We analyzed the expression of immune signature genes across different datasets. Analyses from TIMER, CIBERSORT, 
CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC databases indicated that HCC samples with high-risk scores 
consistently exhibited increased expression of B cell signature genes and CD4+ T cell signature genes, while expression of CD8+ T cell 
signature genes and cancer-associated fibroblast signature genes was consistently decreased (Fig. 6A). Additionally, ssGSEA was used 

Table 2 
np-lncRNAs and their roles during cancer progression.

Np-lncRNAs Biological roles in HCC Cancer 
Impact in 
HCC

Regulatory mechanisms in 
HCC

Reference The status in other tumors

ZFPM2-AS1 Promotion of cell proliferation, 
migration and invasion

Poor 
survival

miRNA sponge, regulation of 
GDF10 and GOLM1

[22,23] Upregulated in breast cancer [24], 
colorectal cancer [25]and lung cancer 
(including both non-small cell lung cancer 
[26] and small cell lung cancer [27]

AC099850.3 Promotion of cell proliferation 
and invasion

Poor 
survival

Regulation of PRR11/PI3K/ 
AKT axis

[28,29] Upregulated in lung adenocarcinoma [30]

BACE1-AS Enhances the invasive and 
metastatic capacity

Poor 
survival

miRNA sponge, regulation of 
APLN and CELF1

[31,32] Upregulated in metastatic colorectal cancer 
[33]

KDM4A-AS1 Promotes cell proliferation, 
migration, and invasion; promotes 
epithelial-mesenchymal transition

Poor 
survival

miRNA sponge, regulation of 
STX6 and KPNA2; maintains 
the stability of AURKA 
mRNA

[34,35,
36]

Weakens cancer cell viability and migratory 
capacity in esophageal squamous cell 
carcinoma [37]

MKLN1-AS Promotes cell growth, 
angiogenesis, migration, and 
invasion; inhibits 
chemotherapeutic drugs

Poor 
survival

miRNA sponge, regulation of 
ETS1 and HDGF

[38–40] Upregulated in pancreatic ductal 
adenocarcinoma [41]

H. Chen et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e37403

6

to explore immune status differences between the two groups, revealing that patients in the high-risk group exhibited more active class 
1 MHC activity but lower cytolytic activity and type I and type II responses compared to the low-risk group (Fig. 6B). A recent study 
suggested that m6A methylation is significantly linked to necroptosis, as evidenced by the depletion of m6A writer METTL3, which 
enhanced oxaliplatin resistance in cancer patients through necroptotic cell death [44]. Therefore, we assessed the relevance of the 
np-lncRNA signature in m6A modification. As expected, ssGSEA analysis revealed upregulation of m6A-related factors, including 
METTL3, METTL14, and YTHDF1/2, in the high-risk group (Fig. 6C). These findings collectively indicate that HCC samples with 
high-risk and low-risk scores exhibit distinct differences in their immunological and epigenetic profiles.

3.6. Validation of the np-lncRNAs in clinical HCC tissues

We conducted a pan-cancer analysis of these lncRNAs using TCGA data, revealing that these lncRNAs were also highly expressed in 
various cancers, including UCEC, CHOL, and COAD. Prognostic analysis across different cancers indicated that these lncRNAs serve as 
independent risk factors in tumors such as PAAD, COAD, and STAD (Figs. S2 and S3). To validate these findings, we examined the 
expression levels of five lncRNAs in sixteen HCC samples through qPCR. The data demonstrated that all five np-lncRNAs (ZFPM2-AS1, 
AC099850.3, BACE1-AS, KDM4A-AS1, and MKLN1-AS) were significantly upregulated in tumor tissues (p < 0.001; Fig. 7A–E), 
aligning with the TCGA data (Fig. S2). The results of the cell experiments indicate that, in contrast to the non-tumor liver cell line L02, 
the expression of the remaining four np-lncRNAs, except for KDM4A-AS1, are significantly upregulated in the liver cancer cell lines 
Huh7 and HepG2 (Fig. 7F–J). These results substantiate the potential of the np-lncRNA signature for predicting the prognosis of HCC 

Fig. 2. Identification of np-lncRNAs signature. (A) Heatmap showing the expression levels of these lncRNAs alongside clinicopathological 
features.; (B) Kaplan-Meier curves result; (C) Risk survival status plot.
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patients. Additionally, we found that compared to L02 cells, the expression level of RIPK3 was not significantly reduced in Huh7 cells, 
but was significantly reduced in HepG2 cells (Fig. 7K). This partially supports the hypothesis that the poor prognosis associated with 
high expression of these np-lncRNAs in patients may be related to their inhibition of necroptosis in HCC cells.

4. Discussion

Given the critical roles that abnormal lncRNAs play in hepatocarcinogenesis, metastasis, angiogenesis, chemoresistance, and 
recurrence, these molecules are increasingly seen as potential targets for the diagnosis, treatment, and monitoring of HCC[45,46,47];. 
Necroptosis, a unique mode of cell death first identified by Degterev et al., is characterized by the RIPK1/RIPK3-mediated phos
phorylation of MLKL/p-MLKL, sharing downstream pathways with apoptosis [48,49,50]. Intriguingly, liver cancer cells have been 
reported to be more sensitive to necroptotic inducers compared to apoptosis inducers [9]. Additionally, recent studies suggest that 
tumor cells resistant to apoptosis may be more susceptible to necroptosis [51,52], highlighting the significance of necroptosis in 
HCC-targeted therapy. In this study, we identified five np-lncRNAs and developed a prognostic signature for predicting mortality risk 
in HCC patients.

Using univariate and multivariate COX analyses, we screened five differentially expressed np-lncRNAs from the TCGA-LIHC 
dataset. After stratifying patients into high-risk and low-risk groups based on these molecules, we found that the survival rate in 
the high-risk group was significantly lower than in the low-risk group. Previous research has shown that lncRNAs such as BACE1-AS, 
MKLN1-AS, and KDM4A-AS1 are biomarkers for HCC diagnosis and prognosis, as they contribute to the progression of hepatocellular 
carcinoma through the ceRNA network [34,31,53]. LncRNA ZFPM2-AS1, highly expressed in HCC tissues, promotes HCC progression 
by competitively binding to miR-139 along with GDF10 mRNA [22]. The co-expression network in our study indicates that lncRNA 
AC099850.3 plays a central role. This lncRNA has been linked to patient prognosis and is involved in HCC proliferation and invasion 
through the PRR11/PI3K/AKT axis [28]. Interestingly, AC099850.3 was also included in a prognostic model for HCC based on 

Fig. 3. Multivariate examination of the signature (A) AUC values of the risk factors; (B) The DCA of the risk factors; (C) The AUC values for the 
prediction of 1, 2, 3-years.
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immunoautophagy-related lncRNAs [54]. Similarly, Xu et al. constructed a prognostic model for HCC using lncRNAs like ZFPM2-AS1 
and found correlations with immune responses [55]. Our findings, which show that immune-related functions like cytolytic activity 
and type I/II responses are downregulated in the high-risk group, are consistent with these studies. In vitro, vaccination with necrotic 
cancer cells has been shown to induce strong antitumor immunity by activating CD8+ T cells through RIPK1 antigen cross-priming [56, 
57]. Collectively, these results support the idea that necroptosis enhances antitumor immunity.

We established a new prognostic signature based on these np-lncRNAs, achieving an AUC value of 0.773. This novel signature 
serves as an independent prognostic factor for HCC. The nomogram we constructed, incorporating this signature along with clinical 
features such as age, gender, and TNM stage, reliably predicts HCC patient prognosis. To our knowledge, previous studies have also 
developed prognostic signatures for HCC. For instance, Dai et al. created a prognostic signature based on necroptosis-related metabolic 
genes, with AUC values of 0.765 at 1 year, 0.684 at 3 years, and 0.642 at 5 years [58]. Bai et al. constructed a prognostic model using 
hypoxia-related genes, achieving an AUC of 0.621 at 1 year, 0.693 at 3 years, and 0.769 at 5 years [59]. Zhang also developed a 
prognostic signature based on RNA-binding protein genes for HCC, with an AUC value of 0.740 [60]. While other models have been 
developed recently [60,61], their AUC values are generally lower than our 0.773. Furthermore, our study goes beyond public database 
analysis by validating our findings through qPCR experiments conducted on clinical HCC patient samples, which may improve the 
precision of prognostic predictions for HCC patients.

In this study, GSEA revealed that the lncRNA signature is primarily involved in the mTOR, MAPK, p53, Wnt signaling pathways, 
and T-cell receptor signaling pathways. Investigating these pathways in conjunction with existing reports on lncRNAs may provide 
insights into the mechanisms we are focusing on. Hyperactivation of the mTOR signaling pathway is a key driver in HCC development. 

Fig. 4. COX analysis of np-lncRNAs signature and the construction of the nomogram and co-expression network. (A) Univariate COX 
analysis; (B) Multivariate COX analysis; (C)Nomogram developed to predict 1-, 3-, and 5-years OS.
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Fig. 5. Co-expression network construction and gene set enrichment analysis for np-lncRNAs. (A) Constructed a co-expression network of 
lncRNAs and necroptosis-related genes. DNA methyltransferase 1 (DNMT1), histone acetyltransferase 1 (HAT1), mitogen-activated protein kinase 
kinase kinase 7 (MAP3K7), polo-like kinase 1 (PLK1), Diablo IAP-binding mitochondrial protein (DIABLO); (B) Gene set enrichment analysis for the 
5 np-lncRNAs.
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Inhibitors of this pathway effectively block aberrant signaling from various growth factors, thereby inhibiting HCC progression [62]. 
Some lncRNAs can enhance the mTOR signaling pathway, promoting HCC proliferation and migration by increasing the expression of 
MMPs and EMT [63]. Moreover, some lncRNAs modulate HCC cell apoptosis and autophagy by sponging microRNAs that regulate the 
mTOR signaling pathway [64]. Recently, third-generation mTOR inhibitors have been developed by scientists. The MAPK pathway 
plays a pivotal role in tumor progression and immunotherapy. Activation of the MAPK pathway has been reported to induce nec
roptosis of microvascular endothelial cells, promoting HCC metastasis [65]. Certain lncRNAs can enhance HCC radioresistance by 
modulating the MAPK pathway [66]. Additionally, some lncRNAs promote HCC progression by inducing mitochondrial fission and 
glycolysis in liver cancer cells through the activation of the MAPK pathway [67,68]. p53, the tumor suppressor gene most commonly 
associated with human cancers, loses its function in over a third of HCC cases. Recent studies have shown that combining p53 mRNA 
nanoparticles with immune checkpoint blockade (ICB) significantly enhances the antitumor immune response in liver cancer [69]. 
Some lncRNAs inhibit HCC cell growth and metastasis by activating the p53 signaling pathway, while others promote HCC tumori
genesis and progression by inactivating p53 signaling [70,71]. The development of potential drugs that inhibit the Wnt/β-catenin 
signaling pathway, such as small molecule inhibitors, traditional Chinese medicine extracts, and miRNAs, offers new possibilities for 
improving HCC therapy [72–74]. In neoplastic diseases, T-cell receptor signaling pathways play a critical role in T-cell activation and 
function. In HCC, persistent T-cell activation leads to T-cell exhaustion. Certain lncRNAs promote T-cell exhaustion, impairing 
anti-tumor immunity, such as lncRNA Lnc-Tim3 [75]. Additionally, some lncRNAs facilitate HCC immune evasion by promoting 

Fig. 6. Heatmap for immune responses and the expression of m6A-related genes between the two groups. (A) Heatmap for immune re
sponses; (B) ssGSEA reveals the difference in immune cells and immune functions between the two groups; (C) The expression of m6A-related genes.
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regulatory T cell differentiation, such as lnc-EGFR [76].This study illustrated that mTOR, MAPK, p53, Wnt signaling pathways, and 
T-cell receptor signaling pathways were all enriched in the high risk group, indicating that our new signature is supported by previous 
findings. Furthermore, given the growing interest in RNA m6A modification in HCC, we assessed the relevance of the np-lncRNA 
signature in m6A modification. As anticipated, m6A-related factors like METTL3, METTL14, and YTHDF1/2 were upregulated in 
the high-risk group, suggesting a significant correlation between m6A methylation and necroptosis. The specific relationship between 
necroptosis and m6A in HCC warrants further exploration.

5. Conclusion

This study identified five lncRNAs associated with necroptosis and developed a novel np-lncRNA signature with significant pre
dictive value for assessing the prognosis of HCC patients.
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Fig. 7. Validation of the np-lncRNAs in clinical HCC tissues. (A–E) qRT-PCR result of expression level of ZFPM2-AS1, AC099850.3, BACE1-AS, 
KDM4A-AS1 and MKLN1-AS in HCC tissues compared with paired paratumor tissues. (F–J) qRT-PCR result of expression level of ZFPM2-AS1, 
AC099850.3, BACE1-AS, KDM4A-AS1 and MKLN1-AS in L02, Huh7 and HepG2. (K) Western blot of expression level of necroptosis-related pro
tein RIPK3 in L02, Huh7 and HepG2.
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