
A Non Invasive Estimate of Dead Space Ventilation from
Exercise Measurements
Paola Gargiulo1, Anna Apostolo2, Pasquale Perrone-Filardi3, Susanna Sciomer4, Paolo Palange5,

Piergiuseppe Agostoni2,6,7*

1 SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy, 2 Centro Cardiologico Monzino, IRCCS, Milan, Italy, 3 Department of Advanced

Biomedical Sciences, Division of Cardiology, ‘‘Federico II’’ University, Naples, Italy, 4 Department of Cardiovascular and Respiratory Sciences, ‘‘La Sapienza’’ University,

Rome, Italy, 5 Department of Public Health and Infectious Diseases, Division of Pulmonary Research, ‘‘La Sapienza’’ University, Rome, Italy, 6 Department of Clinical

Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy, 7 Department of Medicine, Division of Pulmonary and Critical Care Medicine,

University of Washington, Seattle, Washington, United States of America

Abstract

Rationale: During exercise, heart failure patients (HF) show an out-of-proportion ventilation increase, which in patients with
COPD is blunted. When HF and COPD coexist, the ventilatory response to exercise is unpredictable.

Objectives: We evaluated a human model of respiratory impairment in 10 COPD-free HF patients and in 10 healthy subjects,
tested with a progressive workload exercise with different added dead space. We hypothesized that increased serial dead
space upshifts the VE vs. VCO2 relationship and that the VE-axis intercept might be an index of dead space ventilation.

Measurements: All participants performed a cardiopulmonary exercise test with 0, 250 and 500 mL of additional dead
space. Since DS does not contribute to gas exchange, ventilation relative to dead space is ventilation at VCO2 = 0, i.e. VE-axis
intercept. We compared dead space volume, estimated dividing VE-axis intercept by the intercept on respiratory rate axis of
the respiratory rate vs. VCO2 relationship with standard method measured DS.

Main results: In HF, adding dead space increased VE-axis intercept (+0 mL = 4.9861.63 L; +250 mL = 9.6962.91 L;
+500 mL = 13.2663.18 L; p,0.001) and upshifted the VE vs.VCO2 relationship, with a minor slope rise (+0 mL = 2764 L;
+250 = 2865; +500 = 2964; p,0.05). In healthy, adding dead space increased VE-axis intercept (+0 mL = 4.961.4 L;
+250 = 9.362.4; +500 = 13.163.04; p,0.001) without slope changes. Measured and estimated dead space volumes were
similar both in HF and healthy subjects.

Conclusions: VE-axis intercept is related to dead space ventilation and dead space volume can be non-invasively estimated.
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Introduction

The behaviour of ventilation during exercise in heart failure

(HF) and in chronic obstructive pulmonary disease (COPD)

patients may differ, being characterized in the former by an out-of-

proportion increase of ventilation (VE), which is greater the

greater the HF severity [1] and, in the latter, by a normal or

excessive increase of ventilation in mild or moderate COPD and a

blunted ventilation increase in severe COPD patients [2–4]. The

elevated ventilatory response in HF patients seen before lactic

acidosis ensues and the carbon dioxide (CO2) [5] generated by the

lactate is trivial relative to the rate of metabolic CO2 production

(VCO2) [6,7]. The relationship between VE and VCO2 is used to

evaluate ventilatory efficiency [8]; in HF, as well as in pulmonary

arterial hypertension, an increase of the slope of the VE vs. VCO2

relationship is associated with a poor prognosis [9–16]. In COPD,

ventilatory limitation to exercise is defined either as a reduction of

ventilatory reserve or as a lowering of inspiratory capacity [17]. In

case of severe COPD, the rise of ventilation during exercise is

blunted, and consequently the slope of VE vs. VCO2 relationship

is normal or low, being the slope lower the more pronounced the

emphysema profile [2].

HF and COPD often coexist with a reported prevalence of

COPD in HF patients ranging between 23 and 30% [18] and with

a relevant impact on mortality and hospitalization rates [19]. In

patients with COPD and HF, the ventilatory response to exercise

is poorly predictable. Indeed, HF hyperventilation can be

counteracted by the incapacity of increasing tidal volume (VT)

and alveolar ventilation, both being distinctive features of VE

during exercise in COPD patients [17]. As a result, the slope of VE

vs.VCO2 relationship might be elevated, normal or even low in

patients with COPD and HF, regardless of the presence and of the

severity of ventilatory inefficiency. Up to now, only few studies

have evaluated the ventilatory behaviour during exercise in
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patients with coexisting HF and COPD, being patients with

comorbidities usually excluded from research trials dedicated to

HF or COPD [20].

In the present study, we evaluated HF patients and healthy

individuals through a progressive workload exercise with different

added DS, hoping to mimic at least in part the effects of COPD on

ventilation behaviour during exercise. We hypothesized that

increased serial DS upshifts the VE vs. VCO2 relationship and

that the VE-axis intercept (VEYinter) might be an index of DS

ventilation. Indeed, since DS does not contribute to gas exchange,

VE relative to DS is VE at VCO2 = 0, i.e., VEYint on the VE vs.

VCO2 relationship.

Methods

Subjects
Ten HF patients and 10 healthy subjects were enrolled in the

present study.

HF patients were regularly followed-up at our HF unit. Study

inclusion criteria for HF patients were New York Heart

Association functional classes (NYHA) I to III, echocardiographic

evidence of reduced left ventricular systolic function (left ventric-

ular ejection fraction #40%), optimized and individually tailored

drug treatment, stable clinical conditions for at least 2 months,

capability/willingness to perform a maximal or near maximal

cardiopulmonary exercise test (CPET). Patients were excluded if

they had obstructive and/or restrictive lung disease (forced

expiratory volume in first second/forced vital capacity ratio

(FEV1/FVC) ,0.70% and/or lung vital capacity (VC) ,80% of

predicted value [21]), clinical history and/or documentation of

pulmonary embolism, primary valvular heart disease, pulmonary

artery hypertension, pericardial disease, exercise-induced angina,

ST changes, severe arrhythmias and significant cerebrovascular,

renal, hepatic and haematological disease.

A group of age matched healthy subjects was recruited among

the hospital staff and from the local community through personal

contacts. Inclusion criteria were absence of history and/or clinical

evidence of any cardiovascular or pulmonary or systemic disease

contraindicating the test or modifying the functional response to

exercise, any condition requiring daily medications, and the

inability to adequately perform the procedures required by the

protocol. No subjects were involved in physical activities other

than recreational.

The investigation was approved by the local ethics committee

(‘‘Ethics committee Centro Cardiologico Fondazione Monzino’’,

Institutional Review Board no. S186/311) and all participants

signed a written informed consent before enrolling in the study.

Study protocol
At enrolment, demographical and clinical data were collected,

lung function measurements and echocardiographic evaluation

were performed to verify that the subjects screened met the study

inclusion/exclusion criteria, and the informed consent was

obtained.

Spirometry (Vmax 29C, SensorMedics, Yorba Linda, CA, US)

was performed by all participants in accordance with the

recommended technique [22], and measurements were standard-

ized as percentages of predicted normal values [23].

To become familiar with the procedure, both HF patients and

healthy subjects had been previously trained to perform an

exercise test in our laboratory [24]. Thereafter, on different days,

following a random order, exercise testing was done with

additional DS equal to 0 mL, 250 mL and 500 mL.

All participants underwent incremental CPET on an electron-

ically braked cycle-ergometer (Ergometrics-800, SensorMedics,

Yorba Linda, CA, US) using a personalized ramp protocol that

was chosen aiming at a test duration of 1062 minutes. The

exercise was preceded by 5 minutes of rest gas exchange

monitoring and by a 3-minute unloaded warm-up. A 12-lead

ECG, blood pressure and heart rate were also recorded, and

arterial oxygen saturation was monitored through a pulse

oxymeter. The participants wore a nose clip and breathed through

a mouthpiece connected to a mass flowmeter (Vmax 29C,

SensorMedics, Yorba Linda, CA, US). Subjects were asked to

cycle at a pedalling rate of 60–70 rpm, and CPET were self-

terminated by the subjects when they claimed that maximal effort

had been achieved. Oxygen consumption (VO2), VCO2 and VE

were measured breath by breath with flowmeter and respiratory

gas sampling lines at the end of the added DS. They were

averaged every 20 seconds. Anaerobic threshold (AT) was

calculated with the standard technique [25]. All tests were

executed and evaluated by 2 expert readers.

In the absence of psychogenic hyperventilation, below the

respiratory compensation point [26], the relation between VE and

VCO2 is characterized by a linear relationship (VE = aVCO2+ b),

with ‘‘a’’ as the slope and ‘‘b’’ as the intercept on the VE axis

(VEYint) [8]. Since DS does not contribute to gas exchange, it is

possible to hypothesize that the ventilation relative to DS is similar

or related to the VE at VCO2 = 0, which is the Y intercept of VE

vs. VCO2 relationship. To calculate DS volume (VD) from VEYint

(VDYint), we need to identify the corresponding respiratory rate

(RR). This was obtained as the intercept of the RR vs. VCO2

relationship on the RR axis (RRYint). Specifically, the RR vs.

VCO2 relationship was calculated through its linear portion that

starts from the beginning of exercise and ends when RR increases

more steeply, which corresponds to the tidal volume inflection/

plateau [27,28]. An example on how we calculate VEYint and

RRYint is reported in figure 1.

We compared estimated VD values (VDYint) with resting and

exercise values of VD, measured with standard method [8]

(VDmeas), in the 3 experimental conditions, with 0 mL, 250 mL

and 500 mL of added DS. The volume of mouthpiece and

flowmeter (50 mL) was subtracted from VD. The standard

calculation of VD [8] (VDmeas) is obtained by the following

equation:

VD~VT� 1�� 863 � VCO2ð Þ= VE � PaCO2ð Þ½ �

with 863 as a constant and PaCO2 as pressure for arterial CO2.

In healthy individuals [29], but not in HF patients [30], PaCO2

can be reliably estimated from end-tidal expiratory pressure for

CO2 (PETCO2). Therefore, we measured PaCO2 from arterial gas

sampling in HF patients, and we estimated PaCO2 from PETCO2

in healthy subjects. Thus, only in HF patients, a small catheter was

introduced into a radial artery, blood samples were obtained at

rest and every 2 minutes during exercise, and PaCO2 was

determined with a pH/blood gas analyzer (GEM 4000, Instru-

mentation Laboratory, Bedford, MA, US).

We calculated possible VD changes during exercise, and we

evaluated whether an added DS modifies the slope of the VE vs.

VCO2 relationship and/or it simply upshifts it.

Statistical analysis
Data are mean 6 standard deviation (SD). Cardiopulmonary

measurements were collected breath by breath and reported as

average over 20 s. Comparisons between the two groups were

done through unpaired t-test. Both in HF and in healthy subjects,
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analysis of variance for repeated measures with Bonferroni post

hoc test was performed to analyze the effect of the adding of

different DS and to evaluate the changes of VDmeas during

exercise in the 3 experimental conditions. Bland and Altman

relationship was calculated to compare VDYint values and VDmeas

values in HF patients and in healthy individuals.

Statistical significance was set at p,0.05. All statistics were

performed with IBM SPSS statistics 20.0 for windows.

Results

We enrolled 10 HF patients (9 males; mean age 61613 years)

and 10 age-matched healthy subjects (8 males; mean age 59610

years). The main anthropometric data were not significantly

different between the two groups. Patients with HF and healthy

subjects were free from obstructive defects; although within the

predicted normal limits, lung volumes tended to be smaller in HF

patients than in normal subjects (table 1).

HF patients
Mean left ventricle ejection fraction was 3365%. The cause of

HF was ischemic dilated cardiomyopathy in 4 cases and primary

dilated cardiomyopathy in 6 cases. Three patients had an

implantable cardioverter defibrillator; 9 were in sinus rhythm

and 1 was in permanent atrial fibrillation. Four patients were in

NYHA class I, 5 in NYHA class II and 1 in NYHA class III. All

HF patients were on b-blockers, 9 with angiotensin-converting

enzyme inhibitors, 4 with aldosterone receptor antagonists, 5 with

diuretics and 3 with amiodarone.

All HF patients performed CPET without added DS and with

250 mL and 500 mL of additional DS without complications. In

the HF group, peak VO2 was slightly reduced compared to

healthy subjects. With the exception of reduced peak workload

and of an increased VT, the adding of different DS did not

significantly impact on CPET data at peak of exercise and on VO2

at AT (table 2). In table 3 VE, RR, VT, VD/VT, VCO2, PETCO2

and PaCO2 during exercise are reported with 0, 250 and 500 mL

of added DS.

Values of VEYint, RRYint, VDYint, VDmeas and the slope of VE

vs VCO2 relationship in HF patients with 0 mL, 250 mL and

500 mL of additional DS are reported in table 4.

With the adding of DS, the VEYint increased significantly,

whereas RRYint showed a limited increase. Adding DS upshifted

the VE vs. VCO2 relationship with a minor slope increase

(figure 2).

The calculated VDYint rose as added DS increased; mean

VDYint increase with 250 and 500 mL of added space was

2266127 mL and 4466123 mL. VDmeas increased during

exercise in the 3 conditions albeit only as a trend when DS was

not added (table 5).

Figure 3 reports the Bland and Altman plot of VDYint vs.

VDmeas at rest for HF patients in the 3 exercise conditions. As an

average, a good agreement was observed when VD was calculated

either by VEYint, or VDmeas, with or without additional DS.

Healthy subjects
Healthy subjects performed all CPET without complications.

Peak exercise data and VO2 at AT were not significantly affected

by the adding of DS (table 2).

When DS was added, the value of the slope of VE vs. VCO2

relationship and RRYint did not change, whereas only the VEYint

increased significantly (table 4) with an upshift of the relationship

(figure 4). Similarly to HF patients, VDYint increased with added

DS in the three experimental conditions, specifically by

3006150 mL and by 5706160 mL with 250 and 500 mL,

respectively.

During exercise, VDmeas remained constant without additional

DS, whereas it significantly decreased during exercise with added

DS, but this finding is likely due to the underestimation of PaCO2

by PETCO2 with added DS (table 5).

Figure 5 reports the Bland and Altman plot of VDYint vs.

VDmeas at rest for healthy subjects and showed a good correlation

between the two methods both with and without additional DS.

Discussion

In the present study, we evaluated a human model of increased

dead space in HF patients and in healthy subjects, applying a

progressive workload exercise with different added DS. We

documented that a rise in serial DS, mimicking a rise in

anatomical DS, was parallel to the VEYint increase both in healthy

individuals and in HF patients. Therefore, VEYint is related to DS

ventilation. Moreover, we showed that the value of DS can be

non-invasively estimated as the ratio of VEYint/RRYint.

Few study limitations should be discussed at first. Firstly, our

research was undertaken to analyze the role on ventilation

behaviour during exercise of a respiratory comorbidity, COPD,

in HF patients. We built a COPD model by adding an external

dead space. We recognize that our model is only a partial COPD

Figure 1. VE vs. VCO2 relationship in a patient. The relationship is
linear up to the respiratory compensation point (end of the isocapnic
buffering period) (Upper panel). RR vs. VCO2 relationship. The
relationship is calculated as for VE vs. VCO2 (Lower panel).
doi:10.1371/journal.pone.0087395.g001
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model because we have not considered any of the systemic

consequences of COPD and we have limited our attention to DS

changes. Our model was over-simplistic also as regards lung

mechanics because an artificial dead space increase does not

generate air trapping which is one of the most characteristic

features of COPD during exercise. Secondly, our model was short

lasting, so that chronic ventilatory and chemoreceptor adaptations

to increased DS were not evaluated as were not evaluated

Table 1. Main anthropometric characteristics, demographical and pulmonary function data of heart failure patients and healthy
subjects enrolled in the study.

HEART FAILURE PATIENTS HEALTHY SUBJECTS p value

Number 10 10 NS

Male/female 9/1 8/2 NS

Age (yr) 61612 5967 NS

Height (cm) 17269 17366 NS

Weight (Kg) 85615 77611 NS

BMI (Kg/m2) 28.663.8 25.463.2 NS

VC (L) 3.5860.75 4.7261.03 ,0.01

VC (% predicted) 91614 112613 ,0.01

FVC (L) 3.4760.67 4.6361.10 ,0.01

FVC (% predicted) 90612 112614 ,0.01

FEV1 (L) 2.5660.58 3.5760.84 ,0.001

FEV1 (% predicted) 79614 107617 ,0.001

FEV1/FVC 7364 7665 NS

Data are presented as number or mean 6 SD. BMI = body mass index; NS = not significant; FEV1 = forced expiratory volume in 1 s; FVC = forced vital capacity; VC =
vital capacity.
doi:10.1371/journal.pone.0087395.t001

Table 2. Cardiopulmonary exercise testing data in heart failure patients (upper panel) and healthy subjects (lower panel) with
0 mL, 250 mL and 500 mL of additional dead space.

HEART FAILURE PATIENTS ADDED DEAD SPACE ANOVA p value

+0 mL +250 mL +500 mL

Peak workload (W) 109641* 103647 96641 0.006

Peak VO2 (mL/min/Kg) 19.965.8 19.365.6 19.665 NS

VO2 at AT (mL/min/Kg) 1363 14.164 12.765.8 NS

Peak O2 pulse (mL/beat) 15.865.7 15.465.2 15.764.8 NS

Peak HR (beat/min) 111626 110628 104620 NS

Peak VT (L) 1.960.49 1.9360.49
$ 2.0960.59 0.047

Peak VE (L/min) 55.6614 59.8614 58.8611 NS

Peak RR (bpm) 3064 3165 3065 NS

Peak PaO2 (mmHg) 107612 104616 100620 NS

Peak SaO2 (L/min) 98.461.2 97.561.9 97.761.7 NS

HEALTHY SUBJECTS

Peak workload (W) 200651 195651 189645 NS

Peak VO2 (mL/min/Kg) 36.168.4 35.667.2 35.867.5 NS

VO2 at AT (mL/min/Kg) 21.765.7 23.663.7 25.366.6 NS

Peak O2 pulse (mL/beat) 17.564.2 1762.9 18.463.4 NS

Peak HR (beat/min) 156618 157618 156618 NS

Peak VT (L) 2.7160.6 2.5760.9 2.9560.5 NS

Peak VE (L/min) 88.6621.9 87.2616.2 88.6617.1 NS

Peak RR (bpm) 3264 3266 3065 NS

Data are presented as means 6 SD; AT = anaerobic threshold; bpm = breaths per minute; HR = heart rate; NS = not significant; PaO2 = arterial oxygen pressure;
RR = respiratory rate; SaO2 = arterial oxygen saturation; RR = respiratory rate; VO2 = oxygen consumption; VE = ventilation; VT = tidal volume; W = watt.
$
p,0.05 versus +500 mL; * p,0.01 versus +500 mL.

doi:10.1371/journal.pone.0087395.t002
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primitive chemoreceptor abnormalities as drivers of the alveolar

hypoventilation observed in COPD patients. Thirdly, with the Y-

intercept we analyze an index of overall DS. However, in the

present setting, we were able to change DS only by adding an

external (anatomical equivalent) DS, so that we do not know if

changes in physiological DS similarly influence the VEYint.

Fourthly, VE changes during exercise are due to VCO2, VD/

VT and PaCO2 changes, and all may influence the VE vs. VCO2

relationship. In the present study, we added external DS, which at

each step of exercise, was associated to an increase of VD/VT and

PaCO2 (the latter in 2 steps only as a trend) resembling what

happens during exercise in COPD patients (table 3). Therefore

both PaCO2 and VD/VT changes have likely a role in the VE vs.

VCO2 relationship changes we observed after adding DS. It is

recognized that PaCO2 measurements were done only in HF

patients and not in healthy subjects, but a different behaviour in

healthy subjects is unlikely. Fifthly, the condition of VE at CO2

production equal 0, as such at the VEYint of the VE vs. VCO2

relationship, is a mathematical extrapolation with no physiological

meaning. Moreover, absolute DS changes during exercise, so that

also the VEYint value is likely close but different from the rest

value. Indeed, we showed that VD tended to increase in HF

patients and to reduce in healthy subjects during exercise without

added DS. However, we suggest using VEYint as a tool to evaluate

the presence of an increased DS, regardless of its physiological

meaning with respect to rest and exercise. The adding of DS

significantly reduced the external work produced in HF patients,

while a not significant reduction was observed in normal subjects.

Peak VO2 remained unchanged in both groups after adding DS;

this finding suggests that added DS was associated to an increased

work of breathing which, as a percentage of total work, seems to be

greater in HF patients than in normal subjects.

Table 3. Ventilatory parameters in heart failure patients with 0, 250 and 500 mL of additional dead space.

HF PATIENTS +0 mL +250 mL +500 mL ANOVA p value

Rest

VE (L/min) 11.8 6 1.7
$m 16.2 6 3.5 20.0 6 4.2 ,0.001

RR (bpm) 14.2 6 2.0 16.4 6 4.1 16.8 6 3.1 NS

VT (L) 0.8 6 0.2* 1.0 6 0.2£ 1.2 6 0.1 ,0.001

VD/VT 0.47 6 0.15
$& 0.61 6 0.10 0.67 6 0.11 ,0.001

VCO2 (L/min) 0.25 6 0.06 0.29 6 0.13 0.29 6 0.14 NS

PETCO2 (mmHg) 33.4 6 1.6 33.0 6 2.5 33.1 6 4.2 NS

PaCO2 (mmHg) 35.8 6 2.2
$m 38.6 6 1.9 39.9 6 2.02 ,0.001

4 min exercise

VE (L/min) 21.6 6 3.8m# 30.2 6 5.0 34.8 6 4.3 ,0.001

RR (bpm) 18.7 6 2.7 20.4 6 4.3 20.7 6 4.1 NS

VT (L) 1.2 6 0.2& 1.5 6 0.3 1.7 6 0.3 ,0.001

VD/VT 0.33 6 0.09
$m 0.45 6 0.06 0.54 6 0.10 ,0.001

VCO2 (L/min) 0.64 6 0.15 0.74 6 0.17 0.73 6 0.21 NS

PETCO2 (mmHg) 37.2 6 2.9 35.7 6 3.6 37.4 6 4.2 NS

PaCO2 (mmHg) 38.4 6 2.8 38.8 6 3.4 41.2 6 3.9 NS

8 min exercise

VE (L/min) 39.9 6 5.9m 44.5 6 4.8£ 52.4 6 8.4 ,0.001

RR (bpm) 25.1 6 3.2 25.3 6 5.2 26.8 6 4.6 NS

VT (L) 1.6 6 0.3 1.8 6 0.4 2.0 6 0.5 NS

VD/VT 0.28 6 0.06m# 0.41 6 0.07 0.46 6 0.09 ,0.001

VCO2 (L/min) 1.28 6 0.35 1.27 6 0.29 1.34 6 0.35 NS

PETCO2 (mmHg) 37.2 6 4.3 36.8 6 4.6 38.5 6 4.2 NS

PaCO2 (mmHg) 38.0 6 3.7 39.4 6 4.2 41.4 6 4.6 NS

peak exercise

VE (L/min) 55.7 6 14.0 59.9 6 14.6 58.9 6 11.3 NS

RR (bpm) 30.3 6 4.7 31.4 6 4.0 29.8 6 5.0 NS

VT (L) 1.9 6 0.5 1.9 6 0.5 2.1 6 0.6 NS

VD/VT 0.26 6 0.11*m 0.39 6 0.10 0.45 6 0.11 ,0.001

VCO2 (L/min) 1.81 6 0.67 1.72 6 0.68 1.58 6 0.55 NS

PETCO2 (mmHg) 35.4 6 4.5 35.64 6 4.8 39.0 6 4.9 NS

PaCO2 (mmHg) 35.8 6 3.8 38.0 6 4.2 41.3 6 5.5 0.049

Data are presented as means 6 SD; VE = ventilation; RR = respiratory rate; VT = tidal volume; VD = dead space volume; VCO2 = carbon dioxide production; PaCO2 =
arterial carbon dioxide pressure; PETCO2 = End-tidal carbon dioxide pressure; bpm = breaths per minute;
$
: p,0.05 vs. 250 mL; m: p,0.001 vs. 500 mL; *: p,0.001 vs. 250 mL; &: p,0.01 vs.500 mL; #,0.01 vs. 250 mL.

doi:10.1371/journal.pone.0087395.t003
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Table 4. Values of the slope of VE vs VCO2 relationship, VEYint, RRYint and volume of dead space in heart failure patients (upper
panel) and healthy subjects (lower panel) with 0 mL, 250 mL and 500 mL of additional dead space.

HEART FAILURE PATIENTS ADDED DEAD SPACE ANOVA p value

+0 mL +250 mL +500 mL

VE/VCO2 slope 2764 2865 2964 0.037

VEYint (L/min) 4.9861.63{1 9.6962.91* 13.2663.18 0.000

RRYint (bpm) 1364&$ 1563 1663 0.032

VDYint (L) 0.3960.07�1 0.6160.121 0.8360.11 0.000

VDmeas (L) 0.3860.08�1 0.6160.121 0.8060.09 0.000

HEALTHY SUBJECTS

VE/VCO2 slope 2363 2464 2464 NS

VEYint (L/min) 4.961.4{1 9.362.41 13.163.04 0.000

RRYint (bpm) 1464 1464 1463 NS

VDYint (L) 0.3760.11�1 0.6860.151 0.9560.14 0.000

VDmeas (L) 0.3760.06�1 0.6860.11* 0.9460.1 0.000

Data are presented as means 6 SD; RRYint = respiratory rate calculated as Y intercept of RR vs VCO2 relationship; VCO2 = carbon dioxide production; VDYint = dead
space volume calculated as VEYint/RRYint; VDmeas = dead space volume measured by PaCO2 in heart failure patients and estimated by PETCO2 in healthy subjects; VE =
ventilation; VEYint = ventilation at VCO2 = 0, calculated as Y intercept of VE vs VCO2 relationship.
{p,0.001 versus +250 mL;
1p,0.001 versus +500 mL;
*p,0.01 versus +500 mL;
&p,0.05 versus +250 mL;
$
p,0.05 versus +500 mL;

�p,0.01 versus +250 mL.
doi:10.1371/journal.pone.0087395.t004

Figure 2. VE vs. VCO2 relationship in heart failure patients with 0 mL (black line), 250 mL (grey line) and 500 mL (dotted line) of
additional dead space (DS). The adding of DS uplifts the VE vs. VCO2 relationship with a minor slope increase. { p,0.001 versus +250 mL; 1
p,0.001 versus +500 mL; * p,0.01 versus +500 mL; # p,0.05 versus other all.
doi:10.1371/journal.pone.0087395.g002
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We measured DS during exercise using a standard formula [8]

in HF patients. To avoid systemic artery catheterization, we

estimated PaCO2 from PETCO2 in healthy subjects, which is a

accepted method in the absence of lung disease [29]. It is

recognized, however, that albeit largely used in the clinical setting,

extrapolation of PaCO2 from PETCO2 even in normal individual is

approximate and likely to cause some of the variability observed

(figure 5). Moreover, the values obtained in normal subjects with

added DS showed a progressive and unrealistic DS reduction. This

is due to a PaCO2 underestimation by PETCO2 when adding DS,

confirming the need to directly measure PaCO2 during exercise for

DS evaluation [30]. The low PETCO2 compared to PaCO2

observed during exercise with added dead space (Table 3) is likely

due to the rapid rise of PCO2 during exhalation, which does not

reach a plateau.

Adding DS increased the slope of VE vs. VCO2 relationship in

HF patients but not in control subjects. This is different from what

happens in patients with severe COPD who show a high VE/

VCO2 ratio at the beginning of exercise but a blunted VE increase

during exercise, so that the slope of VE vs. VCO2 relationship is

normal or low [2]. In our model, the DS increase was too modest

to generate a ventilatory limitation to exercise, being the

ventilatory reserve at peak exercise always preserved. Accordingly,

in HF patients, but not in healthy subjects, we observed a minor

exercise performance reduction with the adding of DS.

The VE vs. VCO2 relationship is frequently used as a

prognostic tool in HF patients [9–13]. Some laboratories prefer

Table 5. Values of volume of dead space at rest and during exercise in heart failure patients and healthy subjects with no
additional dead space and with 250 mL and 500 mL of additional dead space.

+0 mL +250 mL +500 mL

HF H HF H HF H

VDmeas

rest (L)
0.38 6 0.08 0.37 6 0.06 0.61a 6 0.12 0.68¥ mH6 0.11 0.80V 6 0.09 0.94r‘J£�6 0.10

VDmeas 29 (L) 0.38 6 0.11 0.36 6 0.04 0.63 a 6 0.07 0.57 6 0.13 0.87 6 0.08 0.70 6 0.17

VDmeas 49 (L) 0.39 6 0.08 0.34 6 0.05 0.68 a 6 0.11 0.56 6 0.09 0.91 6 0.09 0.67 6 0.16

VDmeas 69 (L) 0.43 6 0.19 0.36 6 0.08 0.71 6 0.13 0.51 6 0.09 0.92 6 0.15 0.62 6 0.15

VDmeas 89 (L) 0.43 6 0.09 0.32 6 0.08 0.73 a 6 0.11 0.48 6 0.12 0.90 6 0.14 0.57 6 0.12

VDmeas

peak (L)
0.45 6 0.18 0.31 6 0.11 0.71 a 6 0.13 0.44 6 0.08 0.90 6 0.13 0.55 6 0.12

p value NS NS 0.001 0.001 0.05 0.001

Data are presented as means 6 SD; DS = dead space; H = healthy subjects; HF = heart failure patients; NS = not significant; VDYint = dead space volume calculated as
VEYint/RRYint; VDmeas = dead space volume measured by PaCO2 in heart failure patients and estimated by PETCO2 in healthy subjects.
ap,0.001 versus VDmeas 69; V p,0.05 versus VDmeas 69; ¥ p,0.05 versus VDmeas 69; m p, 0.001 versus VDmeas 89; H p,0.01
versus VDmeas peak; r p,0.001 versus VDmeas 29; ‘ p,0.001 versus VDmeas 49; J p,0.001 versus VDmeas 69;
£p,0.001 versus VDmeas 89; � p,0.001 versus VDmeas peak.
doi:10.1371/journal.pone.0087395.t005

Figure 3. Bland and Altman plot of estimated dead space (DS) volume calculated as VEYint/RRYint (VDYint) and measured DS volume
(VDmeas) at rest, calculated as (1–863/PaCO2(VE/VCO2)*VT) for heart failure patients with 0 mL (diamonds), 250 mL (circles) and
500 mL (crosses) of additional DS. The grey line identifies the mean difference of VDmeas - VDYint; the black lines identify the mean difference of
VDmeas - and VDYint61.96*standard deviation. PaCO2 = arterial carbon dioxide pressure; VE = ventilation; VT = tidal volume.
doi:10.1371/journal.pone.0087395.g003
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to analyze the ratio of the relationship [31], others the slope [32].

However, the ratio varies during exercise, so that which exercise

VE/VCO2 ratio value should be considered is still a matter of

debate [31]. Moreover, while the behaviour of VE/VCO2 ratio

during exercise is well described in normal and HF individuals

[31], its behaviour in COPD or in patients with HF and COPD is

less characteristic and not used as a diagnostics/prognostic tool.

To avoid the above-mentioned uncertainties, many authors prefer

to study the VE vs. VCO2 relationship throughout the exercise

[33] or up to the respiratory compensation point [8]. To do so, the

slope of the VE vs. VCO2 relationship is calculated, but no

attention is dedicated to the intercept of this relationship on the

VE axis. However, the increase of the slope of VE vs. VCO2

relationship may be blunted when COPD is associated to HF [2].

Notably, the presence of COPD in HF may be difficult to be

defined because some lung impairment is typical of HF and

particularly in more advanced cases regardless of COPD [5]. In

the present study, we showed that a DS increase is parallel to the

VEYint increase, so that its value should be taken into account

when analyzing the VE vs. VCO2 relationship. Indeed, VEYint

differences were observed even by adding a relatively small DS

(250 mL), which corresponded to 1/10 of peak VT in healthy

subjects. It is recognized, however, that whilst the means of

estimated and measured VD are similar, the individual values

differ up to 60% in case of no added DS and up to ,20% when

500 mL DS were added. This suggests caution when analyzing

specific individual data, particularly in the presence of no or

modest lung disease.

In the present study, we added 250 mL and 500 mL of DS

during exercise. To confirm that VEYint increase was related to DS

increase, we calculated VDYint. To do so, we need to divide VE by

RR, but the value of RR to be chosen is an open question. We

used the intercept of the RR vs. VCO2 relationship on the RR axis

because this is the RR value corresponding to VEYint. Interest-

ingly, the changes of VDYint values with added DS were very

similar to the amount of added DS.

In conclusion, we provide the rational basis for the assessment of

VEYint during exercise as a tool to evaluate DS. Further studies are

needed to confirm and to analyze the clinical meaning of the

present observation.

Figure 4. VE vs. VCO2 relationship in healthy subjects with 0 mL (black line), 250 mL (grey line) and 500 mL (dotted line) of
additional dead space (DS). The adding of DS upshifts the VE vs VCO2 relationship without significant slope changes. { p,0.001 versus +250 mL;
1 p,0.001 versus +500 mL.
doi:10.1371/journal.pone.0087395.g004

Figure 5. Bland and Altman plot of estimated dead space (DS)
volume calculated as VEYint/RRYint (VDYint) and measured DS
volume (VDmeas) at rest, calculated as (1–863/PaCO2(VE/
VCO2)*VT) with PaCO2 for healthy subjects with 0 mL (dia-
monds), 250 mL (circles) and 500 mL (crosses) of additional
DS. The grey line identifies the mean difference of VDmeas - VDYint; the
black lines identify the mean difference of VDmeas - and VDYint61.96*-
standard deviation. PaCO2 was estimated from PETCO2. PaCO2 = carbon
dioxide pressure; PETCO2 = tele-expiratory carbon dioxide pressure;
VE = ventilation; VT = tidal volume.
doi:10.1371/journal.pone.0087395.g005

Estimation of Dead Space Ventilation

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e87395



At a Glance Commentary
The ventilation (VE) vs. VCO2 relationship during exercise is

commonly used to assess ventilatory efficiency and prognosis in

heart failure patients. The slope of the VE vs. VCO2 relationship

increases as heart failure severity increases, whereas in respiratory

patients the VE vs. VCO2 slope during exercise is reduced the

greater the ventilatory limitation. However, respiratory disease

often coexists in heart failure patients so that the mean of the slope

of the VE vs. VCO2 relationship in these cases is unclear.

We reasoned that the VE vs. VCO2 behavior during exercise is

a linear relationship, at least up to the respiratory compensation

point, characterized by a slope and a Y intercept value. The latter

has been ignored, but it represent the ventilation at VOC2 = 0 and

therefore it is somehow related to dead space ventilation.

Accordingly, we built a human model of increased anatomical

dead space, resembling what happens in chronic obstructive

pulmonary disease, by adding external dead space during exercise

in healthy subjects and HF patients. We demonstrated that adding

dead space increases the Y intercept of the VE vs. VCO2

relationship. The Y intercept of VE vs. VCO2 relationship is

suggested as an index of increased dead space ventilation so that

the finding of a elevated Y-intercept in a heart failure patient

should bring the suspicious of a coexisting respiratory disease.
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