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ABSTRACT
Conformational dynamics of biomolecules are of fundamental importance for their function. Single-molecule studies of Förster Resonance
Energy Transfer (smFRET) between a tethered donor and acceptor dye pair are a powerful tool to investigate the structure and dynamics
of labeled molecules. However, capturing and quantifying conformational dynamics in intensity-based smFRET experiments remains chal-
lenging when the dynamics occur on the sub-millisecond timescale. The method of multiparameter fluorescence detection addresses this
challenge by simultaneously registering fluorescence intensities and lifetimes of the donor and acceptor. Together, two FRET observables,
the donor fluorescence lifetime τD and the intensity-based FRET efficiency E, inform on the width of the FRET efficiency distribution as a
characteristic fingerprint for conformational dynamics. We present a general framework for analyzing dynamics that relates average fluo-
rescence lifetimes and intensities in two-dimensional burst frequency histograms. We present parametric relations of these observables for
interpreting the location of FRET populations in E–τD diagrams, called FRET-lines. To facilitate the analysis of complex exchange equilib-
ria, FRET-lines serve as reference curves for a graphical interpretation of experimental data to (i) identify conformational states, (ii) resolve
their dynamic connectivity, (iii) compare different kinetic models, and (iv) infer polymer properties of unfolded or intrinsically disordered
proteins. For a simplified graphical analysis of complex kinetic networks, we derive a moment-based representation of the experimental data
that decouples the motion of the fluorescence labels from the conformational dynamics of the biomolecule. Importantly, FRET-lines facilitate
exploring complex dynamic models via easily computed experimental observables. We provide extensive computational tools to facilitate
applying FRET-lines.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0089134

I. INTRODUCTION

Many experimental techniques provide information on
biomolecular structural heterogeneity and can be utilized to
resolve ensembles of structures through integrative modeling.1
However, few techniques simultaneously inform on the structure
and dynamics from picoseconds to seconds and offer the option for
live-cell and in vivo measurements. Current advanced fluorescence

spectroscopy has a broad dynamic range and can inform on local
motions (femtosecond to nanosecond timescales), chain dynamics
in disordered systems (nanoseconds to microseconds), and large-
scale conformational changes (milliseconds to seconds),2–4 and it
can be applied to a variety of in vitro, in live cells,5–8 and in vivo
samples.9 Thus, there is considerable interest to exploit fluorescence
spectroscopic information for integrative modeling of biological
processes.3,10
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A typical fluorescence spectroscopic modality is single-
molecule Förster resonance energy transfer (smFRET). smFRET
studies opened the possibility to interrogate the structure and
conformational dynamics of individual fluorescently labeled
biomolecules directly by the distance-dependent dipolar coupling
of fluorophores,11–15 provided mechanistic insights in diverse areas
of biological research, and could pave the way toward dynamic
structural biology.2 Examples of biomolecular processes studied
by smFRET are folding and unfolding transitions,16–19 dynamics
of intrinsically disordered proteins,20–24 conformational dynamics
of nucleic acids25–28 and proteins,29–32 multidomain structural
rearrangements,33,34 and membrane receptors.35,36 The need for
accurate and precise distance information for integrative modeling
motivated a previous inter-laboratory benchmark study37 and the
current effort of the smFRET community to establish standards
for accurate processing of smFRET data.38 However, as will be
exemplified in this manuscript, the complex conformational
dynamics of multi-state systems with fast exchange kinetics can
be overlooked. To this end, we generalize our previous approach
that jointly interprets different spectroscopic observables to detect
conformational dynamics39 to a general framework to highlight
conformational dynamics and facilitate the interpretation of
smFRET data of dynamic multi-state systems.

In smFRET experiments, a broad range of fluorescence spec-
troscopic observables, such as absorption and emission spectra,40

brightness and quantum yields,41–43 fluorescence lifetimes,44,45 and
anisotropies,12,46 can be registered. However, the most used quanti-
fier for FRET is the FRET efficiency, E, which is usually estimated
by average fluorescence intensities. The FRET efficiency is the yield
of the FRET process, i.e., the fraction of excited donor molecules
that transfer energy to an acceptor molecule due to dipolar coupling.
Besides intensities, fluorescence spectroscopy offers the anisotropy
and the time-evolution information as quantifiers for FRET.11,47–49

Here, we provide a simple framework that combines information
from fluorescence intensities and time-resolved observables. While
we focus on revealing and interpreting conformational dynamics in
smFRET experiments, our framework can be, in principle, applied
to all FRET experiments where intensity and time-resolved infor-
mation are registered simultaneously, such as fluorescence lifetime
imaging (FLIM).

SmFRET experiments are performed on either freely diffus-
ing molecules or molecules tethered to surfaces. In experiments on
freely diffusing molecules, the molecules are excited and detected
by confocal optics with point detectors.50 In experiments on
surface-immobilized molecules, the molecules are typically excited
by total internal reflection fluorescence (TIRF) and detected by
cameras.51 The readout time limits the time resolution in camera-
based detection to ∼1–10 ms.52 When paired with time-correlated
single-photon counting (TCSPC), point detectors offer a signifi-
cantly higher time-resolution with picosecond timing precision that
enables accurate measurements of the fluorescence lifetimes. Fluo-
rescence spectroscopy provides multidimensional observables that
can be registered in parallel. A parallel spectral-, polarized-, and
time-resolved registration of photons is called MFD (multiparam-
eter fluorescence detection). Simultaneous registration of multiple
fluorescence parameters by MFD has been widely applied to study
the conformational dynamics of biomolecules in our and other
groups.50,53–59

Due to its time resolution, confocal detection is particularly
well-suited to study fast biomolecular dynamics. Various approaches
have been developed to reveal and quantify dynamics by analyzing
fluorescence intensities in confocal smFRET experiments. Different
maximum likelihood approaches take advantage of the color infor-
mation and the arrival time of single photons to determine kinetic
rates from the unprocessed photon streams.60,61 An analysis of FRET
efficiency histograms (FEHs) of single molecules reveals and informs
on single-molecule kinetics. By variation of the integration time,
dynamics are identified by changes of the FEH shapes.39,62,63 FEHs
can be described by a combination of Gaussian distributions to
reveals kinetic rate constants.64 For more accurate analysis, the shot
noise in FEHs is explicitly accounted for in (dynamic) photon dis-
tribution analysis (PDA).39,65 Alternatively, variance analysis of the
FRET efficiencies of single molecules reveals heterogeneities, e.g., by
comparing the average photon arrival times in the donor and FRET
channels.56,66 In burst variance analysis (BVA), the variance of the
FRET efficiency is estimated, and dynamics are detected if the vari-
ance exceeds the shot noise limit.67 The two-channel kernel density
estimator (FRET-2CDE filter) method applies a similar approach
to detect anticorrelated fluctuations of the donor and acceptor
signal.68 Finally, very fast conformational dynamics on the sub-
millisecond timescale can be determined by fluorescence correlation
spectroscopy,15,69 where the donor and FRET-sensitized acceptor
fluctuations in the signal result in a characteristic anti-correlation
in the cross-correlation function.15,32 For a robust estimation of the
timescales of exchange, the contrast in fluorescence correlation spec-
troscopy (FCS) can be amplified in filtered-FCS by statistical filters
that use spectral, lifetime, and anisotropy information registered in
MFD experiments.70,71

Even though various analysis methods have been developed for
intensity-based FRET experiments, interpreting the data of systems
with fast kinetics remains challenging. Two factors contribute to the
problem. First, many analysis approaches require the kinetic model
to be defined a priori. Second, most analysis methods are applied
to reduced, one-dimensional representations of the experimental
data, such as the FEH, the fluorescence decay, or the correlation
function, which alone often do not provide sufficient information
to distinguish between competing models. Hence, the model selec-
tion often remains ambiguous on the level of the individual data
representations while also being the deciding factor for the cor-
rect interpretation and quantification of the observed dynamics.
A solution to this problem is to exploit the multidimensionality
of the smFRET data in MFD experiments, where it has early been
recognized that conformational dynamics could be detected in two-
dimensional burst frequency histograms of the FRET efficiency,
E, and donor fluorescence lifetime, τD.72 The different averaging
behavior of the two observables produces distinct dynamic finger-
prints in the two-dimensional plots. To describe these patterns,
parametric relationships have been introduced to describe static
molecules,72 those undergoing dynamic exchange between two39 or
three73 states, folding–unfolding transitions,74,75 and disordered sys-
tems described by idealized polymer models.20 Here, we call the
guidelines defined by these parametric relationships “FRET-lines.”
Despite their wide application by expert users, there is a lack of
a comprehensive overview and description of a general formalism
to compute FRET-lines, especially if experimental complications,
such as the dynamics of the flexibly coupled fluorophores, have
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FIG. 1. Overview of the described sys-
tems. The concept of FRET-lines is
introduced in Secs. III A–III F. The
static and dynamic FRET-lines for dyes
whose position is fixed are discussed in
Secs. III C, with the special cases of
multistate systems and multi-exponential
donor fluorescence decays being dis-
cussed in Secs. III G and IV A, respec-
tively. The theory is then extended
to covalently coupled dyes with long
(∼20 Å) linkers in Secs. IV B and IV C.
In Sec. IV D, FRET-lines for disordered
systems are derived using standard poly-
mer models, and order–disorder transi-
tions (e.g., between folded and unfolded
peptide chains) are discussed.

to be considered. We present a detailed discussion of the different
theoretical and practical aspects of FRET-lines. To interpret two-
dimensional burst frequency histograms computed using average
intensities and lifetimes, we first introduce the average observables
and relate them to conformational heterogeneities (Fig. 1, Con-
cepts). Using a simple two-state system, we describe how model
parameters can be recovered from the FRET-lines. Next, we present
the definition of the FRET-lines and provide a rigorous frame-
work for their calculation. We present transformations that can be
applied to experimental data that directly visualize conformational
heterogeneity and can be used to resolve the species population
of exchanging states and generalize the concepts presented for
two-state systems to multi-state systems (Fig. 1, Concepts). The
second part of this manuscript assembles the most relevant equa-
tions needed to interpret data of static and dynamic systems for dyes
that are fixed stiffly to the molecule of interest (Fig. 1, Fixed dyes),
and presents conformational heterogeneity caused by flexibly cou-
pling dyes is accounted for (Fig. 1, Flexible dyes). Finally, we present
FRET-lines that can inform on an order-disorder transition (Fig. 1,
Disordered systems).

II. THEORY
A. Förster resonance energy transfer

FRET is the non-radiative energy transfer from an excited
donor (D) to an acceptor (A) fluorophore by dipolar coupling
that depends strongly on the interdye distance RDA. The rate
constant of the energy transfer from D to A, kRET , depends
on the distance between the donor and the acceptor transition
dipole moments,11

kRET =
kF,D

ΦF,D
(

R0

RDA
)

6
=

1
τD(0)

(
R0

RDA
)

6
, (1)

where kF,D is the radiative rate constant of the donor, ΦF,D is the
fluorescence quantum yield of the donor, R0 is the dye-pair spe-
cific Förster radius, and RDA is the DA-distance. The Förster radius,
R0, depends on the mutual orientation of the fluorophore dipoles,
captured by the orientation factor κ2. Moreover, R0 depends on the
spectral overlap integral J(λ), the refractive index of the medium, n,
and ΦF,D, the quantum yield of the donor fluorophore,

R6
0 =

9(ln 10)
128π5 ⋅NA

⋅
κ2ΦF,DJ(λ)

n4 . (2)

Here, NA is Avogadro’s constant. The spectral overlap integral is
defined by J(λ) = ∫ fD(λ)εA(λ)λ4dλ, where fD(λ) is the normal-
ized emission spectrum of the donor and εA(λ) is the extinction
of the acceptor at wavelength λ. For simplicity, we focus on dyes
that reorient fast compared to the FRET rate constant. For such a
case, κ2 can be approximated by the isotropic average, ⟨κ2

⟩
iso
= 2/3.

This approximation applies to freely rotating dyes that are flexibly
coupled to biomolecules via long linkers.33,37,76,77

The rate constant of FRET and the resulting fluorescence
lifetimes relate to its FRET efficiency, E, by

E =
kRET

kRET + kF,D +∑jk
( j)
Q

= 1 −
τD(A)

τD(0)
. (3)

Here,∑jk
( j)
Q is the sum over the rate constants of all additional non-

radiative pathways depopulating the excited state of the donor, and
τD(0) and τD(A) are the donor fluorescence lifetimes in the absence
and presence of the acceptor. The FRET efficiency is related to the
interdye distance, RDA, by11

E =
1

1 + ( RDA
R0
)

6 . (4)
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Thus, the fluorescence lifetime of the donor in the presence of
the acceptor is related to the FRET efficiency and the interdye
distance by

τD(A) = (1 − E)τD(0) =
τD(0)

1 + ( R0
RDA
)

6 . (5)

B. Time-resolved fluorescence
In single-molecule FRET experiments with pulsed excitation,

the detected photons are also characterized by their delay time with
respect to the excitation pulse. The distribution of delay times t
of photons emitted by a donor with a fluorescence lifetime τD(0)
that is quenched by FRET with a rate constant, kFRET , follows an
exponential decay,

f (DA)
D∣D (t) = kF,De−t/τD(A) with τD(A) = 1/(τ−1

D(0) + kFRET), (6)

where τD(A) is the fluorescence lifetime of the donor in the presence
of FRET. Here, the superscript of the time-resolved fluorescence
signal f (DA)

D∣D denotes that the sample is a FRET sample, and the
subscript indicates that the fluorescence is measured in the donor
channel after donor excitation. If the radiative rate constant, kF,D,
is independent of the FRET rate, the fluorescence decay of a mix-
ture of species with different fluorescence lifetimes with the lifetime
distribution p(τD(A)) is given by

f (DA)
D∣D (t) = kF,D ∫ p(τD(A))e

− t
τD(A) dτD(A), (7)

where f (DA)
D∣D (t) corresponds to the Laplace transform of the distri-

bution of fluorescence lifetimes. Equation (7) can also be expressed
in terms of the interdye distance, RDA, directly as

f (DA)
D∣D (t) = kF,D ∫ p(RDA)e

− t
τD(0)

[1+( R0
RDA
)

6
]
dRDA. (8)

These equations highlight the potential to resolve the conforma-
tional heterogeneity in terms of the distribution of the interdye dis-
tance p(RDA) from the FRET-sensitized donor fluorescence decay.
The interpretation hereby depends on the choice of the model func-
tion for p(RDA); thus, it is important to consider the broadening
introduced by the flexible linkers, which will be discussed in detail
in Sec. IV B.

In this work, it is assumed that the properties of the fluo-
rophores do not vary for different conformational states of the
molecule (homogeneous approximation). In practice, this assump-
tion does often not hold when the environment of the fluorophores
changes, leading to local quenching by aromatic residues, spec-
tral shifts, or sticking interactions with the biomolecular surface.
For details on how to account for a correlation between the pho-
tophysical and conformational states, the reader is referred to
Ref. 48.

C. Intensity-based observable: FRET efficiency
The FRET efficiency can be quantified either from the number

of photons emitted by the acceptor dyes due to FRET or from the

decrease in the number of photons emitted by the donor dye due to
the transfer of energy to the acceptor. Using the fluorescence inten-
sities F that is fully corrected for the quantum yields and detection
efficiencies, the FRET efficiency is given by

E =
F(DA)

A∣D

F(DA)
A∣D + F(DA)

D∣D

=
F(D0)

D∣D − F(DA)
D∣D

F(D0)
D∣D

. (9)

The superscripts refer to the sample type (DA is a FRET sample), and
the subscripts refer to the excitation, (. . . ∣X), and detection, (X∣ . . .),
channels. D and A refer to the donor and acceptor fluorophore,
respectively. For instance, F(DA)

A∣D is the fluorescence intensity of the
acceptor ( A∣ . . .) of a FRET molecule (DA), given that the donor
was excited (. . . ∣D). In practice, the detected raw signals in the
donor, (ID∣D), and acceptor, (IA∣D), channels need to be corrected (for
details, see Ref. 37) to yield fluorescence intensities, F.

In a time-resolved experiment, the fluorescence intensity F is
determined by integrating the fluorescence intensity decay f (t). For
the distribution of fluorescence lifetimes, p(τD(A)), the integrated
donor fluorescence intensity is given by

F(DA)
D∣D = kF,D ∫ ∫ p(τD(A))e

− t
τD(A) dτD(A)dt. (10)

The integral over t is equivalent to the fluorescence lifetime,
∫ e−t/τD(A)dt = τD(A), and the fluorescence intensity is, hence, pro-
portional to the species-averaged fluorescence lifetime, ⟨τD(A)x⟩,

F(DA)
D∣D = kF,D ∫ τD(A)p(τD(A))dτ = kF,D⟨τD(A)⟩x

. (11)

Through the definition of the FRET efficiency from the photon
counts of the donor fluorophore in the presence and absence of
FRET, F(DA)

D∣D and F(D0)
D∣D [Eq. (9)], we can relate the intensity-averaged

FRET efficiency E to the time-resolved fluorescence decays of the
donor in the presence and absence of FRET, f (DA)

D∣D (t) and f (D0)
D∣D (t),

E = 1 −
kF⋅D ∫ f (DA)

D∣D (t)dt

kF,D ∫ f (D0)
D∣D (t)dt

= 1 −
⟨τD(A)⟩x

⟨τD(0)⟩x

. (12)

For now, we consider the case of a single-exponential donor lifetime,
that is, ⟨τD(0)⟩x

= τD(0), and consider the effect of multi-exponential
donor fluorescence lifetimes in Sec. IV A.

D. Lifetime-based observable: Average delay time
In smFRET experiments with pulsed excitation, the detected

photons are characterized by their delay time with respect to the
excitation pulse. Due to the limited number of photons available in
a single-molecule experiment, it is impossible to recover the distri-
bution of fluorescence lifetimes p(τD(A)). However, an average delay
time, ⟨t⟩, can be determined reliably.
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The average delay time ⟨t⟩ is defined by

⟨t⟩ = ∫ t ⋅ p(DA)
D∣D (t)dt =

∫ t ⋅ f (DA)
D∣D (t)dt

∫ f (DA)
D∣D (t)dt

, (13)

where p(DA)
D∣D (t) is the normalized fluorescence decay that describes

the probability distribution of delay times. For a distribution of
fluorescence lifetimes p(τD(A)), the average ⟨t⟩ is then

⟨t⟩ =
∫ t ⋅ [∫ p(τD(A))e

−t/τD(A)dτD(A)]dt

∫ ∫ p(τD(A))e−t/τD(A)dτD(A)dt

=
∫ p(τD(A))[∫ t ⋅ e−t/τD(A)dt]dτD(A)

∫ p(τD(A))[∫ e−t/τD(A)dt]dτD(A)
. (14)

The inner integrals are given by ∫ e−t/τD(A)dt = τD(A) and

∫ t ⋅ e−t/τD(A)dt = τ2
D(A), resulting in the following expression

for the average delay time:

⟨t⟩→ ∫
τ2

D(A)p(τD(A))dτD(A)

∫ τD(A)p(τD(A))dτD(A)
=

τ2
D(A)

τD(A)
, (15)

where τD(A) and τ2
D(A) are the first and second moments of the life-

time distribution, respectively. Thus, in an ideal measurement (i.e.,
in the absence of shot noise or other experimental imperfections),
the average delay time ⟨t⟩ converges to the ratio of the second and
first moments of the lifetime distribution. Importantly, the average
delay time ⟨t⟩ informs on the second moment τ2

D(A) of the fluo-
rescence lifetime distribution, which conveys information about its
variance.

It is important to note that the average delay time ⟨t⟩ is equiv-
alent to the intensity-weighted average fluorescence lifetime, which
we denote by ⟨τD(A)⟩F

to distinguish it from the species-weighted
average fluorescence lifetime, ⟨τD(A)⟩x

, introduced above. Note that
the fluorescence intensity, F(τD(A)), of a species with a lifetime τD(A)
is proportional to its fluorescence lifetime,

F(τD(A)) = p(τD(A))∫ kF,De
− t

τD(A) dt = kF,DτD(A)p(τD(A)). (16)

Then, the intensity-weighted average lifetime, ⟨τD(A)⟩F
, is given by

⟨τD(A)⟩F
=
∫ F(τD(A))τD(A)dτD(A)

∫ F(τD(A))dτD(A)

=
∫
∞

0 τ2
D(A)p(τD(A))dτD(A)

∫
∞

0 τD(A)p(τD(A))dτD(A)
=

τ2
D(A)

τD(A)
, (17)

which is equivalent to the result for the above-mentioned average
delay time.

So far, we have assumed that the fluorescence is excited by
an ideal δ-pulse. Experimentally, the analysis is complicated due to

the finite width of the laser excitation pulse and characteristics of
the detection electronics, defining the instrument response function
(IRF). In the analysis, the IRF is accounted for by convolution with
the ideal decay model. For low photon numbers, accurate lifetimes
are best extracted using a maximum likelihood estimator (MLE)
that correctly accounts for the noise characteristics of the photon
detection, anisotropy effects, and the presence of the background
signal.78 The fluorescence lifetime obtained by maximizing the
likelihood function is equivalent to the intensity-averaged fluores-
cence lifetime, i.e., τMLE = ⟨τD(A)⟩F

(see the supplementary material,
Note 1).

III. CONCEPTS
A. Detecting dynamics using the fluorescence
lifetime information

The detection and analysis of fast conformational dynamics in
smFRET experiments remains challenging due to the limited signal
collected for each single molecule event [Fig. 2(a)]. Here, kinetics
is considered fast if the associated exchange of states happens on a
timescale comparable to or faster than the observation time. In con-
focal experiments, the upper limit of the observation time is set by
the diffusion time of a molecule in the confocal volume. The photon
detection rate determines the lower limit of the observation time. In
a typical confocal smFRET experiment, usually less than 500 pho-
tons are detected per single molecule in an observation time of a few
milliseconds. For each molecule, the FRET efficiency, E, is calculated
from the integrated fluorescence intensities. As most a few hundred
photons are registered, only an average FRET efficiency, E, can be
estimated reliably for each molecule, and the kinetic information is
partially lost [Fig. 2(a)].

In experiments with time-correlated single-photon counting in
addition to the fluorescence intensity and the delay time ⟨t⟩, the
excitation pulse is recorded for each registered photon. The average
delay time ⟨t⟩ relates to the fluorescence lifetime τD(A). Importantly,
t corresponds to the intensity weighted average fluorescence lifetime
⟨τD(A)⟩F

. The fluorescence lifetime of the donor in the presence of
FRET fluctuates with the FRET efficiency [Fig. 2(b)]. For a donor
dye with a mono-exponential fluorescence decay and a fixed distance
between the dyes, the quantities E, τD(A) and ⟨τD(A)⟩F

are related as
follows:

E = 1 −
τD(A)

τD(0)
, ⟨t⟩ = ⟨τD(A)⟩F

= τD(A), (18)

where τD(0) is the fluorescence lifetime of the donor in the absence of
FRET. In this case, the two observables E and ⟨τD(A)⟩F

follow the lin-
ear dependence: ⟨τD(A)⟩F

= τD(0)(1 − E). We call the reference line
described by this relation the ideal static FRET-line, as it is valid for
single molecules and ensembles with a single FRET efficiency.

When the molecule switches between different conformational
states with different FRET efficiencies during the observation time,
only average quantities can be estimated robustly due to the lim-
ited number of photons.78 In this case, the FRET efficiency relates
to the species average of lifetimes ⟨τD(A)⟩x

. On the other hand, the
intensity-weighted average fluorescence lifetime ⟨τD(A)⟩F

is deter-
mined by the donor intensity, and species with a smaller FRET
efficiency contribute more photons to the donor fluorescence decay.
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FIG. 2. Identifying conformational dynamics and heterogeneities in single-molecule FRET. (a) Simulated single-molecule interconverting between states with different FRET
efficiencies (dashed line). The molecule emits red and green photons (circles) registered in the donor and acceptor (FRET) channel (top). An analysis of the photons yields
an estimate of the FRET efficiency (orange line) with the corresponding distribution of average FRET efficiencies visualized as a histogram to the right. (b) Time-correlated
single-photon counting additionally measures the time t since the excitation pulse for each photon (top left), from which the fluorescence lifetime of the donor, τD(A), is
estimated (bottom left). In practice, only the intensity weighted average fluorescence lifetime ⟨τD(A)⟩F

can be estimated from the histogram of delay times (top right). The
time trace of the fluorescence lifetimes (green line, bottom) and the distribution of fluorescence lifetimes (bottom right) are not accessible. (c) Single-molecule histogram
of E and ⟨τD(A)⟩F

. A shift from the static FRET-line defined by ⟨τD(A)⟩F
= (1 − E)τD(0) highlights heterogeneities in the FRET efficiency and indicates conformational

dynamics.

Therefore, the estimated average lifetime, ⟨t⟩ = ⟨τD(A)⟩F
, is biased

toward longer fluorescence lifetimes compared to the species average
⟨τD(A)⟩x

[Fig. 1(b)],

E = 1 −
⟨τD(A)⟩x

τD(0)
, ⟨t⟩ = ⟨τD(A)⟩F

> ⟨τD(A)⟩x
. (19)

Because E and ⟨τD(A)⟩F
correspond to different averages, the pair

of experimental observables (E, ⟨τD(A)⟩F
) reveals sample dynamics

and heterogeneities through a deviation from the ideal behavior.
In single-molecule counting histograms of (E, ⟨τD(A)⟩F

), hetero-
geneities are identified by a shift of populations from the reference
static FRET-line [Fig. 2(c)].

There are many ways to compute other reference lines that
relate a FRET efficiency, E, to an average fluorescence weighted
lifetime, ⟨τD(A)⟩F

. We call any parametric relation between the
FRET observables a “FRET-line.” FRET-lines can serve as valuable
guides to interpret experimental distributions because they relate
model parameters to experimental observables, identify dynamic
populations, and allow to understand the dynamic exchange in
complex kinetic networks encoded as an experimental fluorescence
fingerprint.

B. Detecting dynamics by intensity-based approaches
In purely intensity-based approaches, the average inter-photon

time limits the ability to detect conformational dynamics. We
demonstrate this limitation by simulations of smFRET experiments
of molecules that undergo conformational dynamics between dis-
tinct states at increasing interconversion rates. We simulate typical
smFRET experiments with a count rate per molecule of 100 kHz.
The simulated smFRET data were processed using the popular burst
variance analysis (BVA)67 procedure.

In BVA, the variance of the FRET efficiency is estimated for
every detected single molecule to reveal conformational dynamics
happening on a timescale of the single-molecule burst duration. The
basic idea of BVA is to obtain an estimate of the distribution of
FRET efficiencies within a single-molecule event by sampling the
FRET efficiency with a higher rate than the structural dynamics. In
BVA, the FRET efficiency trace of single-molecule bursts is sampled
[Fig. 3(a)], and the standard deviation of the FRET efficiency within
a single-molecule burst is estimated by

σE =

¿
Á
ÁÀ 1

M

M

∑
i=1
(Ei − E)2. (20)

J. Chem. Phys. 156, 141501 (2022); doi: 10.1063/5.0089134 156, 141501-6

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics TUTORIAL scitation.org/journal/jcp

FIG. 3. Comparison of intensity-based and lifetime-based indicators of dynamics. (a) Illustration of the algorithm used in burst variance analysis (BVA) to estimate the
standard deviation of the FRET efficiency for a set of fluorescence photons of a single-molecule event. The photon trace is sub-sampled by the number of photons, N
(typically N = 5). For every sub-sample, the FRET efficiency, E, is estimated. An estimate of the standard deviation of the FRET efficiency, σE , is obtained by the estimates
of E. (b)–(k) Molecule-wise histograms of simulated datasets with indicated interconversion rates between two states with FRET efficiencies of 0.25 and 0.80, corresponding
to interdye distances of 60 and 40 Å at a Förster radius of 50 Å, and a diffusion time of 0.5 ms. (b)–(f) In BVA, conformational dynamics increase the standard deviation of
the FRET efficiency σE beyond the expected shot noise variance (black line) given by Eq. (21). (g)–(k) The comparison of the two estimators of the FRET efficiency, E and

⟨τD(A)⟩F
, reveals conformational dynamics as a shift from the static FRET-line (diagonal line) given by E = 1 −

⟨τD(A)⟩F

τD(0)
. BVA is most sensitive to slow dynamics, while the

standard deviation of the FRET efficiency is underestimated at fast dynamics. In contrast, the lifetime-based indicator detects conformational dynamics irrespective of their
timescale. The dashed magenta line indicates the expected position of the dynamic population on the y-axis. For BVA, a photon window of N = 5 was used.

Here, Ei is the FRET efficiency of a sample, M is the total number of
samples, and E is the average FRET efficiency of the single-molecule
event obtained by Eq. (9). The standard deviation σE is then plotted
against the average FRET efficiency E [Fig. 3(b)]. The lower bound-
ary for the standard deviation of the FRET efficiency is given by the
theoretical shot noise limit, determined by the number of photons
per sample N,79

σE =

√
E(1 − E)

N
. (21)

This above equation is the corresponding static FRET-line in
BVA. Single-molecule events that exceed this limit are considered
dynamic.

The simulated data were processed by BVA with a photon win-
dow of N = 5 [Figs. 3(b)–3(f)]. A standard deviation σE observed
in BVA that exceeds the shot noise limit decreases as the dynamics
become faster [Figs. 3(b)–3(f)]. In the simulations, the average inter-
photon time was 10 μs, and the time resolution is further reduced
due to the need to average over a given photon number (typically,
N = 5).67 All faster processes than this limit will be averaged over
the sampling time and, thus, not detected as dynamic [Figs. 3(e) and
3(f)]. The dependency on the timescale of dynamics makes it diffi-
cult to predict the exact shape of the observed distributions, which

requires taking into account the experimental photon count distri-
bution.67 Hence, they have mainly been used as qualitative indicators
of conformational dynamics. It should be noted that dynamics on
timescales faster than the inter-photon time can still be detected by
fluorescence correlation spectroscopy (FCS), wherein the effective
time resolution is determined mainly by the signal-to-noise ratio.
However, in contrast to the single-molecule analysis, it is challeng-
ing to directly identify states or their connectivity from the FCS
curves.

On the other hand, using the relation between the FRET effi-
ciency E and the intensity-averaged donor fluorescence lifetime
⟨τD(A)⟩F

, conformational dynamics are identified even if they are
fast [Figs. 3(g)–3(k)]. This lifetime-based indicator is independent
of the detection count rate because it relies only on the deviation of
the fluorescence decay from the ideal single-exponential behavior.
Hence, all dynamic processes that are slower than the fluorescence
lifetime (>ns) are detected, and no decrease of the dynamic shift is
observed at increasing timescales of the dynamics. Combining fluo-
rescence lifetimes and intensities is, thus, superior in detecting and
visualizing fast conformational dynamics than approaches that rely
on intensities alone.

In practice, one must consider potential artifacts that lead to a
false-positive detection of dynamics. Examples include dark states
of the acceptor (e.g., due triplet states). Acceptor dark states always
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affect intensity-based indicators of dynamics as they result in fluctu-
ations of the apparent FRET efficiency. The effect of dark acceptor
states on the donor fluorescence lifetime depends on the nature
of the photophysical change. Triplet states often still act as FRET
acceptors with a similar Förster radius as the single state; a similar
situation is found for the cis–trans isomerization of cyanine dyes,
such as Cy5.80–82 Radical or ionic dark states, on the other hand,
often are not viable FRET acceptors. In this case, the donor life-
time will fluctuate as a function of the photophysical state of the
acceptor.83

C. FRET-lines of static and dynamic molecules
In addition to detecting the presence of dynamics, FRET-lines

are a powerful tool to obtain information about the nature of the
dynamic exchange and identify the limiting states and their connec-
tivity. So far, we have introduced the static FRET-line that describes
the ideal relationship between the fluorescence lifetime of the donor
fluorophore and the FRET efficiency in the absence of dynamics. For
the experimental observables E and ⟨τD(A)⟩F

, the static FRET-line is
defined as

static FRET − line : E = 1 −
⟨τD(A)⟩F

τD(0)
. (22)

Importantly, this relationship only holds for a fixed distance between
the dyes resulting in a single FRET rate, in which case the intensity-
weighted average fluorescence lifetime is equal to the species aver-
age, ⟨τD(A)⟩F

= ⟨τD(A)⟩x
. In the case of a distribution of distances

(and hence lifetimes) that are sampled during the observation time,
the intensity-averaged fluorescence lifetime is biased toward species
with long fluorescence lifetimes and, thus, low FRET efficiencies,
and ⟨τD(A)⟩F

> ⟨τD(A)⟩x
. This results in the shift of the populations

from the static FRET-line [Fig. 3(c)]. We call this shift the “dynamic
shift” and define it as the minimal distance to the static FRET-line
for a given point in the E – ⟨τD(A)⟩F

histogram.
We now consider the simplest case of dynamics wherein the

molecule switches between two defined conformations during the
observation time,

E(1), τ(1)D(A)

k12
Ð→

←Ð
k21

E(2), τ(2)D(A), (23)

where k12 and k21 are the microscopic interconversion rates between
the two states that define the probability that a molecule spends a
fraction of time x(i) in state i during the observation time. The frac-
tions x(i) are stochastic quantities and change from one observation
to another. For now, we are not interested in the exact distribution
of the state occupancy x(1) and treat it as the independent parameter
of the model. This is equivalent to the assumption of a uniform dis-
tribution for x(1). The effect of the distribution of state occupancies
is discussed in detail in Paper II.

Assuming that each state is characterized by the same
donor fluorescence lifetime, the species-weighted and fluorescence-
weighted average lifetimes depend only on the state occupancy of the
individual states, x(1) and x(2)

= 1 − x(1),

⟨τD(A)⟩x
= x(1)τ(1)D(A) + (1 − x(1))τ(2)D(A), (24)

⟨τD(A)⟩F
=
⟨τ2

D(A)⟩x

⟨τD(A)⟩x

=
x(1)(τ(1)D(A))

2
+ (1 − x(1))(τ(2)D(A))

2

x(1)τ(1)D(A) + (1 − x(1))τ(2)D(A)

. (25)

Here, we changed the notation from the continuous distribution of
lifetimes to the discrete case, that is,

p(τD(A)) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

x(1) for τD(A) = τ(1)D(A),

1 − x(1) for τD(A) = τ(2)D(A),

0 otherwise.

(26)

To obtain a general relationship between the observables E and
⟨τD(A)⟩F

, we find the line that describes all values of x(1) by combin-
ing Eqs. (24) and (25), relating the species-weighted average lifetime
to the intensity-weighted average lifetime,

dynamic FRET − line : E = 1 −
τD(A)x
τD(0)

= 1 −
1

τD(0)
⋅

⎡
⎢
⎢
⎢
⎢
⎣

τ(1)D(A) ⋅ τ
(2)
D(A)

τ(1)D(A) + τ(2)D(A) − ⟨τD(A)⟩F

⎤
⎥
⎥
⎥
⎥
⎦

.

(27)

This relationship is defined for ⟨τD(A)⟩F
in the interval

[τ(1)D(A), τ(2)D(A)], which is equivalent for x(1) being in the inter-
val [0, 1]. Because Eq. (27) describes the FRET-line for a binary
system in dynamic exchange, we call it the dynamic FRET-line.
Dynamic FRET-lines connect two static states. They were first
introduced by Kalinin et al.,39 and Gopich and Szabo73 later
described analogous relations.

Figure 4 illustrates the concept of static and dynamic FRET-
lines. Static FRET-lines describe pure states, which are described
by sharp distributions (δ-functions) in terms of the lifetime dis-
tribution p(τD(A)) [Fig. 4(a)]. In contrast, dynamic FRET-lines
describe the mixing of two pure states as a function of the state
occupancy x(1). The corresponding donor fluorescence decays are
single-exponential for pure states and bi-exponential in the case of
mixing between pure states [Fig. 4(b)]. In the E − ⟨τD(A)⟩F

plot, the
dynamic FRET-line connects the two points of the contributing pure
states on the static FRET-line by a curved line [Fig. 4(d)].

To quantify the sensitivity of the dynamic exchange, it is helpful
to consider the maximum separation between the dynamic and static
FRET-lines. We define this dynamic shift, ds, orthogonal to the static
FRET-line [Fig. 4(d)]. Like the dynamic FRET-line, the value of the
dynamic shift depends only on the FRET efficiencies of the limiting
states E1 and E2, and is given by (see the supplementary material,
Note 2)

ds =
1
√

2
(
√

1 − E1 −
√

1 − E2)
2
. (28)

Note that this equation for the dynamic shift is valid for a plot of the
FRET efficiency E against the normalized intensity-averaged donor
fluorescence lifetime, ⟨τD(A)⟩F

/τD(0). Exemplary dynamic FRET-
lines for different FRET efficiencies E1 and E2 are shown in Fig. 4(e)
with their corresponding dynamic shifts. By visualizing the dynamic
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FIG. 4. FRET-lines of dynamic molecules. (a) Pure states are characterized by a single lifetime, and the corresponding lifetime distributions show a single peak. In the
presence of dynamics, pure states are mixed at different ratios. The lifetime distributions show two peaks weighted by the species fractions x(1) and x(2) = 1 − x(1). The
pure states are defined by lifetimes τ(1)

D(A) = 0.8 ns and τ(2)
D(A) = 3.2 ns. Species fractions are color coded from red ( x(1) = 1) to blue ( x(1) = 0). (b) The corresponding

fluorescence decays of the lifetime distributions are shown in (a). For pure states, the decays are single exponentials, while mixed states have two-component lifetimes.
(c) The dependency between the species fractions x(1) and x(2) is given by x(1) + x(2) = 1. (d) In a plot of the FRET efficiency E vs the intensity-weighted average
fluorescence lifetime ⟨τD(A)⟩F

, pure states define the static FRET-line (grayscale diagonal line). Mixed states are displaced from the static FRET-line and fall onto a
curved line connecting the pure states, described by Eq. (27). The dynamic FRET-line is color-coded by the contribution of species 1. The arrow indicates the maximum
possible dynamic shift ds from the static FRET-line. (e) Exemplary dynamic FRET-lines for limiting states with FRET efficiencies E1 = 0.1/E2 = 0.9 (orange, ds = 0.28),
E1 = 0.3/E2 = 0.7 (purple, ds = 0.06), and E1 = 0.5/E2 = 0.95 (cyan, ds = 0.17) are shown in a plot of the FRET efficiency vs the normalized intensity-weighted average
fluorescence lifetime ⟨τD(A)⟩F

/τD(0). (f) Contour plot of the dynamic shift, ds, as a function of the FRET efficiencies of the limiting states, E1 and E2. The dynamic
shifts for the examples given in E are shown as circles. In (d) and (e), the static FRET-lines are given by Eq. (22). Dynamic FRET-lines were calculated according
to Eq. (27).

shift as a function of the FRET efficiencies of the limiting states
[Fig. 4(f)], one can define sensitive and insensitive regions depend-
ing on a given detectability threshold for the dynamic shift. This
threshold depends on how well the experimental setup is calibrated,
the accuracy of the fluorescence lifetime estimation, and the mea-
surement statistics that typical threshold values for the detectability
of dynamic shifts are on the order of 0.05 or less, potentially reach-
ing a sensitivity of 0.01 for well-calibrated setups and carefully
performed experiments. This places the purple dynamic FRET-line
shown in Fig. 4(e) on the border of the insensitive region, while the
other two examples with a dynamic shift above 0.1 are clearly in the
sensitive region.

D. General definition of FRET-lines

FRET-lines are idealized relations between the FRET-related
experimental observables E and ⟨τD(A)⟩F

for different physical mod-
els of the system. Before considering more specific scenarios, such as
the effect of the flexible dye linkers or disordered systems, we first
present a general definition of FRET-lines.

Consider that the experiment is described by a physical
model defined by a set of parameters Λ. The model encom-
passes all parameters of the experimental system and fully defines
the two-dimensional distribution of the experimental observables,
p(E, ⟨τD(A)⟩F

∣Λ). For a complete description of the experiment, we
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would require the joint distribution of the experimental observables
over the different realizations of the system parameters Λ, weighted
by their probability of occurrence p(Λ),

p(E, ⟨τD(A)⟩F
) = ∫ p(E, ⟨τD(A)⟩F

∣Λ)p(Λ)dΛ. (29)

This distribution is generally challenging to address as it depends on
the photon statistics of the experiment; however, a derivation of the
distribution for a two-state system may be found in Ref. 73.

In the ideal case of zero photon shot noise, the distribution
p(E, ⟨τD(A)⟩F

∣Λ) would simplify to ideal curves on the (E, ⟨τD(A)⟩F
)

plane, which define parametric relations between E and ⟨τD(A)⟩F
as a function of the model parameters Λ. If we choose a fixed
value for all model parameters, we obtain a single point on the
(E, ⟨τD(A)⟩F

) plane. If, instead, we vary a single parameter, a defined
curve—the FRET-line—is obtained. Let the variable parameter be
λ and the fixed values for the remaining model parameters be Λ f .
Then, the parametric relation between E and ⟨τD(A)⟩F

for a given
model is obtained from the moments of the lifetime distribution by
the following equations:

E = 1 −
τD(A)(λ, Λf )

τD(0)
, (30)

⟨τD(A)⟩F
=

τ2
D(A)(λ, Λf )

τD(A)(λ, Λf )
. (31)

To derive the FRET-line for a given physical model, one must com-
pute the moments of the lifetime distribution, τD(A) and τ2

D(A), as
functions of the model parameters. As an example, our physical
model might define the dynamic exchange between two distinct
conformations, as described in Sec. III C. In this case, the para-
meters of the model are the FRET efficiencies of the distinct
conformations and the fractional occupancy of the states, i.e.,
Λ = {E(1), E(2), x(1), x(2)}, whereby we only have to consider one
fractional occupancy as x(2) = 1 − x(1). From this set of parameters,
we have chosen x(1) as the free parameters ( λ = x(1) ) and kept the
FRET efficiencies constant (Λf = {E(1), E(2)}).

We can write a general expression for the first and second
moments of the lifetime in Eqs. (30) and (31) using the definition
of the moments,

τν
D(A)(λ, Λf ) = ∫ τν

D(A)p(τD(A)∣λ, Λf )dτD(A), ν = {1, 2}. (32)

Thus, the problem reduces to find an expression of the lifetime dis-
tribution p(τD(A)∣λ, Λf ) for a given model. If such an expression is
available, we can derive equations for E and ⟨τD(A)⟩F

(or any related
observable) as a function of the variable parameter λ. Finally, to
obtain the explicit form of the FRET-line, the free parameter λ can
be eliminated by substitution, and the resulting expression defines
a direct relation between the observables E and ⟨τD(A)⟩F

. A detailed
description of this general formalism is given in the supplementary
material, Note 3.

E. Experimental observables and moments
of the lifetime distribution

The theoretical description of the average delay time ⟨t⟩ and
the FRET efficiency in Secs. II C and II D had naturally led us to the
moments of the lifetime distribution [Eq. (32)]. The first moment of
p(τD(A)) is equal to the expected value of the fluorescence lifetime.
The second moment is given by the expected value of the square
of the fluorescence lifetime. The variance Var(τD(A)) is the second
central moment, defined as the average squared deviation from the
mean, which is related to the first and second moments by

Var(τD(A)) = (τD(A) − τD(A))
2
= τ2

D(A) − τD(A)
2. (33)

Thus, the second moment and, consequently, ⟨τD(A)⟩F
relate to the

variance of the lifetime distribution. Using the relations between the
experimental observables E and ⟨τD(A)⟩F

and the moments of the
lifetime distribution, we obtain

Var(τD(A)) = ⟨τ
2
D(A)⟩x

− ⟨τD(A)⟩x
2
= (1 − E)(E − Eτ)τ2

D(0), (34)

where we have introduced the quantity Eτ defined as

Eτ = 1 −
⟨τD(A)⟩F

τD(0)
. (35)

Note that we have used different notations for the expected moments
of the lifetime distribution as defined by Eq. (32), denoted as τν

D(A),
compared to the estimates of these moments derived from the
experimental observables E and ⟨τD(A)⟩F

, denoted as ⟨τν
D(A)⟩x

, to
make a clear distinction between the expected theoretical quantities
and the experimental estimates.

Due to the linear relation between the FRET efficiency and
the fluorescence lifetime, the variance of the lifetime distribution
is directly proportional to the variance of the FRET efficiency
distribution by

Var(E) =
Var(τD(A))

τ2
D(0)

. (36)

This provides an alternate approach to BVA to estimate the vari-
ance of the FRET efficiency distribution from the observables E
and ⟨τD(A)⟩F

. The result is identical to the expression obtained in
Ref. 73, relating ⟨τD(A)⟩F

to the variance of the FRET efficiency
distribution,

⟨τD(A)⟩F
= τD(0)[1 − E +

Var(E)
1 − E

]. (37)

For a single lifetime component, the distribution of lifetimes is given
by a Dirac delta function δ,

p(τD(A)) = x(i)δ(τ − τ(i)D(A)) =

⎧⎪⎪
⎨
⎪⎪⎩

x(i), τD(A) = τ(i)D(A),

0 else.
(38)

The vth moment is then given by τν
D(A), and the variance of the

distribution, as given by Eq. (33), is zero, defining the equivalent
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static FRET-line. Thus, the static FRET-line [Eq. (22)] corresponds
to the particular case of lifetime distributions with vanishing vari-
ance. For two-component lifetime distributions, the distribution of
lifetimes is given by the weighted sum of two δ-functions, lead-
ing to the following expression for the moments of the lifetime
distribution:

⟨τD(A)⟩x
= x(1)τ(1)D(A) + (1 − x(1))τ(2)D(A),

⟨τ2
D(A)⟩x

= x(1)(τ(1)D(A))
2
+ (1 − x(1))(τ(2)D(A))

2
.

(39)

Note that the moments of the lifetime distribution are linear func-
tions of the species fraction x(1). For the mixing between two states
[Eq. (39)], the variance is then given by

Var(τD(A)) = τ2
D(A) − τD(A)

2
= x(1)(1 − x(1))(τ(1)D(A) − τ(2)D(A))

2
.

(40)

We can eliminate the variable x(1) to obtain the relation between
Var(τD(A)) and ⟨τD(A)⟩x

,

Var(τD(A)) = [⟨τD(A)⟩x
− τ(1)D(A)][τ

(2)
D(A) − ⟨τD(A)⟩x

], (41)

from which the variance of the FRET efficiency distribution is
obtained by Eq. (36). Equation (41) defines the dynamic FRET-line
for data displayed in the mean-variance representation.

To illustrate that, we can indeed estimate the variance of the
FRET efficiency distribution from the two experimental observ-
ables E and ⟨τD(A)⟩F

, we compare the variance estimate with that
obtained from burst variance analysis (BVA) for a simulated dataset
(Fig. 5).

BVA correctly identifies the presence of conformational
dynamics between the two states at FRET efficiencies of 0.25 and
0.8 [Fig. 5(a)]. The variance estimate obtained from BVA, however,
includes the contribution of photon shot noise Eq. (21) [black line in
Fig. 5(a)], and the dynamics is shown as excess variance beyond the
shot noise limit.

To obtain the contribution to the variance due to conforma-
tional dynamics (Var(c)(E)), we subtract the shot noise contribution
given by σ2

SN = E(1 − E)/N, where N = 5 is the photon window

FIG. 5. Estimating the variance of the FRET efficiency distribution. Shown is a simulation of molecules interconverting between two distinct states with E(1) = 0.25 and E(2)

= 0.8, interconversion rates of k12 = k21 = 1 ms−1, and a diffusion time of 0.5 ms. (a) Burst variance analysis (BVA) quantifies the total variance of the FRET efficiency
through analysis of the photon time trace [compare Fig. 3(a)], which contains contributions from photon shot noise and conformational dynamics (magenta line). The shot
noise variance is given as a black line. The static FRET-line (black) is given by Eq. (21), and the dynamic FRET-line (magenta) is given by the sum of the variance caused
by conformational dynamics, given by Eqs. (36) and (41), and shot noise as given by Eq. (21). (b) A simple subtraction of the photon shot noise reveals the variance due to
conformational dynamics, Var(c)(E). The dynamic FRET-line is given by Eqs. (36) and (41). (c) The plot of the two observables E and ⟨τD(A)⟩F

reveals the dynamics as
a right-ward shift from the static FRET-line (black). The static FRET-line is given by Eq. (22), and the dynamic FRET-line (magenta) was calculated according to Eq. (27). (d)
The estimated variance of the FRET efficiency from the observables follows the expected line as given by Eq. (41).
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used for the analysis [Fig. 5(b)]. Compared to the expected vari-
ance given by Eq. (41) (pink line), BVA underestimates the variance
of the FRET efficiency caused by the averaging over the pho-
ton window used in the calculation. It must also be considered
that BVA measures the combined variance of the FRET efficiency
caused by the contributions of shot noise and dynamics. However,
these contributions are not strictly additive. The simple subtrac-
tion of the shot noise contribution performed here is, thus, only
approximative. In the (E, ⟨τD(A)⟩F

) representation, the same dataset
shows a dynamic shift from the diagonal line that is described by
the dynamic FRET-line [Fig. 5(c)]. From the experimental observ-
ables, we calculate the variance of the FRET efficiency distribu-
tion. Unlike the variance obtained by BVA, this variance estimate
represents the pure contribution of the conformational dynamics
and follows the expected dynamic FRET-line. Note, however, that
the molecule-wise distribution of the variance estimated from the
observables E and ⟨τD(A)⟩F

generally shows a broader distribution
compared to BVA. Conceptual static and two-state dynamic FRET-
lines for the mean-variance representation of the data are shown in
Fig. 6(b).

F. Alternative representation of dynamic lines
For the dynamic mixing between pure species, i.e., species

whose lifetime distributions are described by δ-functions, the
moments of the lifetime distribution are simply given by the lin-
ear combination of the moments of the pure components [compare
Eq. (39)],

p(i)(τD(A)) =∑ x(i)δ(τ − τ(i)D(A))⇒
⟨τD(A)⟩x

=∑ x(i)τ(i)D(A),

⟨τ2
D(A)⟩x

=∑ x(i)(τ(i)D(A))
2
.

(42)

Any linear combination of the quantities ⟨τD(A)⟩x
and ⟨τ2

D(A)⟩x
will, thus, retain this property. This implies that we can further

simplify the expression for the dynamic FRET-line by choosing the
first and second moments as the parameters, which results in a linear
expression for the dynamic FRET-line.

In the parameter space of the first two moments (⟨τD(A)⟩x
,

⟨τ2
D(A)⟩x

), the static FRET-line is given by ⟨τ2
D(A)⟩x

= (⟨τD(A)⟩x
)

2,
which is the equation for an ordinary parabola. In other words,
while the dynamic FRET-line is linearized, we now have a quadratic
relation for the static FRET-line. Using the parameters (⟨τD(A)⟩x

,
⟨τ2

D(A)⟩x
), static and dynamic FRET-lines are, however, not well sep-

arated, making it challenging to distinguish static from dynamic
molecules. To overcome this problem, we replace the second
moment with the difference between the normalized first and second
moments,

Γ =
⟨τD(A)⟩x

τD(0)
−
⟨τ2

D(A)⟩x
τ2

D(0)
. (43)

This moment difference Γ is related to the experimental observables
E and ⟨τD(A)⟩F

by

Γ = (1 − E)
⎛

⎝
1 −
⟨τD(A)⟩F

τD(0)

⎞

⎠
= (1 − E)Eτ , (44)

where we defined Eτ = 1 − ⟨τD(A)⟩F
τD(0)

.
In this representation, the static FRET-line transforms to

Γstatic =
⟨τD(A)⟩x

τD(0)
−
(⟨τD(A)⟩x

)

τ2
D(0)

2

=
⟨τD(A)⟩x

τD(0)

⎛

⎝
1 −
⟨τD(A)⟩x

τD(0)

⎞

⎠
= (1 − E)E. (45)

Equation (45) describes a parabola that crosses the FRET efficiency
axis at points (0, 0) and (1, 0) and has a maximum at (1/2, 1/4)

FIG. 6. Different representations of the FRET estimators E and ⟨τD(A)⟩F
and the derived quantities for a two-state system with E(1) = 0.25 and E(2) = 0.75. (a) In a plot of the

two observables E and ⟨τD(A)⟩F
, dynamics show as a curved line (color-coded by the contribution of the low-FRET species) that deviates from the diagonal static FRET-line

(black). The static FRET-line is given by Eq. (21), and the dynamic FRET-line (gradient line) was calculated according to Eq. (27). (b) In the mean-variance representation
(bottom), the static FRET-line is given by zero variance, while the dynamic line curves upward. The dynamic FRET-line (gradient line) was calculated according to Eq. (41).
(c) Using the difference between the first and second moments Γ, the static FRET-line transforms into a parabola, while the dynamic FRET-line is given by a line. All lifetimes
and moments are normalized to the donor-only lifetime τD(0) to simplify the illustration. The static FRET line (black) is given by Eq. (45), and the dynamic FRET-line (gradient
line) was calculated according to Eq. (47).
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[Fig. 6(c)]. In the case of dynamics, the difference of the normalized
lifetime moments is given by

Γdynamic = x(1)
τ(1)

τD(0)
(1 −

τ(1)

τD(0)
)+(1 − x(1))

τ(2)

τD(0)
(1−

τ(2)

τD(0)
). (46)

From this, we obtain the simple form of the dynamic FRET-line,

Γdynamic = (1 −
τ(1)

τD(0)
−

τ(2)

τD(0)
)
⟨τD(A)⟩x

τD(0)
+

τ(1)τ(2)

τ2
D(0)

= (1 − E(1) − E(2))E + E(1)E(2). (47)

The expression for the dynamic FRET-line is linear to the FRET effi-
ciency E, directly connecting the two points belonging to the pure
states [Fig. 6(c)].

In the difference between the first and second normalized
moments Γ, we found a parameter that linearizes the dynamic

mixing while retaining a simple relation for the static FRET-line. The
linearization of dynamics in this moment representation dramatically
simplifies the graphical analysis of kinetic networks by providing
a direct visualization of the kinetic connectivity. To highlight its
usefulness, we show the moment representation together with the
histogram of the experimental observables, E and ⟨τD(A)⟩F

, in the
following discussions of more complex scenarios. The moment rep-
resentation resembles the analysis of fluorescence lifetimes in the
phasor approach to fluorescence lifetime imaging (Phasor-FLIM).84

In both approaches, single-exponential fluorescence decays are
found on a curve, a parabola in the moment representation, and a
circle in Phasor-FLIM. Moreover, bi-exponential decays are shifted
inward from the curve and lie on the line connecting the coordi-
nates of the pure components. The phasor calculation only requires
fluorescence decays and, thus, is also applicable to study quenching
without FRET. In principle, the moment representation could thus
be combined with the phasor information to add another dimen-
sion to the analysis. The different transformations of the observables
E and ⟨τD(A)⟩F

and their theoretical equivalents are summarized in
Table I.

TABLE I. Overview of the experimental parameters and the corresponding model parameters.

Model Experiment

Probability distribution ↔ Random realization

Expected value ↔ Experimental observable

Probability density function ↔ Histogram

FRET-lines ↔ Distribution of FRET efficiency, fluorescence lifetime, or related quantities

Expectation value of FRET efficiency ↔ Species-averaged FRET efficiency
E = 1 − τD(A)

τD(0)

∧
= E = FA∣D

FA∣D+FD∣D
= 1 −

⟨τD(A)⟩x
τD(0)

First moment of the lifetime distribution ↔ Species-averaged lifetime

τD(A) =
∞

∫
0

τD(A)p(τD(A))dτD(A)
∧
= ⟨τD(A)⟩x

= (1 − E)τD(0)

Second moment of the lifetime distribution ↔ Species-averaged squared lifetime

τ2
D(A) =

∞

∫
0

τ2
D(A)p(τD(A))dτD(A)

∧
= ⟨τ2

D(A)⟩x
= ⟨τD(A)⟩F

(1 − E)τD(0)

Ratio of the second and first moments of the
↔ Intensity-weighted average fluorescence lifetime, average delay timelifetime distribution

τ2
D(A)

τD(A)

∧
= ⟨τD(A)⟩F

or ⟨t⟩

No equivalent ↔ Intensity-weighted average FRET efficiency

1 − 1
τD(0)

τ2
D(A)

τD(A)

∧
= Eτ = 1 − ⟨τD(A)⟩F

τD(0)

Variance of the lifetime distribution ↔ No equivalent
Var(τD(A)) = τ2

D(A) − τD(A)
2
= Var(E)τ2

D(0)
∧
= (1 − E)(E − Eτ)τ2

D(0)

Difference between the normalized first and second
↔ No equivalentmoments of the lifetime distribution

Γ = τD(A)
τD(0)
−

τ2
D(A)

τD(0)
2

∧
= (1 − E)Eτ
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G. Multi-state systems
The concept of FRET-lines is beneficial to characterize com-

plex kinetic schemes with more than two states. Consider a kinetic
network involving three conformational states,

(48)

with the fraction of the three states x(1), x(2), and x(3), where x(3)

= 1 − x(1) − x(2). The equations for the moments of the lifetime dis-
tribution are easily extended for the three-state system, but we can
only eliminate one of the two free parameters x(1) and x(2). Con-
sequently, the conversion function between species-averaged and
fluorescence-averaged fluorescence lifetime additionally depends on
one of the three species fractions, and we can only define the equiv-
alent of FRET-lines by fixing this species fraction at a specific value.
Because there are, thus, two degrees of freedom, multi-state sys-
tems are described by an area instead of a line [Figs. 7(a)–7(c)].
This area is enclosed by limiting binary dynamic FRET-lines, which
describe the direct exchange among two of the three states and
are obtained by fixing one of the species fractions to zero. To
define multi-state FRET-lines analogous to the two-state system, it
is necessary to include an additional boundary condition. For exam-
ple, the lines crossing the area in Figs. 7(a)–7(c) are obtained by
varying one of the fractions while requiring the other two to be
equal.

When more than two states are involved, the equilibrium pop-
ulation potentially lies enclosed by the limiting binary dynamic
FRET-lines. The dynamic FRET area then serves as a reference to
reveal the spatial and temporal heterogeneities of the sample. The
color of the area in Figs. 7(a)–7(c) represents the population frac-
tion of each of the states. The position of a single-molecule event on
the plane is related to the occupancy fractions x(i) of the measured
molecule, which in the limit of fast dynamics (or long observation
time) tend to the equilibrium fractions. Using the representation
of the moment difference [Fig. 7(c)], it is possible to determine
the state occupancies of the different states graphically from the
two-dimensional plot [Fig. 7(d)]. As an example, we consider the
high-FRET state 1 [red circle in Fig. 7(d)]. The red line connect-
ing state 1 to the mixed population (orange) intersects the binary
exchange line between states 2 (green) and 3 (blue) at a given point
(turquoise). Then, the state occupancy x(1) is obtained from the
length of the segments of the red line, a(1) and b(1), defined by the
position of the mixed population along the line, by

x(1) =
a(1)

a(1) + b(1)
. (49)

The state occupancies x(2) and x(3) are obtained analogously as
described for x(1) above, as indicated by the dashed lines in Fig. 7(c).
A detailed derivation of this expression is given in the supplementary
material, Note 4.

To draw such multi-state FRET-lines, it is important that
the parameters of the limiting states are known. How easily this
information is gathered depends on the system at hand. For slow

FIG. 7. FRET-lines in three-state systems. (a) Ternary plot of the fractions of the
three species. The area is colored according to the contribution of the species
(red: x(1), green: x(2), blue: x(3)). (b) and (c) In the (E, ⟨τD(A)⟩F

) parameter
space (b), three-state mixing is described by an area that is confined by the two-
state dynamic FRET-lines. In the moment representation (c), the dynamic mixing
is simplified to a triangle with straight lines that describe the dynamic interconver-
sion. Additionally, specific examples of limiting FRET-lines are given in (a)–(c). For
these lines, one species fraction is varied, while the other two fractions are kept
equal, e.g., x(1) ∈ [0, 1] and x(2) = x(3) = 0.5(1 − x(1)). These lines intersect
at x(1) = x(2) = x(3) = 1/3. In (b), the static FRET-line (black) is given by Eq. (21)
and the limiting dynamic FRET-lines were calculated according to Eq. (27). In (c),
the static FRET-line (black) is given by Eq. (45) and the limiting dynamic FRET-
lines were calculated according to Eq. (47). (d) In the moment representation, the
species fractions can be determined by graphical analysis from the sections a(1)

and b(1) of the connecting line between the position of the population (orange) and
the pure states. The solid line indicates the procedure to determine the fraction of
species 1, while the corresponding lines for species 2 and 3 are given as dashed
lines.

dynamics, residual populations of pseudo-static molecules, i.e.,
molecules that by chance did not convert during the observation
time, clearly indicate the location of the limiting states in the two-
dimensional plots. On the other hand, in the case of fast dynamics,
only a single population might be observed, which deviates from
the static FRET-line. In this case, the fluorescence lifetimes of the
limiting states might be identified from a sub-ensemble TCSPC anal-
ysis. However, distinguishing between different numbers of states
in such an analysis is challenging if a low number of photons is
detected, and it is recommended that a network of FRET pairs is
globally analyzed.85 Often, the conformational equilibrium can also
be modulated, allowing the populations to be shifted toward or
locked into a certain conformation. Finally, prior information on
the structure of stable conformational states, e.g., obtained from
x-ray crystallography or nuclear magnetic resonance (NMR) spec-
troscopy, can be used to predict the parameters of the limiting
states.
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In multi-state systems, FRET-lines are especially helpful in
identifying the minimal set of states and their kinetic connectiv-
ity. This information can reduce the complexity of the kinetic
model by eliminating exchange pathways, providing crucial infor-
mation for further quantitative analysis of the dynamic network by
dynamic photon distribution analysis or fluorescence correlation
spectroscopy. This aspect of FRET-lines is illustrated in detail in
Paper II.

IV. PRACTICAL ASPECTS AND APPLICATION
A. Multi-exponential donor decays

Up until now, we have assumed that the fluorescence decay of
the donor dye in the absence of the acceptor is single exponential.
Experimentally, however, this condition is often violated due to the
effect of the local environment on the tethered dyes. The most com-
mon mechanisms that affect the quantum yield of tethered dyes are
the quenching of rhodamine or xanthene based dyes by electron-rich
amino acids, such as tryptophane, through photo-induced electron
transfer (PET)86–88 and the enhancement of the fluorescence of
cyanine-based dyes due to steric restriction and dye–surface interac-
tions that modulate the cis–trans isomerization.89–91 In addition, the
used organic dyes may consist of a mixture of isomers with distinct
fluorescence properties. The effect of multi-exponential fluorescence
decays of the donor fluorophore on the static and dynamic FRET-
lines depends on the timescale of the dynamic exchange between the
different donor states. This exchange may be fast (e.g., in the case of
dynamic quenching by PET), on a similar timescale as the observa-
tion time of a few milliseconds (e.g., for sticking of the fluorophore
to the biomolecular surface), or non-existent (e.g., in the case of an
isomer mixture).

Here, we consider two limiting cases of donor dyes with multi-
exponential fluorescence decays in the absence of FRET: a static
mixture and fast exchange with complete averaging during the
observation time. As before, we assume the homogeneous approxi-
mation wherein the fluorescence properties are identical in different
conformational states of the host molecule, i.e., the FRET rate kRET
does not depend on the donor-only lifetime τD(0). In this case, the
donor fluorescence decay in the absence of FRET is described by a
distribution of fluorescence lifetimes p(τD(0)),

f (D0)
D∣D (t) = kF,D ∫ p(τD(0))e

−t/τD(0)dτD(0). (50)

For the donor fluorescence decay in the presence of the acceptor, we
now have to consider a distribution of donor fluorescence lifetimes
and FRET rates,

f (DA)
D∣D (t) = kF,D ∫ ∫ p(τD(0))p(kRET)e

−t/τD(A)dkRETdτD(0), (51)

where the donor fluorescence lifetime in the presence of the accep-
tor is given by τD(A) = (τ−1

D(0) + kRET)
−1

, and p(τD(0)) and p(kRET)

correspond to the donor-only lifetimes and FRET rate distributions,
respectively. Note that due to the homogeneous approximation, we
have factored the joint distribution of donor and FRET states, that
is, p(τD(0), kRET) = p(τD(0))p(kRET).

The moments of the fluorescence lifetime distribution then
evaluate to

τν
D(A) =

∞

∫

0

∞

∫

0

p(τD(0))p(kRET)τν
D(A)dkRETdτD(0), (52)

or in the discrete case of distinct donor-only and FRET states,

⟨τν
D(A)⟩x

=∑
i,j

x( j)
D(0)x

(i)
RET(τ

(i,j)
D(A))

ν
, (53)

where x( j)
D(0) and x(i)RET are the fractions of the donor (j) and FRET

(i) states, respectively, and τ(i,j)D(A) = ((τ
( j)
D(0))

−1
+ k(i)RET)

−1
. From

the moments, the observable ⟨τD(A)⟩F
is then readily calculated

according to Eq. (17).
A more complex situation arises for the intensity-based FRET

efficiency E because the fluorescence intensities obtained for the
different donor states are weighted by their respective quantum
yields. Consequently, it becomes impossible to define a single
distance-related FRET efficiency. Instead, we define the proximity
ratio EPR in analogy to Eq. (9) based on the average fluorescence

intensities detected in the donor and acceptor channels F(DA)
D∣D and

F(DA)
A∣D by

EPR =
F(DA)

A∣D

F(DA)
D∣D + F(DA)

A∣D

= 1 −
⟨τD(A)⟩x

⟨τ′D(0)⟩x
, (54)

where the species-averaged lifetimes are calculated over all donor
and FRET states. The effective donor-only lifetime τ′D(0) in the
presence of quenching is defined as

τ′D(0) = τD(A) + γ′(τD(0) − τD(A)), (55)

where the factor γ′ is given by the ratio of the quantum yields of the
acceptor and donor fluorophores, γ′ = ΦF,A

ΦF,D
. See the supplementary

material, Note 5, for a derivation of Eq. (55). For the moment repre-
sentation, the moment difference Γ in the case of a mixture of donor
states is then defined as

Γ = (1 − EPR)
⎛

⎝
1 −
⟨τD(A)⟩F
⟨τD(0)⟩F

⎞

⎠
= (1 − EPR)EPR,τ , (56)

where ⟨τD(0)⟩F
is the intensity-weighted average donor fluorescence

lifetime and EPR,τ = 1 − ⟨τD(A)⟩F
⟨τD(0)⟩F

.
The effect of a mixture of two distinct photophysical states

of the donor is illustrated in Fig. 8 for the (E-⟨τD(A)⟩F
) para-

meter space [(a)–(c)] and in the moment representation [(d)–(f)].
We consider two different donor lifetimes of τ(1)D(0) = 4 ns and

τ(2)D(0) = 1 ns that correspond to distinct donor quantum yields of
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FIG. 8. Static and dynamic FRET-lines for mixtures of distinct photophysical states of the donor in the (E-⟨τD(A)⟩F
) parameter space [(a)–(c)] and in the moment representation

[(d)–(f)]. (a) and (d) Static and binary dynamic FRET lines for a superposition of two species with distinct donor-only lifetimes of τ(1)
D(0) = 4 ns and τ(2)

D(0) = 1 ns, corresponding

to donor quantum yields of Φ(1)
F,D = 0.8 and Φ(2)

F,D = 0.2. Static FRET-lines are shown in black. The inter-dye distances of the two FRET species are R(1)
DA = 40 Å (blue, orange)

and R(2)
DA = 60 Å (teal, red). The Förster radius of the donor state with τ(1)

D(0) = 4 ns is R0 = 50 Å. The acceptor quantum yield is chosen as ΦF,A = 0.8. In (a), the static

FRET-lines are given by Eq. (22) and dynamic FRET lines were calculated according to Eq. (27). In (d), the static FRET-line is given by Eq. (45) and the limiting dynamic
FRET-lines were calculated according to Eq. (47). (b) and (e) Static and binary dynamic FRET lines for the mixture of the two species shown in (a) and (d) in slow exchange,
i.e., on a timescale slower than the observation time, with equilibrium fractions of x(1)

D(0) = 0.25 and x(2)
D(0) = 0.75. For the proximity ratio EPR, a curvature of the static

FRET-lines arises even in the absence of dynamics. Gray lines correspond to the ideal static FRET-lines shown in (a). Note that in (e), the moment difference (1 − EPR)EPR,τ
can assume negative values. (c) and (f) Static and binary dynamic FRET-lines for the mixture of the two species shown in (a) in fast exchange, i.e., for complete averaging
during the observation time, with equilibrium fractions of x(1)

D(0) = 0.25 and x(2)
D(0) = 0.75. Solid gray lines correspond to the static FRET-lines for slow exchange as shown in

(b) and (e). Dashed gray lines correspond to the ideal static FRET-lines of the two species as shown in (a) and (d). Note that the static FRET-line is convex in this case. In (b)
and (c) and (e) and (f), the FRET lines are calculated from the averaged observables defined in Eqs. (53)–(55), assuming a single donor photophysical state for each line.

Φ(1)F,D = 0.8 and Φ(2)F,D = 0.2. When separate measurements are per-
formed [Figs. 8(a) and 8(d)], accurate FRET efficiencies E can be
calculated for each measurement, and the ideal static and dynamic
FRET-lines are obtained. For the dynamic exchange, we assume
equilibrium fractions of x(1)D(0) = 0.25 and x(2)D(0) = 0.75 for the two
donor states. In the case of exchange on a timescale much slower
than the observation time [Figs. 8(b) and 8(e)], an individual correc-
tion of the different populations is not possible. For the proximity
ratio EPR, curved static FRET-lines are obtained for the two species
as an effect of the averaging in Eq. (54). In the moment represen-
tation, this effect shows as an increased (for the species with τ(2)D(0)

= 4 ns) or decreased (for the species with τ(2)D(0) = 1 ns) curvature
of the static FRET-lines, while the linearity of the dynamic FRET-
lines is retained. The effect of fast exchange between the different
donor states (i.e., complete averaging during the observation time)
is illustrated in Figs. 8(c) and 8(f). For the (E-⟨τD(A)⟩F

) parameter
space, a single convex static FRET-line is obtained. This line falls
between the curved static FRET-lines obtained for the slow exchange
and intersects the ⟨τD(A)⟩F

axis at the intensity-weighted average

donor fluorescence lifetime ⟨τD(0)⟩F
= 2.71 ns. In the moment rep-

resentation [Fig. 8(f)], the static FRET-line shows a higher curvature
than the ideal static FRET-line (dashed gray line). Notably, even
in the case of fast exchange between different donor states, the
dynamic FRET-line in the moment representation remains linear
(see the supplementary material, Note 5). Here, we have not consid-
ered the calculation of accurate FRET efficiencies for distributions
of donor and acceptor states and instead introduced the proximity
ratio. Using the general formalism introduced here, however, ref-
erence static and dynamic FRET-lines can still be defined even for
uncorrected data if the corrections are instead accounted for in the
FRET-lines.

Experimentally, the presence of multiple states of the donor
fluorophores can be detected by a careful analysis of the donor-
only population or, preferentially, a separate donor-only sample.
For slow dynamics, the histogram of the molecule-wise donor flu-
orescence lifetimes will reveal clearly separated peaks. The FRET
sample can then be analyzed in two ways. If it is possible to sepa-
rate the two donor states, distinct values for the correction factor
γ can be applied to the two populations based on the different
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donor quantum yields [Figs. 8(a) and 8(d)]. If such a separation
is not possible, the proximity ratio, EPR, should be used instead
of the FRET efficiency, E, to calculate the FRET-lines correspond-
ing to the different photophysical states of the donor fluorophore
[Figs. 8(b) and 8(e)]. For fast exchange, the presence of multiple
donor states is detected from the number of lifetime components
in a TCSPC analysis. In this case, a common FRET-line should be
computed in the EPR-⟨τD(A)⟩F

parameter space as described above,
since the donor states will be averaged for all FRET states [Figs. 8(c)
and 8(f)].

B. Dye-linker dynamics
So far, we have assumed that a conformational state of the

molecule is described by a single donor fluorescence lifetime and will
be represented by a point lying on the ideal diagonal static FRET-
line. A heterogeneous mixture of molecules with different FRET
efficiencies, i.e., different donor–acceptor distances, would then fol-
low this static FRET-line. This line does, however, not describe
experimental data accurately. It is consistently observed that the
population mean of static molecules deviates from the ideal static-
FRET-line, exhibiting a bias toward longer fluorescence-weighted
donor lifetimes, ⟨τD(A)⟩F

. The deviation from the ideal static FRET-
line is caused by the use of long flexible linkers of 10–20 Å length that
tether the fluorophore to the biomolecules.39,76,92 Fast variations of
the donor–acceptor distance RDA during the observation time result
in a distribution of donor lifetimes p(τD(A)) that are sampled in each
single-molecule event [Figs. 9(a) and 9(b)]. Due to the finite width of

FIG. 9. FRET-lines in the presence of fast distance fluctuations (linker dynam-
ics). (a) and (b) The distribution of inter-dye distances p(RDA) (a), approximated
by a normal distribution as given in Eq. (60), is transformed into the correspond-
ing distribution of donor fluorescence lifetimes p(τD(A)) (b) by the Förster relation

τD(A) = τD(0)[1 + (
R0

R )
6
]
−1

. The Förster radius, R0, is 50 Å. (c) The broad-

ening of the lifetime distribution causes a deviation of the static FRET-line in the
(E, ⟨τD(A)⟩F

) representation toward higher values of the intensity-weighted aver-

age lifetime ⟨τD(A)⟩F
. Higher values for the width of the distance distribution

result in stronger deviation. In the moment representation, the contribution of the
distribution width causes an inward shift of the static FRET-line. The FRET-lines in
(c) are computed from the moments of the lifetime distribution as given in Eqs. (58)
and (59) assuming a Gaussian distribution for the inter-dye distance as given in
Eq. (60).

the distribution, the population is, thus, shifted toward longer donor
fluorescence lifetimes, whereby the deviation from the ideal static
FRET-line increases with the increasing linker length and, thus,
distribution width σDA [Fig. 9(c)]. Recently, we estimated that the
translational diffusion coefficient of dyes tethered to proteins is on
the order of 5–10 Å2/ns.48 Assuming free three-dimensional dif-
fusion, this estimate of 10 Å2/ns would translate to an expected
root-mean-square displacement ⟨x⟩ =

√
6Dt of ∼10 Å per 2 ns,

resulting in significant changes of the inter-dye distance during
the excited state lifetime.93,94 However, it is to be expected that
the effective displacement is reduced due to the restriction of
the dye’s movement by the linker. Under the assumption that
the diffusion of the fluorophore is slow compared to the fluo-
rescence lifetime, the fluorescence decays may be approximated
by a static distribution of distances.48,76,95 The observation time
for every single molecule on the order of milliseconds is long
compared to the diffusional motion of the dyes, resulting in com-
plete averaging of the spatial distribution of the dyes around their
attachment during the observation time. Under these assump-
tions, we can calculate the averaged quantities and moments
of the lifetime distribution based on the equilibrium distance
distribution.

Different approaches for modeling the spatial distribution of
tethered fluorophores have been developed.76,96–98 In the accessible
volume (AV) approach,92 the possible positions of the fluorophore
in the three-dimensional space are identified through a geomet-
ric search algorithm. By considering all possible combinations of
donor–acceptor distances, the inter-dye distance distribution can
be obtained from the accessible volumes of the donor and acceptor
dyes. Extensions of the AV approach have incorporated surface trap-
ping of fluorophores3,48 or accounted for the energetic contributions
of linker conformation.8,99 More accurate models of the spatial dis-
tribution of tethered dyes are obtained by coarse-grained48,98,100 or
all-atom101,102 molecular dynamics simulations, from which explicit
inter-dye distance distributions may be obtained. However, as will
be discussed below, the contribution of the linker flexibility is mainly
defined by the width of the inter-dye distance distribution, σDA, and
shows only a weak dependence on the explicit shape of the distri-
bution. Experimentally, the width of the linker distribution may be
obtained from the fluorescence decay of the donor by modeling the
fluorescence decays with a model function that includes a distribu-
tion of distances.48,99 Alternatively, by using the two-dimensional
histogram of ⟨τD(A)⟩F

vs E, one can vary the width parameter of
the static FRET-line such that it intersects with the population of
static molecules. Typically, we consider a fixed standard deviation
of σDA ∼ 6 Å that satisfies benchmarking experiments on rigid DNA
molecules.39,76

1. General description in the presence of distance
fluctuations

Before we discuss different models of the equilibrium distri-
bution of inter-dye distances, we describe how the moments of the
lifetime distribution can generally be calculated in the presence of
distance heterogeneity. It is assumed that the fluctuations of the
inter-dye distance due to the dynamics of the linkers ( τlinker) are
(i) slow compared to the fluorescence lifetime τD(A), leading to a
distribution of lifetimes, but (ii) fast compared to the observation
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time Tobs (limited by the diffusion time tdiff), allowing us to treat the
distance distribution as stationary,

τD(A) ≪ τlinker ≪ Tobs ≈ tdiff. (57)

The fluorescence lifetime of the donor, τD(A), is related to the inter-
dye distance, RDA, by

τD(A)(RDA) = τD(0)[1 + (
R0

RDA
)

6
]

−1

. (58)

Then, the moments of the fluorescence lifetime distribution, in
terms of a distribution of inter-dye distances p(RDA), are obtained
from Eq. (32) by a change of variables τD(A) → τD(A)(RDA) given by
Eq. (58),

τD(A) =

∞

∫

0

p(RDA)τD(A)(RDA)dRDA,

τ2
D(A) =

∞

∫

0

p(RDA)(τD(A)(RDA))
2dRDA,

(59)

which allow us to calculate the different quantities used for the
representations above as a function of these two moments. In gen-
eral, the distance distribution will depend on the donor–acceptor
separation Rmp (here defined as the distance between the mean posi-
tions) and a set of parameters Λ that describe the shape of the
distribution (e.g., its width). To construct the static FRET-line for a
given distance distribution model p(RDA∣Rmp, Λ), we vary the mean
donor–acceptor distance, Rmp, and compute the fluorescence aver-
aged lifetime and the FRET efficiency from the moments of the
lifetime distribution given by Eq. (59). The integrals in Eq. (59)
are difficult to solve analytically, even for the simple case of a nor-
mal distribution of distances, due to the sixth-power dependence
between τD(A) and RD(A). However, they can be calculated numer-
ically for arbitrary models of the distribution. The shape of the
distribution may potentially also depend on the conformation of the
biomolecule and, thus, the donor–acceptor distance Rmp, in which
case the shape parameters would depend on the conformation,
Λ→ Λ(Rmp). From the experimental observables E and ⟨τD(A)⟩F

, we
can only access the first and second moments of the lifetime distri-
bution. Consequently, it is not possible to address the shape of the
lifetime distribution p(τD(A)) explicitly. The same dynamic shift can
thus be observed for different distributions, as long as their mean
and variance (or equivalently, their first and second moments) are
identical.

2. FRET-lines of flexibly linked dyes
In practice, it is desirable to have access to simple reference

static FRET-lines that can be used for graphical analysis of the
measured data and the comparison of different models. To this
end, an analytical model for the distance distribution is required.
We first consider the simple case where the distribution of the
dye positions in space follows an isotropic normal distribution
[Fig. 10(a)]. This model can be interpreted as two ideal (Gaus-
sian) chain polymer linkers that are separated by a distance Rmp
and show no interaction with the biomolecule. In this case, the

inter-dye distance vector, RDA, is also normally distributed with
width σDA =

√
σ2

D + σ2
A, where σD and σA are the width of the spatial

distributions of the donor and acceptor dyes, respectively. The dis-
tribution of inter-dye distances, RDA, is then given by the non-central
χ-distribution with the distance between the mean positions of the
dyes, Rmp, as the non-centrality parameter and σDA as the width
parameter,

χ(RDA∣Rmp, σDA) =
RDA

Rmp
[N (+)(RDA∣Rmp, σDA)

−N (+)(RDA∣ − Rmp, σDA)],

N (+)(RDA∣Rμ, σDA) =
1

σDA
√

2π
e−

1
2 (

RDA−Rμ
σDA

)
2

with RDA ≥ 0.

(60)

Here, N (+)(RDA∣Rμ, σDA) is a part of a normal distribution with
a mean Rμ and a width σDA taken at non-negative values RDA ≥ 0
(positive truncation) to avoid non-sensical distance values below
zero. At small variance-to-mean ratios (i.e., at large distances), the
χ-distribution tends to the normal distribution. Therefore, the distri-
bution p(RDA) may be approximated by a normal distribution with
mean inter-dye distance Rmp,

p(RDA∣Rmp, σDA) ≈ lim
σDA
Rmp
→0

χ(RDA∣Rmp, σDA)

= N(+)(RDA∣Rmp, σDA). (61)

As experimental distances are usually larger than 35 Å and the
apparent distribution widths of the inter-dye distance are on the
order of 5–10 Å, this approximation is often valid. However, for
broader distributions, the truncation of the normal distribution with
RDA ≥ 0 results in a significant deviation from the χ-distribution
at small inter-dye distances [see Fig. 10(b)]. Compared to the
χ-distribution, the truncated Gaussian distance model overestimates
the contribution of small distances (corresponding to high FRET
efficiencies). Overall, this results only in minor deviations of the
generated static FRET-lines compared to the χ-distribution, which
are most pronounced at large distribution widths and high FRET
efficiencies [Fig. 10(c)]. However, the two models show significant
deviations in terms of the average FRET efficiency at identical cen-
ter distances Rmp. To illustrate this effect, we plot the change of
the average FRET efficiency at constant Rmp and increasing σDA
for the Gaussian and χ distance distributions in Fig. 10(c) (see
solid blue and red lines, respectively). The deviation of the average
FRET efficiencies between the two models increases with increasing
width σDA. Notably, the interpretation of average FRET efficiencies
in terms of the distance between the mean positions of the dyes
Rmp is, thus, biased by choice of the model function for the linker
distribution.

In summary, the choice of the distance distribution model
function has only a minor effect on the shape of the static
FRET-lines, which is mainly determined by the width parameter.
However, we propose that the χ-distribution should be preferred
for the interpretation of linker-averaged FRET efficiencies in
terms of physical distances when broad linker distributions are
expected.

J. Chem. Phys. 156, 141501 (2022); doi: 10.1063/5.0089134 156, 141501-18

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics TUTORIAL scitation.org/journal/jcp

FIG. 10. Calculation of static FRET-lines with dye linker diffusion: Difference between normal and χ distribution. (a) The donor and acceptor dyes are tethered to the
biomolecule by flexible linkers. As a result, they can occupy an accessible volume described by the dyes’ mean position and a width parameter (σD, σA) that describes
the linker flexibility. The distance Rmp describes the distance between the mean positions of the dyes, while RDA is given by the instantaneous distance between the two

dyes. (b) Normally distributed (top) and χ-distributed (bottom) inter-dye distance distribution with constant width parameter σ(l)
DA = 15 Å at R0 = 50 Å. Notice that the normal

distributions are truncated at small inter-dye distances. The distance distributions were calculated according to Eq. (60). (c) and (d) Linker-corrected static FRET-lines for
a normal distribution (dashed lines) and χ-distribution (solid lines) at σ(l)

DA = 5, 10, 15, and 20 Å (from dark to light) and R0 = 50 Å in the (E, ⟨τD(A)⟩F
) (top) and moment

representation (bottom). Panel (c) shows the FRET-lines for variable center distance at constant distribution width, and panel (d) shows the FRET-lines for constant center
distance and variable distribution width. While the shape of the resulting FRET-lines for the normal and χ-distribution is similar (c), a systematic deviation is observed for the
linker-averaged FRET-efficiency at increasing width parameter (d). All FRET-lines are computed from the moments of the lifetime distribution as given in Eq. (59) using the
distance distributions for the inter-dye distance as given in Eq. (60), varying either the inter-dye distance (c) or the width of the distribution (d).

C. Conformational dynamics in the presence of linker
broadening

So far, we have only considered the effects of linker broad-
ening for static conformations of molecules. In the presence of
conformational dynamics, the total distance heterogeneity will be
given by the combination of both contributions. If the timescale of
the dynamics of the linkers is comparable to the timescale of con-
formational dynamics (e.g., for intrinsically disordered proteins),
one would require a joint probability distribution of the conforma-
tional dynamics and the linker configuration. Generally, however,
the dynamics of tethered dyes are much faster than the dynamics of
the host molecule. It can then be assumed that the linker distribution
is entirely sampled for every single molecule, allowing it to be treated
as a stationary distribution for each conformational state. Consider
that the conformational states are characterized by different mean

donor–acceptor distances R(c)mp , which are populated with probabil-
ity p(R(c)mp ∣Λ(dyn)

), where Λ(dyn) is the set of parameters describing
the conformational dynamics, i.e., the transition rate matrix. The
linker distributions in the different conformational states are given
by p(RDA∣R(c)mp , Λ(c)l ), whereby the parameters of the linker distance
distribution, Λ(c)l , may potentially be different for the conforma-
tional states. The combined distance distribution p(RDA) then takes
the following general form:

p(RDA) = ∫ p(RDA∣R(c)mp , Λ(c)l )p(R
(c)
mp ∣Λ

(dyn)
)dR(c)mp , (62)

where the integration is performed over all possible conformational
states.
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We first turn to the specific case wherein we describe the linker
distribution in each conformational state by a χ-distribution char-
acterized by the mean inter-dye distance R(c)mp and its corresponding
width, σ(c)D(A). For the case of two conformational states, the com-
bined distribution of inter-dye distances integral in Eq. (62) then
simplifies to the discrete sum

p(RDA) =
2

∑
c=1

x(c)χ(RDA∣R(c)mp , σ(c)DA). (63)

The dynamic FRET-line in the presence of flexible linkers is obtained
by varying the species fraction x(1) and numerically calculating the
moments, as described in Eq. (59).

1. Separating the contributions of linkers
and conformational dynamics

The presented approach is applicable if an analytical model is
available to describe the contributions of linker dynamics to the
broadening of the distance distribution. In the experiment, however,
we might not know the exact distribution but are able to measure the
moments of the lifetime distribution in the distinct (static) confor-
mational states experimentally. Without having to model the linker
distribution explicitly, we, thus, have access to the linker-averaged
moments of each conformational state c, ⟨τD(A)⟩

(c)
l

and ⟨τ2
D(A)⟩

(c)

l
,

defined as

⟨τν
D(A)⟩

(c)
l
= ∫ τν

D(A)(RDA)p(RDA∣R(c)mp , Λ(c)l )dRDA. (64)

For the general description of the distance distribution given in
Eq. (62), the moments of the lifetime distribution in the presence
of conformational dynamics are given by the double integral

⟨τν
D(A)⟩x

= ∫ ∫ τν
D(A)(RDA)p(RDA∣R(c)mp , Λ(c)l )

× p(R(c)mp ∣Λ
(dyn)
)dR(c)mp dRDA. (65)

To separate the contributions of the conformational dynamics and
the linker fluctuations, we rearrange the integral to first integrate
over the linker distribution, which is possible due to the separation
of the timescales of the linker and conformational dynamics,

⟨τν
D(A)⟩x

= ∫ [∫ τν
D(A)(RDA)p(RDA∣R(c)mp , Λ(c)l )dRDA]

× p(R(c)mp ∣Λ
(dyn)
)dR(c)mp

= ∫ τν
D(A)

(c)
l

p(R(c)mp ∣Λ
(dyn)
)dR(c)mp . (66)

Thus, in the calculation of the moments, we can separate the con-
tributions of the linker distribution by first evaluating the moments

of the linker distribution in each conformational state, ⟨τν
D(A)⟩

(c)

l
,

which is then used to evaluate the moments in the presence of
conformational dynamics. From Eq. (66), it can be shown that
the variances of the linker distributions and the conformational
dynamics are additive, that is,

Var(τD(A)) = Var(c)(⟨τD(A)⟩
(c)
l
) +Var(l)(τD(A))

(c), (67)

where Var(c)(⟨τD(A)⟩
(c)
l
) is the variance of the linker-averaged

lifetime for all conformational states and Var(l )(τD(A))
(c) is the

average of the linker-variances over the different states [see the
supplementary material, Note 3, and Sec. III E for a derivation of
Eq. (67)].

The importance of these equations is that the contributions
of the linkers can be treated separately from the conformational
dynamics. We only require to know the linker-averaged moments,
⟨τν

D(A)⟩
(c)

l
, of the lifetime distribution of the different conforma-

tional states, which may be calculated for a particular model of
the linker distance distribution [Eq. (64)] or be obtained from the
observables E and ⟨τD(A)⟩F

of the pure states. The linker-averaged
moments then replace the corresponding powers of the pure state
lifetimes in the calculation of dynamic FRET-lines [Eq. (39)]. Thus,
the moments of the lifetime distribution for two-state dynamic
exchange, i.e., c ∈ {1, 2}, are given by

⟨τD(A)⟩x
= x(1)⟨τD(A)⟩

(1)
l
+ (1 − x(1))⟨τD(A)⟩

(2)
l

,

⟨τ2
D(A)⟩x

= x(1)⟨τ2
D(A)⟩

(1)

l
+ (1 − x(1))⟨τ2

D(A)⟩
(2)

l
,

(68)

from which the dynamic FRET-lines in the different representations
are obtained by varying the species fraction x(1) as described before.
Therefore, the linearity of the dynamic mixing of the moments
for conformational dynamics is still valid in the presence of linker
fluctuations. Dynamic FRET-lines, thus, stay linear in the moment
representation.

Dynamic FRET-lines in the presence of flexible linkers are illus-
trated in Fig. 11. In the (E, ⟨τD(A)⟩F

) representation, it is not possible
to perform a simple graphical construction of the dynamic FRET-
line for flexible linkers. In the moment representation, however,
the dynamic FRET-line for flexible linkers is simply obtained by
connecting the linker-averaged coordinates of the two states. This
simplification has important implications for the accurate descrip-
tion of dynamic FRET-lines in complex experimental systems, where
no model for the linker distribution is available. Consider, for exam-
ple, the case that the width of the linker distribution depends on
the inter-dye distance in an unknown manner. In this case, it is not
possible to obtain a general static FRET-line. However, with the pre-
sented formalism, we only require the knowledge of the positions
of the limiting static states, which are sufficient to fully describe the
corresponding dynamic FRET-line. For the (E, ⟨τD(A)⟩F

) represen-
tation, the linker-averaged first and second moments of the limiting
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FIG. 11. Dynamic FRET-lines in the presence of flexible linkers. (a) and (b) Static
and dynamic FRET-lines in the (E, ⟨τD(A)⟩F

) parameter space (a) and in the
moment representation (b) in the absence of flexible linkers. The static FRET-
line is given in black, and the dynamic FRET-line is colored according to the
relative contribution of the two species. (c) and (d) Static and dynamic FRET-
lines in the presence of flexible linkers (black and colored lines) are shown in
the (E, ⟨τD(A)⟩F

) parameter space (c) and in the moment representation (d).
The FRET-lines in the absence of flexible linkers, as shown in (a) and (b), are dis-
played in gray. Arrows indicate the shift of the pure states after averaging over
the linker distance distribution. No simple relation exists between the dynamic
FRET-line in the presence and absence of flexible linkers for the (E, ⟨τD(A)⟩F

)

representation (c). In the moment representation (d), the linear relationship for
the dynamic exchange is retained in the presence of flexible linkers. The dynamic
FRET-line is simply obtained by connecting the shifted coordinates of the pure
states in the presence of flexible linkers. The curves are obtained for a donor life-
time of τD(0) = 4 ns, a Förster radius of R0 = 50 Å, and interdye distances of

R(1)
mp = 57.5 Å and R(2)

mp = 34.5 Å. The distribution width for the linker broadening

was σDA = 7.5 Å. In (a), the static FRET-line (black) is given by Eq. (22) and the
dynamic FRET-line (gradient line) was calculated according to Eq. (27). In (b), the
static FRET line (black) is given by Eq. (45) and the dynamic FRET-line (gradient
line) was calculated according to Eq. (47). In (c) and (d), the static FRET-lines
and dynamic FRET-lines were computed according to Eqs. (22) and (27) for (c)
and Eqs. (45) and (47) for (d) using the linker averaged moments of the lifetime
distribution as given in Eqs. (66) and (68).

states, ⟨τD(A)⟩
(i)
l

and ⟨τ2
D(A)⟩

(i)

l
, can be determined from the aver-

aged FRET observables E and ⟨τD(A)⟩F
of the static populations,

from which the dynamic FRET-line is obtained by a linear com-
bination of the moments [Eq. (68)] and conversion back into the
(E, ⟨τD(A)⟩F

) parameter space. In the moment representation, the
dynamic FRET-line is simply obtained graphically by connecting the
conformational states with a straight line. Thus, for the construction
of the dynamic FRET-line, it is generally not required to know the
linker distance distribution in analytical form. If structural informa-
tion is available, the linker distribution may also be obtained from

FIG. 12. Dynamic FRET-lines in the presence of flexible linkers in three-state sys-
tems for the (E, ⟨τD(A)⟩F

) parameter space (a) and the moment representation
(b). With the increasing linker width, the dynamic FRET-lines are shifted inward for
both representations. In the moment representation, the linearity of the dynamic
FRET-lines is retained in the presence of flexible linkers. The distances between
the mean positions of the dyes, Rmp, for the three states are 30, 50, and 80 Å with
a Förster radius R0 = 52 Å. The static FRET-lines are given by Eq. (22) for (a) and
Eq. (45) for (b). The dynamic FRET-lines were computed according to Eqs. (22)
and (27) for (a) and Eqs. (45) and (47) for (b) using the linker averaged moments
of the lifetime distribution, as given in Eqs. (66) and (68).

the accessible volumes of the dyes in distinct conformations. In a
three-state system, the dynamic FRET-lines in the presence of flexi-
ble linkers are shifted toward the center of the area enclosed by the
limiting lines (Fig. 12).

D. FRET-lines of flexible polymers
In Secs. IV B and IV C, we have described the contributions of

the flexible linkers to the static and dynamic FRET-lines. Through
the stationary distance distribution, the effects of the fast linker
dynamics could be accounted for. In principle, the linkers are equiv-
alent to short flexible polymers, which may be treated analogously
to the procedure described above when a model for the equilib-
rium distance distribution is available. In the following, we present
FRET-lines for different polymer models in the context of the poten-
tial application to the study of flexible biological polymers, such as
unfolded or intrinsically disordered proteins.

1. Disordered states
Single-molecule FRET measurements are particularly suited

to characterize biomolecules with partial or lack of stable ter-
tiary structures, such as unfolded proteins, intrinsically disor-
dered proteins (IDPs), and proteins with intrinsically disordered
regions (IDRs).103–108 In the one-dimensional analysis of FRET
efficiency histograms, the information about the fast dynamics
of these systems is hidden, and complementary methods, such
as small-angle x-ray scattering (SAXS), have to be employed to
assert the presence of disorder.104–106,109 In contrast, the knowl-
edge of the fluorescence weighted average lifetime ⟨τD(A)⟩F

in
addition to the FRET efficiency, E allows dynamics to be iden-
tified directly from the single-molecule FRET experiment. As
described above, these quantities allow one to address the mean
and variance of the distribution of fluorescence lifetimes and,
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thus, contain information about the mean and variance of the
distribution of inter-dye distances [Figs. 13(a)–13(c)]. Here, we
outline how to exploit this information to characterize IDPs
and proteins with IDRs by means of FRET-lines of polymer
models.

The conformational dynamics of IDPs or proteins with IDRs
are usually fast compared to the observation time, with relaxation
times on the order of 100 ns to several μs.110–112 In the measurement,
a single population is then observed at a position that corresponds
to the average over the continuous distribution of conformations.
We first consider that the disordered system is described by a
Gaussian chain (GC) model. This model approximates the confor-
mational space by a quasi-continuum of states and has previously
been applied to the description of experimental single-molecule
FRET histograms of E and ⟨τD(A)⟩F

of IDPs.20 The distribution of
interdye distances is given by the central χ-distribution and depends
only on the variance of the interdye distance, σ2

DA,

FIG. 13. FRET-lines for disordered states. (a) Unstructured biomolecules, such
as intrinsically disordered proteins, rapidly interconvert between an ensemble of
structures. (b) The interdye distance distributions p(RDA) of an unstructured sys-
tem may be described by polymer models, here given by worm-like chain (WLC)
of different lengths of 60, 70, and 90 Å. The distance distributions were gener-
ated according to Eq. (69) for the ideal (Gaussian) chain and as described in the
supplementary material, Note 6, for the WLC model. (c) The distance distributions
define the corresponding fluorescence decays f D∣D(t) according to Eq. (8). (d)
FRET-lines for the WLC model at different polymer lengths and stiffness κ. The
examples shown in (a) and (b) are given as colored dots. The static FRET-line
for fixed dyes is given as a black line, and the FRET-line for the Gaussian chain
model is given as a red line. (e) The same data as shown in (d) in the moment
representation. FRET-lines were calculated for a donor-lifetime τD(0) = 4 ns, and
a Förster distance R0 = 52 Å. All FRET-lines were computed from the moments
of the lifetime distribution as given in Eq. (59) using the distance distributions for
the inter-dye distance as given in Eq. (69) for the ideal (Gaussian) chain and in the
supplementary material, Note 6, for the WLC model.

pGC(RDA∣σDA) = χ(RDA∣0, σDA)

= 2(
RDA

σDA
)

2
N+(RDA∣0, σDA). (69)

Often, this distribution is written in terms of the mean squared dis-
tance, R2

DA, which is related to the variance by R2
DA = 3σ2

DA. As this
model has only one variable parameter (σDA), only a single Gaus-
sian chain FRET-line may be constructed. This FRET-line describes
all polymers that behave like an ideal Gaussian chain [red line in
Figs. 13(d) and 13(e)]. It can be thought of as a reference line
for polymers that describes how ideal the studied system behaves,
analogous to the static FRET-line for structured systems. More
realistically, a disordered peptide chain may be described by the
worm-like chain (WLC) model (see the supplementary material,
Note 6).113,114 The parameters defining the inter-dye distance dis-
tribution of the WLC model are the total chain length L and the
persistence length lp that define the stiffness of the chain by κ = lp

L .
In principle, the total length of the chain is known a priori from
the protein sequence. From the experimentally observed position
of the population in the two-dimensional histogram, the stiffness
of the chain can then be estimated. FRET-lines for the WLC model
are shown for different combinations of the parameters κ and L in
Figs. 13(c) and 13(d). Notice that different combinations of κ and
L can result in identical FRET efficiencies, as indicated by the hor-
izontal line in the plot. To determine both parameters, in addition,
⟨τD(A)⟩F

needs to be known.

2. Order–disorder transitions
Another scenario that can be identified and described by FRET-

lines is the spontaneous transition between folded and unfolded
states. Suppose that the distance distribution in the folded and the
unfolded states is given by p( f )

(RDA∣R( f )
mp ) and p(u)(RDA∣Λ(u)),

respectively. Then, the combined distance distribution is
given by

p(RDA) = x( f )p( f )
(RDA∣R( f )

mp ) + (1 − x( f )
)p(u)(RDA∣Λ(u)), (70)

where x( f ) is the species fraction of the molecules in the folded state,
p( f )
(RDA∣R( f )

mp ) describes the linker distribution in the folded state

around the average distance R( f )
mp [Fig. 14(b)], and p(u)(RDA∣Λ(u))

describes the distance distribution in the unfolded state, dependent
on the parameters of the polymer model, Λ(u) [Figs. 14(a)–14(c)]. By
varying x( f ) while keeping the parameters of the distance distribu-
tions [R( f )

mp and Λ(u)] constant, the dynamic FRET-line is obtained.
These FRET-lines are conceptually identical to dynamic FRET-
lines describing the exchange between two folded states under the
assumption that the sampling of the distance distribution in the
unfolded state is fast compared to the transition rate to the folded
state (see Sec. IV C 1). The broad distance distribution of the
unfolded state shifts the endpoint of the resulting folding FRET-
line far from the static FRET-line [Figs. 14(d) and 14(e)]. Dynamic
transitions between a single folded state, characterized by R( f )

mp ,
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FIG. 14. FRET-lines for order–disorder transitions. (a) Free energy landscape of
a folding/unfolding transition. (b) Distance distribution of the folded state given by
a non-central χ-distribution as given in Eq. (60), centered at 52 Å with a width
parameter of 6 Å. (c) Distance distributions p(RDA) for unfolded states described
by the worm-like chain (WLC) model for a polymer of 120 Å length with vary-
ing stiffness κ [see the color scale in (d)]. Distance distributions were calculated
as described in the supplementary material, Note 6. (d) and (e) Dynamic FRET-
lines for the exchange between the folded and unfolded states in the parameter
space of the experimental observables E and ⟨τD(A)⟩F

(d) and in the moment
representation (e). The folded state lies on the static FRET-line (black) for fixed
distances, while all unfolded states are positioned on the dashed gray line defined
by the WLC model with different stiffness κ. The WLC distance distributions of
the unfolded state were calculated according to Ref. 113 and as described in the
supplementary material, Note 6. The Förster radius is 52 Å and the donor lifetime
in the absence of the acceptor is τD(0) = 4 ns. The linker-corrected static FRET-
line and the polymer FRET-line for the WLC were computed from the moments of
the lifetime distribution as given in Eq. (59) using the distance distributions for the
inter-dye distance as given in Eq. (60) for the folded state and the supplementary
material, Note 6 for the WLC model. Dynamic FRET-lines were computed accord-
ingly using the mixed distance distribution given in Eq. (70) by varying the species
fraction of the folded and unfolded states.

and different unfolded states, each described by the WLC model
with varying stiffness at constant length ( Λ(u) = {κ, L} ), are illus-
trated in Figs. 14(c) and 14(d) in the (E, ⟨τD(A)⟩F

) and moment
representations. Notice how all unfolded states are described by a
single curve defined by the total chain length. Even though both
folded and unfolded states are described by a distribution of dis-
tances, the folding FRET-line in the moment representation remains
linear [Fig. 14(d)]. Dynamic unfolding FRET-lines describe fold-
ing/unfolding transitions of proteins similar to binary dynamic
FRET-lines.75,115 The position of the population on the fold-
ing/unfolding FRET-lines informs on kinetic rate constants of the
folding/unfolding events (see Paper II). For fast-folding/unfolding
transitions on the microsecond timescale, the position of the

population along the folding/unfolding FRET-line may thus be
used to determine the equilibrium constant of the folding
process.

3. Application of FRET-lines to experimental data
In this section, we review the application of FRET-lines and the

moment representation to experimental data by revisiting published
data on three different proteins as prototypic examples for static
multi-state dynamic and disordered systems.

As a first example, we consider the protein Syntaxin-1, a
member of the SNARE (soluble N-ethylmaleimide-sensitive factor
attachment protein receptors) family of proteins that play a cen-
tral role in membrane fusion.116 We have previously shown that
Syntaxin-1 fluctuates between a closed and open conformation with
a detached SNARE motif on the sub-millisecond timescale, while
the Habc domain with a three helix bundle remains stable.32 Plac-
ing the donor and acceptor fluorophores at different positions on
this stable Habc domain, a single FRET population is observed
that falls onto the linker corrected static FRET-line in both the
E–⟨τD(A)⟩F

and moment representations [Fig. 15(a), magenta line].
Note that dye-linker correction is needed to describe the FRET pop-
ulation as it deviates from the ideal static FRET line [black lines in
Fig. 15(a)].

As an example for multi-state dynamics, we chose the enzyme
lysozyme of the bacteriophage T4 that plays an important role in
phage infection by cleaving the glycosidic bonds of the saccharides
of the bacterial cell wall.117 We have previously characterized the
conformational dynamics of T4L with a hinge-bending motion of
the N- and C-terminal subdomains, which alternates between an
open and closed state on the microsecond timescale (states C1 and
C2): Moreover, we identified a new third even more compact state
in its conformational cycle that is sampled at ∼230 μs (state C3).85

Accordingly, T4L shows a complex signature in the E–⟨τD(A)⟩F
and

moment representations with a main population that deviates from
the linker-corrected static FRET-line [Fig. 15(b)]. Using the interdye
distances obtained from a global analysis of the fluorescence decays,
we plot the expected binary dynamic FRET-lines between the three
limiting states (C1 ⇌ C2, dark green; C2 ⇌ C3, and light green; C1
⇌ C3, cyan). Clearly, the dynamic population falls in the center of
the triangular region defined by the dynamic FRET-lines. It is also
positioned closer to the states C1 and C2 due to the low equilibrium
fraction of state C3 of ∼21%. Finally, we consider the dynamics of the
intrinsically disordered protein p27, a member of the Kip family of
cyclin-dependent kinase inhibitor proteins that plays an important
role in the regulation of cell division in eukaryotes.118 The free form
of p27 shows a single peak at high FRET efficiency in the E–⟨τD(A)⟩F
and moment representations that deviates from the linker-corrected
static FRET-line [Fig. 15(c)].30,114 To describe the disorder of p27, we
applied the WLC model, for which the parameters were estimated
from a subensemble fluorescence decay analysis, and plot the FRET-
line of the WLC model for a chain length L of 73.8 Å with varying
stiffness κ (cyan line). The FRET population falls onto this line at a
stiffness of κ = 0.39.

These three examples of structural dynamics demonstrate
that FRET-lines are essential guides to identify dynamics from
the correlation between intensity-based and lifetime-based FRET
observables.
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FIG. 15. Exemplary applications of FRET-lines to experimental data. The data are shown in the E–⟨τD(A)⟩F
parameter space (top) and in moment representations (bottom).

(a) The protein Syntaxin 1, labeled stochastically at the amino acids 59 and 105 with the dyes Alexa488 and Alexa594, shows static behavior with a single population on the
linker-corrected static FRET-line (magenta, R0 = 55 Å, σDA = 6 Å).32 The ideal static FRET-line is shown in black. The ideal static FRET-line is given by Eq. (22), and the
linker-corrected static FRET-line is computed from the moments of the lifetime distribution as given in Eqs. (58) and (59) assuming a Gaussian distribution for the inter-dye
distance as given in Eq. (60). (b) The enzyme T4 lysozyme alternates between three conformational states (C1, blue; C2, purple; C3, ochre) during its catalytic cycle in the
order C1 ⇌ C2 ⇌ C3.85 The linker-corrected static FRET-line is given in magenta (R0 = 52 Å, σDA = 6 Å). The exchange between C1 and C2 is fast (<10 μs) compared
to the exchange between C2 and C3 (≈230 μs). Due to the fast conformational dynamics compared to the diffusion time of 1–5 ms, the population falls into the center of
the triangle defined by the binary dynamic FRET-lines between the limiting states (C1 ⇌ C2, dark green; C2 ⇌ C3, light green; C1 ⇌ C3, cyan). A variant of T4L was
labeled site-specifically at position S44pAcF with the dye Alexa488 and at position R119C with the dye Alexa647. The linker-corrected static FRET-line is computed from the
moments of the lifetime distribution as given in Eqs. (58) and (59) assuming a Gaussian distribution for the inter-dye distance as given in Eq. (60). The dynamic FRET-lines
are computed according to Eq. (47) using the linker averaged moments of the lifetime distribution as given in Eqs. (66) and (68). (c) The variant of intrinsically disordered
protein p27, labeled stochastically at the cysteine residues C29 and E54C with the dyes Alexa488 and Alexa647, shows a single dynamic population that deviates from the
static FRET-lines (magenta, R0 = 52 Å, σDA = 6 Å), but can be described by the WLC model with a contour length of 74 Å and a stiffness of κ = 0.39 (cyan).114 In (b) and
(c), the gray line traces molecules with high FRET efficiency for which the acceptor blinked or bleached during the observation time. The linker-corrected static FRET-line is
computed from the moments of the lifetime distribution as given in Eqs. (58) and (59) assuming a Gaussian distribution for the inter-dye distance as given in Eq. (60). The
WLC FRET-line was computed from the moments of the lifetime distribution as given in Eq. (59) using the distance distributions for the inter-dye distance as given in the
supplementary material, Note 6, by varying the stiffness.

V. CONCLUSIONS

FRET-lines are guides that are superimposed on the two-
dimensional histograms of the FRET observables E and ⟨τD(A)⟩F
and provide a graphical analysis of complex kinetic networks in
smFRET experiments. Here, we described a theoretical framework
for FRET-lines based on a rigorous mathematical treatment and
derived expressions for FRET-lines of static and dynamic molecules.
In this framework, the mobility of the flexible dye linkers can be
decoupled from the motion of the biomolecule, and it is readily
applicable to disordered and unstructured systems. Based on the the-
oretical description of the experimental observables E and ⟨τD(A)⟩F

,
we propose an alternative representation based on the moments of
the underlying distribution of the donor fluorescence lifetime that
simplifies the data representation. In this moment representation,

the static FRET-line is transformed into a parabola, while dynamic
FRET-lines are linearized. This enables a graphical analysis of com-
plex kinetic networks, which can be performed “by hand” without
having to apply complex equations and provides a direct visu-
alization of the kinetic exchange. This simplification of dynamic
FRET-lines in the moment representation remains even for com-
plex dynamics occurring in unstructured systems, such as unfolded
proteins.

The application of the moment representation to experimen-
tal data reveals some limitations of the coordinate transformation
from the E–⟨τD(A)⟩F

to the moment representation. While there is
no detrimental effect on the position of different populations in the
two-dimensional histograms, their width is significantly increased
in the moment representation due to shot noise broadening of the
experimental observables E and ⟨τD(A)⟩F

, which is multiplied in the
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calculation of the moment difference. For the given examples, this
effect is most evident from the broadening of the main populations
for Syntaxin-1 and T4L along the y-axis [Figs. 15(a) and 15(b)].
Notably, the broadening seems to be most pronounced at low FRET
efficiencies because the uncertainty of the lifetime estimate is largest
for long fluorescence lifetimes.45

In Paper II, we focus on a quantitative analysis of the kinet-
ics in multi-state systems by fluorescence correlation spectroscopy
and fluorescence decay analysis. While FRET-lines do not consider
the timescales of the dynamics explicitly, they provide important
information on the connectivity of the states, which turns out to be
the missing key toward finding unique solutions for the kinetics of
multi-state systems.

NOMENCLATURE
Used symbols and definitions—Theory—Experimental
observables and their relations
E FRET efficiency, calculated from the integrated

photon counts
f (DA)

D∣D (t), f (D0)
D∣D (t) time-dependent fluorescence intensity or flu-

orescence decay of the donor after donor
excitation in the presence or absence of the
acceptor

F(DA)
D∣D , F(DA)

A∣D , F(D0)
D∣D corrected (ideal) fluorescence intensities after

excitation of the donor fluorophore of the
acceptor (A∣D) and donor (D∣D) in the pres-
ence of the acceptor (DA) or for a donor in the
absence of FRET (D0)

F(τD(A)) fluorescence intensity of the species with lifetime
τD(A)

J(λ) spectral overlap integral of the donor fluores-
cence and acceptor absorption spectrum

kRET rate constant of energy transfer from D to A
kF,D radiative rate constant of the donor fluorescence
k( j)

Q quenching rate constant of process j
n refractive index of the medium
p(τD(A)) distribution of fluorescence lifetimes of the

donor fluorophore
p(RDA) interdye distance distribution
p(DA)

D∣D (t) probability distribution of delay times for the
donor after donor excitation in the presence of
the acceptor

RDA donor–acceptor separation distance
R0 characteristic distance referred to as the Förster

radius
⟨t⟩ average TCSPC delay time
t TCSPC delay time
ΦF,D fluorescence quantum yield of the donor, D
κ2 orientation factor for the transition dipoles of

the FRET dyes
τD(A), τD(0) donor fluorescence lifetime in the presence and

absence of the acceptor
⟨τD(A)⟩F

intensity-averaged donor fluorescence lifetime
⟨τD(A)⟩x

, ⟨τD(0)⟩x
species-averaged donor fluorescence lifetime in
the presence and absence of the acceptor

τD(A), τ2
D(A) first and second moments of the distribution of

donor fluorescence lifetimes
τMLE lifetime estimate obtained from the maximum

likelihood estimation

Comparison between FRET-lines and intensity-based
approaches

Ei sample obtained for the FRET efficiency within a
single-molecule event in BVA

N number of photons used for the sampling window to estimate
σE in BVA

σE BVA standard deviation of the FRET efficiency within a single-
molecule event

FRET-lines of static and dynamic molecules

ds dynamic shift, defined as the maximum deviation of the
dynamic FRET-line orthogonal to the static FRET-line

E(i) FRET efficiency of species i
kij microscopic interconversion rate constant from state j to

state i
x(i) species-fraction of species i
δ(x) Dirac delta function
τ(i)D(A) pure-state donor lifetime of species i
⟨τ2

D(A)⟩x
species-averaged squared donor fluorescence lifetime

τ(i)D(A) pure-state donor lifetime of species i

General definition of FRET-lines

p(E, ⟨τD(A)⟩F
∣λ, Λf ) conditional distribution of the experimental

observables E and ⟨τD(A)⟩F
, given λ and Λ f

p(τD(A)∣λ, Λf ) conditional distribution of donor fluorescence
lifetimes, given λ and Λ f

Λ, p(Λ) set of parameters describing the experiment
and model and their probability

Λ f parameters that are fixed for the FRET-line
λ variable parameter used for the generation of

FRET-line
τν

D(A)(λ, Λf ) vth moment of the lifetime distribution, given
λ and Λ f (v = {1, 2})

Moments of the lifetime distribution and alternative
representations

Var(τD(A)), Var(E) variance of the donor fluorescence lifetime or
FRET efficiency

Var(c)(E) contribution of conformational dynamics to
the variance of the FRET efficiency

Γ difference between the normalized first and
second moments of the lifetime distribution

σ2
SN contribution of shot noise to the variance of

the FRET efficiency
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FRET-lines in the presence of linker dynamics

N (+)(RDA∣Rmp, σDA) positive-truncated normal distribution of
inter-dye distance RDA

Rmp distance between mean dye positions
R(c)DA , R(c)mp interdye distance and distance between mean

dye positions in the conformational state c
Tobs observation time of a single-molecule event
Λ(c)l linker parameters describing the inter-dye dis-

tance distribution in the conformational state
c

Λ(dyn) parameters describing the conformational
dynamics (transition rate matrix)

σDA width parameter of the inter-dye distance
distribution

σD, σA width of the positional distributions of the
donor or acceptor fluorophore

σ(c)DA linker distribution width in conformation c
⟨τν

D(A)⟩
(c)

l
νth linker-averaged moment of the fluores-
cence lifetime of the conformational state
c

τlinker characteristic timescale of linker fluctuations
χ(RDA∣Rmp, σDA) χ-distribution of inter-dye distance RDA

FRET-lines for flexible polymers

lp persistence length of the chain
L length of the chain
R2

DA mean squared interdye distance used in the Gaussian chain
polymer model

κ stiffness of the chain

SUPPLEMENTARY MATERIAL

See the supplementary material for an extensive description
of the general model for FRET-lines discussed in Sec. III D, the
derivation of the equation for the dynamic shift as given in Sec. III C
in Eq. (28), a detailed treatment of the effect of multiple photophys-
ical states of the donor as described in Sec. IV A, a proof of Eq. (49)
in Sec. III G on the geometric estimation of species fractions, a proof
that the experimental lifetime estimate corresponds to the intensity-
weighted average fluorescence lifetime as discussed in Sec. II D,
and the distance distribution function for the worm-like chain
model.

ACKNOWLEDGMENTS
We are thankful to Don C. Lamb and Mark Bowen for their

comments. H.S. acknowledges support from the Alexander von
Humboldt Foundation, Clemson University Start-up Funds, the
National Science Foundation (NSF) (Grant No. CAREER MCB-
1749778), and the National Institutes of Health (NIH) (Grant Nos.
R01MH081923 and P20GM121342). C.S. acknowledges support
from the European Research Council (ERC) through the Advanced
Grant 2014 hybridFRET (Grant No. 671208). T.P. thanks the

International Helmholtz Research School of Biophysics and Soft
Matter (IHRS BioSoft). This research was supported by the ERC
grant “Hybrid-FRET.”

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

A.B., O.O., and T.-O.P. contributed equally to this work.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.

To support the wide use FRET-lines presented in this Tuto-
rial, we provide extensive software to generate the lines for differ-
ent user levels. Computational tools for the calculation of FRET-
lines discussed in this work in the Python programming language
are available at https://github.com/Fluorescence-Tools/FRETlines,
Ref. 120. The repository includes example Jupyter notebooks as
direct tutorials on how to generate the different FRET-lines step-
by-step by an interactive exploration of static, dynamic, and the
different polymer FRET-lines. As a second tool, we provide a graph-
ical user interface in the program “FRET-lines explorer” that is
available with the software package for multiparameter fluorescence
spectroscopy available at https://www.mpc.hhu.de/software/mfd-
fcs-and-mfis, Ref. 121, and separately as the supplementary material.
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