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Abstract
The basolateral nucleus of the amygdala (BL) is thought to support numerous emotional behaviors through
specific microcircuits. These are often thought to be comprised of feedforward networks of principal cells (PNs)
and interneurons. Neither well-understood nor often considered are recurrent and feedback connections, which
likely engender oscillatory dynamics within BL. Indeed, oscillations in the gamma frequency range (40 � 100 Hz)
are known to occur in the BL, and yet their origin and effect on local circuits remains unknown. To address this,
we constructed a biophysically and anatomically detailed model of the rat BL and its local field potential (LFP)
based on the physiological and anatomical literature, along with in vivo and in vitro data we collected on the
activities of neurons within the rat BL. Remarkably, the model produced intermittent gamma oscillations
(�50 � 70 Hz) whose properties matched those recorded in vivo, including their entrainment of spiking. BL
gamma-band oscillations were generated by the intrinsic circuitry, depending upon reciprocal interactions
between PNs and fast-spiking interneurons (FSIs), while connections within these cell types affected the rhythm’s
frequency. The model allowed us to conduct experimentally impossible tests to characterize the synaptic and
spatial properties of gamma. The entrainment of individual neurons to gamma depended on the number of
afferent connections they received, and gamma bursts were spatially restricted in the BL. Importantly, the gamma
rhythm synchronized PNs and mediated competition between ensembles. Together, these results indicate that
the recurrent connectivity of BL expands its computational and communication repertoire.
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Significance Statement

Using in vitro and in vivo data we develop the first large-scale biophysically and anatomically realistic model
of the basolateral amygdala nucleus (BL), which reproduces the dynamics of the in vivo local field potential
(LFP). Significantly, it predicts that BL intrinsically generates the transient gamma oscillations observed in
vivo. The model permitted exploration of the poorly understood synaptic mechanisms underlying gamma
genesis in BL, and the model’s ability to compute LFPs at arbitrary numbers of recording sites provided
insights into the characteristics of the spatial properties of gamma bursts. Furthermore, we show how
gamma synchronizes principal cells (PNs) to overcome their low firing rates while simultaneously promoting
competition, potentially impacting their afferent selectivity and efferent drive, and thus emotional behavior.
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Introduction
The basolateral complex of the amygdala (BLA) sup-

ports emotional learning and expression (Ehrlich et al.,
2009; Duvarci and Pare, 2014). Central to this function is
integrating information from numerous cortical and tha-
lamic regions (Turner and Herkenham, 1991; McDonald,
1998). It is commonly thought that these signals converge
on subpopulations of principal cells (PNs), which in turn
either synapse on other PNs that promote a particular
behavior, or contact interneurons that inhibit PNs supporting
a countervailing behavior (LeDoux, 2000; Ehrlich et al., 2009;
Duvarci and Pare, 2014). However, recurrent connections
also exist within the BLA (Paré et al., 1995; Samson and
Paré, 2006; Beyeler et al., 2016), with fast-spiking interneu-
rons (FSIs) synapsing on each other and forming reciprocal
connections with local PNs (Smith et al., 1998; Woodruff and
Sah, 2007). Yet, the importance of these connections for
BLA function remains largely unknown.

One possibility is that recurrent connections support the
generation of oscillations. Consistent with this possibility,
computational models (Traub et al., 1996; Wang and Buz-
sáki, 1996) as well as in vitro (Traub et al., 1996; Sohal et al.,
2009) and in vivo experiments (Penttonen et al., 1998; Cardin
et al., 2009) have revealed that a dense recurrent network of
PNs and FSIs produces oscillations in the gamma frequency
band. The dominant model for this, known as the pyramidal-
interneuron network gamma (PING) model (Whittington
et al., 2000), posits that the firing of PNs excites FSIs, which
in turn deliver feedback inhibition, transiently silencing PNs.
As the inhibition wanes, PNs regain the ability to fire and can
restart the gamma cycle.

Crucially, during affective experiences, the BLA also
exhibits gamma oscillations that are especially pro-
nounced in its basolateral nucleus (BL; Bauer et al., 2007).
For instance, gamma increases when rodents regulate
their anxiety level during open field exploration (Stujenske
et al., 2014) or are exposed to emotionally charged stimuli
(Bauer et al., 2007). Importantly, the human amygdala also
produces gamma oscillations during emotionally arousing
stimuli (Oya et al., 2002). Despite the prevalence of
gamma oscillations in the amygdala, their cellular basis
and function remain unclear.

Numerous functions have been ascribed to gamma
oscillations (Wang, 2010), but two stand out in particular.
First, they synchronize spiking. PNs in networks exhibiting
gamma oscillations tend to fire together more often than
expected by chance (Wang and Buzsáki, 1996), robustly
driving downstream neurons (Salinas and Sejnowski,
2000, 2002; Zandvakili and Kohn, 2015). Second, they

may mediate competitive interactions between PN en-
sembles (Börgers et al., 2008). During each gamma cycle,
the ensemble with the strongest afferent drive will tend to
recruit the local FSI network, suppressing weakly driven
ensembles (de Almeida et al., 2009).

Computational models of gamma oscillations have not
been reported for the amygdala; such models for other
brain regions have typically used generic single cell and
network configurations, with surrogate local field potential
(LFP) models (e.g., Börgers et al., 2008; Palmigiano et al.,
2017). To examine whether the intrinsic BL circuitry can
produce the poorly-understood transient gamma oscilla-
tions and their associated functions, we created a large-
scale 27,000 cell multi-compartmental biophysical model
of BL, with a detailed LFP model, that recapitulates nu-
merous features of BL activity in vivo, such as the prop-
erties of gamma oscillations in LFPs and their entrainment
of spiking. Using this model, we determined the circuit
elements essential for generating gamma oscillations in
BL, what aspects of microcircuit architecture affect the
participation of neurons in gamma, the spatiotemporal
properties of BL gamma bursts, and how these oscilla-
tions support information processing.

Materials and Methods
Experimental data

To construct and validate our model, we conducted new
analyses on two sets of extracellular recordings that were
described in prior publications (Headley et al., 2015; Amir
et al., 2018), and on one unpublished dataset. Thus, we
briefly describe the methods used in these prior studies so
that readers can assess the nature and quality of these data.

In vivo chronic recordings
All animal procedures were approved by the Institu-

tional Animal Care and Use Committee at Rutgers Univer-
sity, in accordance with the Guide for the Care and Use of
Laboratory Animals (Department of Health and Human
Services). Unit activity from prefrontal (PFC), perirhinal
(PR), and entorhinal (ER) cortices (Headley et al., 2015)
was used to generate surrogate spike trains that simulate
extrinsic afferents onto the BL model (see below, BL
afferents). These data were acquired in three male Long–
Evans rats weighing between 350 and 500 g that were
implanted with a headcap containing microdrives loaded
with tetrodes (20-�m tungsten wire, impedance �100
k�). Two independent drives were used to target either
prefrontal or PR/ER (PFC: AP �3.0, ML �0.5, DV 3.0; PR:
AP �3.0 to �8.0, ML �6.0 to �7.2, DV 5.0; ER: AP �5.4
to �8.0, ML �7.0, DV 5.5; all coordinates in mm, DV was
taken with respect to the pial surface). Following recovery
from surgery (�7 d), microdrives were advanced until
tetrodes reached their target locations, at which point
recordings began. Extracellular signals were amplified
with a 96-channel system (Plexon) and digitized (National
Instruments) for offline analysis. Unit activity was sorted
into single units by high pass filtering wideband LFP with
a moving median filter, detection of spikes with amplitude
�2 SD, automatic clustering of waveforms in principal
component space (KlustaKwik), and manual refinement of
cluster assignment (Klusters). Validation of single unit
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quality and isolation can be found in our prior paper
(Headley et al., 2015). Only regular spiking units (putative
projection neurons), classified using k-means clustering
of the negative peak to positive peak time interval of their
waveform and firing rate, were used. In particular, we
focused on a single epoch from each subject (subject 1:
165 s; subject 2: 140 s; subject 3: 160 s) with simultane-
ous recordings from multiple single units (subject 1: 36;
subject 2: 14; subject 3: 20).

Unit and LFP activities from the BL recorded with silicon
probes were used to calibrate and validate our model (n � 5).
As detailed in Amir et al. (2018), male Sprague Dawley rats
(�350 g) were implanted with either a 32 or 64 channel silicon
probe (Neuronexus) mounted on a microdrive and targeting the
BL nucleus of the amygdala (AP �2.2 to �3.6, ML �5 � 5.3,
and DV 8.8). Recording hardware and single unit sorting was
similar to that described above.

LFP spectra were also recorded from the BL of male
Long–Evans rats (�350 g, n � 7). A microwire (20-�m
tungsten wire, impedance �50 k�) attached to a fiber
optic stub was stereotaxically implanted in the BLA (AP
�2.5, ML �5.0, DV �7.5, from brain surface) and fixed to
the skull with dental cement (Metabond and Teets Cold
Cure). These subjects were also used for optogenetic
experiments (AAV5-Syn-Chronos-GFP injected into BL),
but these data were excluded from the present study. All
recordings were performed at least 24 h following any
optogenetic manipulations. Extracellular recordings from
the BL were obtained with a 32-channel digitizing head-
stage (Intan Technologies).

All the electrophysiological data used in the present
study was referenced to a screw fixed to the bone over-
laying the cerebellum and was obtained while rats were
allowed to behave spontaneously in a neutral plastic en-
closure. We only considered data acquired in the quiet
waking state (QW), which was identified by the absence of
gross body movement and LFPs with relatively low power
at frequencies �4 Hz.

In vitro BL slice recordings
An overdose of isoflurane was administered to deeply

anesthetize male Long–Evans rats (n � 11, 53 cells). Once
all reflexes had ceased, they were immediately perfused
through the heart with a ice cold modified artificial CSF
(aCSF) solution containing: 103 mM N-methyl-D-gluco-
namine, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3,
10 mM MgSO4 	 7H2O, 25 mM glucose, 20 mM HEPES,
101 mM HCl, 2 mM Thiourea, 3 mM Na-Pyruvate, 12 mM
N-acetyl-L-cysteine, and 0.5 mM CaCl. Following 30 s of
perfusion, the brain was rapidly extracted and placed in
the cutting solution, which was the same used for perfu-
sion. Slices were cut in the coronal plane on a vibratome
with a thickness of 300 � 400 �m. Following slicing sec-
tions were transferred to a chamber containing the perfu-
sion solution at 32° C for 5 min. Slices were then placed
in a holding chamber with room temperature (22°C) nor-
mal aCSF: 124 mM NaCl, 2.5 mM KCl, 1.25 mM
NaH2PO4, 26 mM NaHCO3, 1 mM MgCl2, 2 mM CaCl2,
and 10 mM glucose (pH 7.2 � 7.3, 305 mOsm). Slices
were then transferred one at a time to a recording cham-
ber perfused with oxygenated aCSF at 32°C.

Under visual guidance by infrared video microscopy, we
obtained whole-cell patch-clamp recordings from BL neu-
rons. We pulled patch pipettes of borosilicate glass with tip
resistances of 5 � 8 M� and filled them with a solution of
130 mM K-gluconate, 10 mM N-2-hydroxyethylpiperazine-
N’-2’-ethanesulfonic acid, 10 mM KCl, 2 mM MgCl2, 2 mM
ATP-Mg, and 0.2 mM GTP-tris(hydroxy-methyl)amino-
methane (pH 7.2, 280 mOsm). We did not compensate for
the liquid junction potential, which is 10 mV with this solu-
tion. Current clamp recordings were obtained with a Multi-
Clamp 700B amplifier and digitized at 20 kHz using an Axon
Digidata 1550 interface.

Once whole-cell access was achieved, we character-
ized the neuron’s electroresponsive properties. Current
pulses 500 ms in length were delivered from �200 to 360
pA in steps of 40 pA. Neurons with action potential (AP)
half-widths �0.35 ms were classified as FSIs, while all
others were regular spiking.

Model implementation
The single cell and network models were developed

using the parallel NEURON 7.4 simulator (Carnevale and
Hines, 2005), and simulations were run with a fixed time
step of 50 �s. Network models were run using the Neu-
roScience Gateway (NSG; www.nsgportal.org) that pro-
vides free and easy access to high-performance
computers (Sivagnanam et al., 2013). Model results were
obtained by averaging five network model runs with dif-
ferent random seeds for data shown in Figures 1G, 2B,
3C, 4, 5E and 6B1-B6 and for selecting groups of neurons
were used in Figure 7B–D.

Mathematical equations for voltage-dependent ionic cur-
rents

The equation for each compartment (soma or dendrite)
followed the Hodgkin-Huxley formulation (Byrne and Rob-
erts, 2004; Kim et al., 2013) in Equation 1,

CmdVs/dt � �gL�Vs � EL� � gc�Vs � Vd�
� � Icur,s

int � � Icur,s
syn � Iinj (1)

where Vs/Vd are the somatic/dendritic membrane potential
(mV), Icur, s

int and Icur, s
syn are the intrinsic and synaptic currents

in the soma, Iinj is the electrode current applied to the
soma, Cm is the membrane capacitance, gL is the is the
conductance of leak channel, and gc is the coupling
conductance between the soma and the dendrite (simi-
lar term added for other dendrites connected to the
soma). The intrinsic current Icur, s

int , was modeled as Icur, s
int �

gcurmphq�Vs � Ecur�, where gcur is its maximal conductance,
m its activation variable (with exponent p), h its inactiva-
tion variable (with exponent q), and Ecur its reversal poten-
tial (a similar equation is used for the synaptic current Icur, s

syn

but without m and h). The kinetic equation for each of the
gating variables x (m or h) takes the form

dx
dt

�
x�

�V, �Ca2��i� � x

�x�V, �Ca2��i�
(2)

where x� is the steady state gating voltage- and/or Ca2�-
dependent gating variable and �xis the voltage- and/or
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Figure 1. Construction of a biophysically accurate BL model. A, Our BL model was a cube structure comprised of 27,000 PNs and
FSIs randomly distributed throughout. Local cell densities in 100 	 100 	 100 �m cubes (red � PN, blue � FSI) are illustrated for
a typical case. For this example, PNs, the densities spanned 0–19,000/mm3 (median � 7000/mm3). FSI densities ranged from 0 to
5000/mm3 (median � 1000/mm3). B, A slice through the model shows the inhomogeneity of cell densities for PNs and FSIs. C, The
dendritic processes of the neurons contained in a particular voxel are illustrated. These were randomly oriented and spanned several
hundred microns as also shown in the three orthogonal views. D, (1) PNs and FSIs were distributed in space so that they spanned
a volume equal to the area of the BL in the rat. Virtual current clamp electrodes (ic) could be placed into any cell, and virtual
extracellular electrodes (lfp) could be placed anywhere in the model volume. PNs are indicated by red triangles and FSIs are blue
circles. (2) PNs and FSIs were connected among themselves and with each other. Extrinsic glutamatergic afferents fed onto both cell
types. Neither FSIs nor PNs formed autapses. E, The relative proportions of the three cell types were determined by patching neurons
in BL slices prepared from adult Long–Evans rats, the same age and strain used for our LFP recordings. The cutoff for determining
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Ca2�-dependent time constant. The equation for the den-
drite follows the same format with ‘s’ and ‘d’ switching
positions in Equation 1.

PN models
To reproduce the range of spike frequency adaptation

exhibited by BL PNs (Rainnie et al., 1993), we modeled
two types of PNs, one with adaptation (Type-A) and one
with continuous spiking (Type-C), differing solely in the
magnitude of their Ca2�-dependent K� current, either 50
or 0.2 mS/cm2, respectively (Kim et al., 2013). We con-
ducted our own study of the relative proportion of these
types because our in vivo recordings, which our model
was compared with, were from adult rats (�350 g)
whereas previous slice work was conducted in younger
subjects, and the ionic mechanisms underlying accom-
modation, such as spike after-hyperpolarizations (AHPs),
change with age (Disterhoft and Oh, 2007). Positive cur-
rent injection into PNs (n � 56) evoked either a train of
APs with increasing interspike intervals (i.e., accommoda-
tion) or at a fixed rate (i.e., continuous). This property
could be quantified by the adaptation ratio:

adaptation ratio �
duration of last ISI
duration of first ISI

(3)

with larger values indicating greater adaptation. We set a
cutoff of 1.5 to classify PNs adapting. Our previous PN
models (Li et al., 2009; Kim et al., 2013; Feng et al., 2016)
were revised to incorporate the low-threshold and high-
threshold oscillations (LTOs and HTOs, respectively) re-
ported in BLA PNs (Pape et al., 1998) and modeled
recently by our group (Alturki et al., 2016). The model PNs
had three compartments representing a soma (diameter,
24.75 �m; length, 25 �m), where GABAergic synapses
were placed, an apical dendrite (a-dend; diameter, 3 �m
and length, 270 �m) where glutamatergic synapses were
located, and another dendrite (p-dend; diameter, 5 �m
and length, 555 �m) to match passive properties. Values
of specific membrane resistance, membrane capacity and
cytoplasmic (axial) resistivity were, respectively, Rm � 55
k�-cm2, Cm � 2.4 �F/cm2, and Ra � 150 �-cm. Leakage
reversal potential (EL) was set to �75 mV. The resulting
Vrest was �70.3 mV, input resistance (RIN) was �140 M�,
and time constant (�m) was �30 ms, all of which were

within the ranges reported in previous physiologic studies
(Washburn and Moises, 1992). All compartments had the
following currents: leak (IL), voltage-gated persistent mus-
carinic (IM), high-voltage activated Ca2� (ICa), spike-
generating sodium (INa), potassium delayed rectifier (IDR),
A-type potassium (IA; Li et al., 2009; Power et al., 2011)
and hyperpolarization-activated nonspecific cation (Ih)
current. In addition, the soma had a slow apamin-in-
sensitive, voltage-independent AHP current (IsAHP; Power
et al., 2011; Alturki et al., 2016). See Tables 1, 2 for current
equations and densities.

Interneuron models
BL also contains local GABAergic interneurons that

exhibit various firing patterns, even among neurochemi-
cally-homogeneous subgroups (Pape and Pare, 2010;
Spampanato et al., 2011). However, the most prevalent
are the fast-spiking parvalbumin-positive type, which has
been implicated in the genesis of cortical and BL gamma
(Börgers et al., 2005; Oren et al., 2006; Atallah and Scan-
ziani, 2009; Amir et al., 2018). Accordingly, we modeled
only the fast-spiking type of interneurons (FSI). The FSI
model was the same as in Kim et al., 2013, with two
compartments, a soma (diameter, 15 �m and length, 15
�m) and a dendrite (diameter, 10 �m and length, 150 �m).
Each compartment contained a fast Na� (INa) and a de-
layed rectifier K� (IDR) current. The FSI model reproduced
the short spike duration (with the spike duration at half
amplitude �1 ms) that characterizes FSIs. The passive
membrane properties of FSI cells were as follows: Rm �
20 k�-cm2, Cm � 1.0 �F/cm2, Ra � 150 �-cm. The FSI
model also reproduced the non-adapting repetitive firing
behavior of fast-spiking cells, as observed experimentally
(Rainnie et al., 1993; Woodruff and Sah, 2007).

Network size and cell type proportions
Estimates of the number of neurons in rat BL vary

widely (Chareyron et al., 2011), so we settled on the mean
across studies, which was �72,000. We developed a
scaled down (1:2.7) model of this region with 27,000
neurons randomly distributed in a cuboid geometry (1.4 	
1.4 	 1.4 mm), ensuring an intersoma distance �25 �m.
The model included 64% PNA (n � 17,280), 26% PNC (n
� 7020), and 10% FSIs. These proportions were based on
in vitro results collected for this study and agreed with

continued
which PNs exhibited adaption was set to 1.5, which was between the two peaks in the distribution of adaptation ratios. F, Example
recordings from neurons in the slice receiving current injection were comparable to those of our model neurons. G, The firing rate
distributions for neurons in our model overlapped with the mean rates reported from the BL in vivo in a previous study (Amir et al.,
2018). H, Example spike waveforms recorded with a silicon probe in vivo. Red traces are from putative PNs, while blue are FSIs. The
intensity of the color is scaled to the peak of the spike wave form. I, Left, For both a model PN and FSI we delivered a suprathreshold
EPSC to the a-dend and recorded the extracellular AP at different distances along the long axis of the neuron, and either at 50 or 100
�m lateral. Near the cell body the field was negative, and it decayed rapidly with distance. Positive dendritic return currents were
evident as well. The FSI extracellular spike wave form was both smaller and faster than the PN’s. Right, Subthreshold stimulation
resulted in a much weaker extracellular wave form (note the scale bar) reflecting the EPSC (EP) that was negative going near the
stimulated dendritic branch. J, (1) Directly overlaying the extracellular APs from both cell types illustrates that those arising from PNs
were much slower than those from FSIs. Amplitudes were rescaled so both spike waveforms occupy the same vertical extent of the
graph. (2) AP amplitudes were much stronger than EP amplitudes for both cell types. K, For extracellular APs recorded with silicon
probes in vivo, we measured how their amplitudes decayed with distance. The drop in amplitude was fit by an exponential curve (black
line). The gray region is the 95% confidence bounds. Measuring the decay in our model extracellular APs along the lateral axis, we
found that it fit within the in vivo distribution.
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estimates found in the literature (McDonald and Mas-
cagni, 2001; Muller et al., 2006). The dendrites of all
neurons in the network had random orientations (McDon-
ald, 1984).

Mathematical equations for synaptic currents
All excitatory transmission was mediated by AMPA/

NMDA receptors, and inhibitory transmission by GABAA

receptors. The corresponding synaptic currents were
modeled by dual exponential functions (Destexhe et al.,
1994; Durstewitz et al., 2000), as shown in Equations 4–6,

IAMPA � w�GAMPA��V � EAMPA�

GAMPA � gAMPA,max � STPAMPA � rAMPA

rAMPA' � �TmaxAMPA�ONAMPA��1 � rAMPA� � 	AMPA�rAMPA

(4)

INMDA � w�GNMDA��V � ENMDA�

GNMDA � gNMDA,max�STPNMDA�s�V��rNMDA

rNMDA' � �TmaxNMDA�ONNMDA��1 � rNMDA� � 	NMDA�rNMDA

(5)

IGABAa � w�GGABAa��V � EGABAa�

GGABAa � gGABAa,max�STPGABAa�rGABAa

rGABAa' � �TmaxGABAa�ONGABAa��1 � rGABAa� �

	GABAa�rGABAa (6)

where V is the membrane potential (mV) of the compart-
ment (dendrite or soma) where the synapse is located and
w is the synaptic weight for the synapse. The synaptic
reversal potentials were EAMPA � ENMDA � 0 mV and
EGABAa � �75 mV (Durstewitz et al., 2000; Martina et al.,
2001). The voltage-dependent variable s(V) which imple-
ments the Mg2� block was defined as: s(V) � [1 � 0.33
exp(�0.06 V)]�1 (Zador et al., 1990). The terms ONNMDA

and ONAMPA are set to 1 if the corresponding receptor is
open, else to 0. The synaptic current rise and decay time
constants are determined by �Tmax and 	 (Destexhe
et al., 1994). Synaptic parameter values are listed in
Table 3.

Short-term presynaptic plasticity
All model AMPA and GABA synapses also exhibited

short term pre-synaptic plasticity (Kim et al., 2013). Short-
term depression was modeled at FSI¡PN and PN¡FIS
connections based on experimental findings of Woodruff
and Sah (2007) in BL, while between PNs, it was modeled
based on results from neocortex (Silberberg et al., 2004)
due to the lack of such experimental data in BL. Short
term plasticity was implemented as follows (Hummos
et al., 2014): for facilitation, the factor F was calculated
using the equation: �F*dF / dt � 1 � F and was con-
strained to be 
1. After each stimulus, F was multiplied by
a constant, f (
1) representing the amount of facilitation
per pre-synaptic AP, and updated as F ¡ F*f. Between
stimuli, F recovered exponentially back toward 1. A similar
scheme was used to calculate the factor D for depression:
�D*dD / dt � 1 � D and D constrained to be �1. After
each stimulus, D was multiplied by a constant d (�1)
representing the amount of depression per pre-synaptic

Table 1. Gating parameters of ion channels in BL PN neurons
Current type Gating variable � 	 x� �x (ms)

INa p � 3 �0.4�V�30�
exp���V�30�/7.2��1

0.124�V�30�
exp��V�30�/7.2��1

�

��	

0.6156
��	

q � 1 �0.03�V�45�
exp���V�45�/1.5��1

0.01�V�45�
exp��V�45�/1.5��1

1
exp ��V�50�/4��1

0.6156
��	

IKdr p � 1 exp� � 0.1144�V � 15�� exp� � 0.0801�V � 15�� 1
exp ���V�15�/11��1

50*	
1��

IH q � 1 exp�0.0832�V � 75�� exp�0.0333�V � 75�� 1
exp ��V�81�/8��1

	

0.0081�1���

IKM p � 2 0.016
exp���V�52.7�/23�

0.016
exp��V�52.7�/18.8�

1
exp ���V�52.7�/10.3��1

1
��	

ICa p � 2 ― ― 1
exp ���V�30�/11��1

2.5

exp ���V�37.1�
32.3 ��exp ��V�37.1�

32.3 �
q � 1 ― ― 1

exp ��V�12.6�/18.9��1
420

INap p � 1 ― ― 1
exp ���V�48�/5��1

2.5 � 14*exp � � �V � 40�/10�

IsAHP p � 1 0.0048
exp��5log10 ��Ca�i2��17.5�

0.012
exp�2log10 ��Ca�i2��20�

�

��	
48

Table 2. Maximal conductance densities in model BL PN neurons

Conductance (mS/cm2) INa IDR IM IH ICa INap IA IsAHP Ileak �Ca (ms)

3-comp PN model Soma 45 2 2.24 0.015 0.55 0.559 2 50/0.2
Types: A/C

0.025 1000

Prox. P_dend 45 2 1.792 0.015 0.55 0.447 - - 0.0471 -
P_dend 45 2 - 0.015 0.55 - - - 0.0471 -
Prox. A_dend 45 2 2.24 0.015 0.55 0.559 2 - 0.0471 -
A_dend 45 2 - 0.015 0.55 - 2 - 0.0471 -
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AP, and updated as D ¡ D*d. Between stimuli, D recov-
ered exponentially back toward 1. We modeled depres-
sion using two factors d1 and d2 with d1 being fast and d2

being slow subtypes, and d � d1*d2. The parameters for
modeling short-term plasticity are listed in Table 4. Our
model did not have long-term synaptic plasticity.

Intrinsic connections
Except for FSI¡FSI connections with both electrical and

chemical synapses, all other connections were implemented
as chemical synapses. Connection probabilities have been
found to be distance-dependent for PN¡PN contacts in BL,
and we used 3%, 2%, 1%, and 0.5% probabilities for
intersoma distances of �50, 50 � 100, 100 � 200, and
200 � 600 �m, respectively (Abatis et al., 2017). For con-
nections involving interneurons, we used data from in vitro
BL reports (Woodruff and Sah, 2007), with connections
limited to pairs within �300 �m of each other. Probabili-
ties in the model for unidirectional connections from
FSI¡PN were 34% and PN¡FSI were 12%. Reciprocal
connections between PNs and FSIs were set to 16%.
Electrical connections between FSIs were set to 8%.
When a pair of FSIs were electrically coupled, they had a
50% probability of a unidirectional chemical synapse, or a
25% probability of bidirectional synaptic connectivity. FSI
pairs not electrically coupled had a 19% probability of

unidirectional connectivity, and a 3% probability of bidi-
rectional probability. These connectivity numbers in our
model resulted in an overall synaptic FSI¡FSI connectiv-
ity of 26%, of which 20% was unidirectional and 3%
bidirectional. These probabilities resulted in the following
intrinsic connectivity in the model: each PN received
24.98 
 9.5 (mean 
 SD, throughout the paper unless
otherwise indicated) excitatory connections from other
PNs, and 42.6 
 12.9 inhibitory connections from FSIs;
each FSI received 214.8 
 58 excitatory connections from
PNs, and 21.6 
 7.4 inhibitory connections from other
FSIs. Axonal conduction delay on all connections were
distance dependent. See Tables 5, 6 for details.

BL afferents
PFC, PR, and ER strongly project to BL (McDonald and

Mascagni, 1997; Shi and Cassell, 1999; Vertes, 2004), so
we tailored our extrinsic inputs to match their spiking. To
this end, we created surrogate spiking activity derived
from putative PNs simultaneously recorded from the PFC,
PR, and ER in vivo during the QW state (Headley et al.,
2015). To do this, we created multiple surrogate spike

Table 3. Parameters related to synaptic connections

Parameters
Connection
type

AMPA NMDA GABA

Reversal
potential
(mV)

Rise/decay time
constant
(ms)

Conductance
(nS)

Strength
(mean/var.)

Reversal
potential
(mV)

Rise/decay
time constant
(ms)

Conductance
(nS)

Strength
(mean/var.)

Reversal
potential
(mV)

Rise/decay time
constant
(ms)

Conductance
(nS)

Strength
(mean/var.)

PN to PN 0 0.3/6.9
(Mahanty
and Sah,
1998;
Guzman
et al., 2016)

1 5/3 0 3.7/125
(Weisskopf
et al., 1999)

0.5 2/1 -- -- -- --

PN to FSI 0 0.1/2.4
(Mahanty
and Sah,
1998;
Guzman
et al., 2016)

1 7/2 0 3.7/125
(Weisskopf
et al., 1999)

0.5 7/2 -- -- -- --

FSI to PN -- -- -- -- -- -- -- -- �75 0.5/6.80
(Galarreta
and Hestrin,
1997)

0.6 12/2

FSI to FSI -- -- -- -- -- -- -- -- �75 0.5/6.80
(Galarreta
and Hestrin,
1997)

0.2 20/10

FSI to FSI
(gap
junction)

-- -- Gap junction coupling
coefficient

�0.05 (Woodruff and Sah, 2007)

Table 4. Parameters related to short-term presynaptic plas-
ticity

Parameters

Connection
Short-term
dynamics

D (maximum
limit) d1/d2

�D1/�D2
(ms)

FSI-PN Depression 0.6 0.9/0.95 40 / 70
PN-PN Depression 0.5 0.9/0.95 40 / 70
PN-FSI Depression 0.7 0.9/0.95 40 / 70

Table 5. Connection probabilities, PN-PN connections

Type
Parameters PN to PN

Connection range (�m) ��50 [50,100] [100,200] [200,600]
Connectivity 3% 2% 1% 0.5%

Connectivity data are from Abatis et al. (2017). For all chemical synaptic
connections, we designed axonal conduction delay to be Del � Dis / v �
minidel � fluc � dt, where Del denotes calculated conduction delay (ms), Dis
is the intersoma distance (�m), v denotes conduction velocity (mm/ms, 1
mm/ms was used in this study), minidel denotes minimal conduction delay
(minidel � 0.8 ms was used in this study), fluc denotes random fluctuation of
conduction delay [ms, fluctuation of uniformly distribution of (�0.1,0.1) ms
was used in this study], and dt denotes simulation time step, with dt � 0.05
ms was used in this study.
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trains where each was a random combination of the
temporal firing rate profile of one neuron and the mean
firing rate of another. The firing rate profile was the instan-
taneous firing rate of each unit, which was calculated by
taking the inverse of the interspike interval in 1-ms steps.
The instantaneous firing rate series was rescaled to have
a mean rate of 1 Hz. Mean firing rate was the number of
spikes dividing by the recording duration. A new spike
train was created by multiplying one of the rescaled in-
stantaneous rate series by a mean firing rate randomly
drawn from the same population of units, and then pass-
ing each time step to a Poisson random number genera-
tor. When repeated multiple times, this creates an
ensemble of spike trains that matches the distribution of
firing rates, autocorrelations, and cross-correlations from
the originally recorded ensemble. We generated an en-
semble of 1800 Poisson spike trains to represent the
activities of cortical regions upstream of BL, and each of
these projected to a random 40 PNs, resulting in �95% of
the PNs receiving at least one extrinsic input. The same
extrinsic input also connected to FSIs that were within
300 �m of these 40 PNs with a probability of 0.3%; this
resulted in each extrinsic input connecting to an average
of 6 FSIs. Thus, PNs and FSIs (Hübner et al., 2014)
received 2.97 
 1.7 and 3.4 
 1.9 extrinsic inputs, re-
spectively.

To reproduce membrane potential fluctuation seen in vivo,
we used a point conductance model that mimics stochastic
background synaptic activity using an Ornstein–Uhlenbeck
process (Destexhe et al., 2001). Specifically, stochastic
background input Ibck had two independent components,
excitatory and inhibitory, for both PNs and FSIs, modeled as
follows:

Ibck � ge�t��V � Ee� � gi�t��V � Ei� (7)

where ge�t� and gi�t� are time-dependent excitatory and
inhibitory conductances, respectively; Ee � 0mV and
Ei � � 75mV are respective reverse potentials. The two
are modeled as Ornstein–Uhlenbeck processes described
below:

dge�t�

dt
� �

1
�e

�ge�t� � ge0� � �De
1�t� (8a)

dgi�t�

dt
� �

1
�i

�gi�t� � gi0� � �Di
2�t� (8b)

where ge0 and gi0 are average conductances, �e and �i are
time constants, De and Di are noise “diffusion” coeffi-
cients, 
1�t� and 
2�t�are Gaussian white noise of zero
mean and unit SD (for these parameter values, see
Table 7).

The above two stochastic differential equations can be
numerically modeled by using the following update rule:

ge�t � �t� � ge0 � �ge�t� � ge0�
exp ���t/�e� � AeN1�0,1� (9a)

gi�t � �t� � gi0 � �gi�t� � gi0�exp ���t/�i� � AiN2�0,1�

(9b)

where N1�0,1� and N2�0,1� are normal random numbers.
Ae and Ai are amplitude coefficients with Ae �

��e
2�1�exp ��2�t/�e�� and Ai � ��i

2�1�exp ��2�t/�i��
Table 7 lists the parameters used in the point-

conductance model. For each neuron, the excitatory and
inhibitory conductances were, respectively, 3.2 
 3 and
21 
 8 nS for PNs and 1.2 
 0.1 and 5.7 
 2.6 nS for FSIs.
However, the background inputs to FSIs was weaker to
ensure FSIs spike with input from PNs, but not with solely
background inputs (Börgers and Kopell, 2003; Economo
and White, 2012; Lee and Jones, 2013).

Calculation of LFP
Gamma rhythms are detected by extracellular record-

ings of LFPs within the brain. In contrast, biophysical
models of neuronal networks have typically detected
gamma rhythms using other measures, such as network
spiking rates (Brunel and Hakim, 1999; Brunel and Wang,
2003; Börgers et al., 2005; Economo and White, 2012;
Chalk et al., 2016; Hoseini and Wessel, 2016; Palmigiano

Table 6. Connection probabilities, FSI-FSI and PN-FSI connections

Type
Parameters

Gap Junction
between FSIs FSI to FSI

Unidirectional
FSI to PN

Unidirectional
PN to FSI

Reciprocal
PN to FSI

Overall
connectivity

8% 26% 34% 12% 16%

Connectivity
of subtype

-- Unidirectional Bi-directional -- -- --
Between
coupled

FSIs

Between
uncoupled

FSIs

Between
coupled

FSIs

Between
uncoupled

FSIs

--

50% 19% 25% 3% --

Data is from in vitro BLA reports (Woodruff and Sah, 2007) limiting connectivity from/to FSIs to within �300 �m (also, see Cammarota et al., 2013).

Table 7. Parameters related to point-conductance model

Parameters Excitatory source Inhibitory source
Neuron type ge0(nS) �e(nS) �e�ms� Ee(mV) gi0(nS) �i(nS) �i�ms� Ei(mV)

For PN 3.2 3 2.728 0 21 8 10.49 �75
For FSI 1.2 0.1 2.728 0 5.7 2.6 10.49 �75
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et al., 2017) or membrane voltages (Traub et al., 2000;
Bathellier et al., 2006; Neymotin et al., 2011), both of
which are only indirectly linked to the LFP (Buzsáki et al.,
2012; Schomburg et al., 2012). The present study mod-
eled LFPs using a first principles approach.

We first recorded transmembrane ionic currents from
each compartment of the model cells using the extracel-
lular mechanism in NEURON (Carnevale and Hines, 2005;
Parasuram et al., 2016). The extracellular potential arising
from each neuronal compartment was then calculated
using the line source approximation method, which pro-
vides a better approximation than point sources (Gold
et al., 2006; Schomburg et al., 2012). The extracellular
potential of a line compartment was estimated as

AEP �
I

4���s
log�

�h2 � r2 � h

�l2 � r2 � l
(10)

where, I denotes the transmembrane current from just
that compartment, �s the length of the line compartment,
r the radial distance from the line, h the longitudinal
distance from the end of the line, and l � �s � h the
distance from the start of the line (Holt, 1998; Parasuram
et al., 2016). We chose a conductivity � of the extracellular
medium to be 0.3S/m (Goto et al., 2010; Einevoll et al.,
2013). These individual extracellular potentials were
summed linearly (Lindén et al., 2013) at 1-ms resolution,
to obtain the LFP ALFPs for an N-neuron network with
n-compartment-cells using the equation

ALFPs � �
N�1

N_neurons

�
i�1

n_source INi

4���sNi

log ��hNi

2 � rNi

2 � hNi

�lNi

2 � rNi

2 � lNi

�
(11)

where Ni denotes ith compartment of Nth neuron in the
network. All 27,000 neurons contributed to the LFP in our
study, different from previous studies (Bezaire et al., 2016)
where only a subset of neurons did. This permitted inves-
tigation of both the individual contribution and correlation
of all modeled neurons to the LFP at any of the electrode
locations.

Since our model spans the entire spatial extent of BL,
but only has a fraction of the total number of neurons, the
density of neurons in our model is lower than the in vivo
case. This means that neurons will, on average, be farther
from the simulated LFP electrode than would occur in the
actual BL. To correct for this, we rescaled the LFP by a
correction factor that was estimated following Lindén
et al. (2011), who suggest that LFP scales as the square
root of the number of neurons, N, for uncorrelated syn-
aptic inputs. However, that scaling factor was derived
from a network of pyramidal neurons positioned in a disk
with uniformly oriented dendrites, and was not for density
per se but actually the radius of the disk with density held
constant. To determine the scaling factor in our model, we
systematically varied the number of cells used to calculate
the LFP from a full model run. Varying the cell count from
1000 up to 27,000, we found that the SD of the LFP scaled
with density following N0.67. Since cell density in rats is

reported to range from 2.5 	 104 to 2 	 105/mm3 (Tuu-
nanen and Pitkänen, 2000; Salm et al., 2004; Pêgo et al.,
2008; Rubinow and Juraska, 2009; Chareyron et al.,
2011), while the model density is 9840 neurons/mm3

(27,000 neurons, 1.4 	 1.4 	 1.4 mm), the LFP correction
factor would correspondingly range from 1.9 to 7.5 [
�2.5 � 104/9.84 � 103�0.67 to �2 � 105/9.84 � 103�0.67]. We
chose the average of this range, 4.7, to scale the model
LFP.

Multiple extracellular electrodes
To investigate the spatial propagation of model gamma

we used a 9 	 9 	 9 grid of LFP electrodes evenly spaced
throughout the network. Electrode sites were spaced at
125-�m intervals and were at least 200 �m away from the
edges of the model. The LFP on each electrode was
computed the same as in Equation 11.

Model experiments and statistics
Spectral and cross-correlation analyses

Unless otherwise indicated, spectral decompositions
were performed using Morlet wavelets ranging from 1 to
256 Hz in quarter octave steps. The width of the wavelet
was seven cycles. To measure the amplitude at a partic-
ular frequency and time, we took the absolute value of the
complex valued frequency domain representation of the
signal. Phase was measured as the angle of the frequency
domain representation.

The distribution of gamma burst properties were com-
pared between the model and in vivo cases in Figure 2F.
For both cases, wavelet power spectrograms were calcu-
lated and the mid-gamma band (64 Hz) was isolated.
Peaks were detected and segmented in the time series of
the mid-gamma power using a watershed function. To
prevent spurious detections of peaks, before passing the
data to the watershed function, we discretized gamma
power into bins of half the average change in power
between cycles. Once burst peaks were detected, we
extracted their peak power (before discretization) and
duration. Peak powers were transformed into percentile
ranks and binned in steps of five percentiles, while dura-
tions were binned in steps of 5 ms.

For the single neuron resonance analyses (Fig. 2G,H),
we calculated spectrums using the Welch Periodogram
method (pwelch in MATLAB). The Hamming window taper
size was 500 ms, in steps of 250 ms.

For the coherence spectrum between PN and FSI spik-
ing (Fig. 7D), the cross-correlation and autocorrelation
between these spike trains were calculated with 1-ms
resolution. Then, they were converted to the frequency
domain using the fast Fourier transform (FFT) and used to
calculate coherence:

Coherence � � XCorrPNandFSI

�ACorrPNACorrFSI
� (12)

Since both the PNs and FSIs exhibited gamma period-
icity in their autocorrelation function, it was desirable to
correct for this when estimating their cross-correlation. To
do this, one can take the inverse FFT of the coherence
spectrum, which yields the cross-correlation function in
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Figure 2. The model LFP exhibits gamma oscillations that are similar to those seen in vivo. A, The LFP was measured at the center
of the model. B, The power spectrum of the model LFP (red) is compared with the spectra from the BL of seven rats during QW (gray).
Driving the model with a homogenous Poisson input (green) still induces gamma oscillations. Shaded regions denote SD. C, The
frequency where the gamma bump peaked was measured for each subject (black bars), the probability distribution was fit with a
normal curve (gray). The model’s peak frequency was 64 Hz (red line), which fell within the in vivo distribution. D, Gamma oscillations
occurred as intermittent bursts in vivo and in the model. There was a stronger low-frequency component in vivo (black), but filtering
that out (yellow) revealed a comparable signal amplitude to our model (blue). E, The model had a similar wavelet spectrogram to that
observed in vivo. F, Gamma bursts were detected in the wavelet power spectrograms and categorized based on their amplitude
percentile and duration. The relationship between these features was characterized by a probability distribution. Bursts arising from
the model or in vivo exhibited a similar distribution of durations when stratified by amplitude, with higher amplitude bursts tending to
last longer. G, (1) Each simulated cell type was placed in current clamp and driven with a frequency modulated sinusoid. (2) Neurons
responded to this input with an oscillating membrane potential that decayed with increasing frequency. (3) The impedance spectrum
of the neuronal responses did not exhibit any peaks in the gamma band. H, (1) An extracellular electrode was placed near either a
PN or FSI and synaptic inputs to those neurons were driven (stim). (2) The extracellular field responding arising from a single EPSC
or IPSC was measured for each cell, and normalized to the strength of the PN EPSC. There was no bump in the gamma band. (3)
Driving the synaptic inputs with Poisson trains at rates indicated by the x-axis did not show any obvious boost in power in the gamma
range either.
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the time domain, but with periodicities arising from the
autocorrelations factored out:

CorrectedXCorrPNandFSI � invFFT	 XCorrPNandFSI

�ACorrPNACorrFSI


(13)

Entrainment to LFPs For calculating the entrainment
and preferred phase of cells, we first bandpass filtered the
LFPs in the frequency band of interest using a two-pole
Butterworth filter implemented with the MATLAB function
filtfilt, which performs forward and backward filtering to
minimize phase distortion. A Hilbert transform of the re-
sulting signal was then computed to determine the phase
and amplitude at each instant (Amir et al., 2018). This was
used to assign a phase to each spike from a neuron.
Entrainment of spiking to the LFP was computed as
the mean resultant vector length using the Circular
Statistics toolbox in MATLAB (Berens, 2009). This ap-
proach matched that in Amir et al. (2018). For our
analysis of entrainment when disconnecting specific
connections (see Results, Circuit elements critical for
gamma genesis), we instead used the pairwise phase
consistency (PPC) measure, which is insensitive to
changes in spike count arising from alterations in firing
rate (Vinck et al., 2010).

When computing correlation between distance and en-
trainment (Fig. 3D), cells were selected only within 100 �m
from the four longest diagonals within the modeled
cuboid structure, to minimize edge effects. To directly
compare the decay in entrainment between PNs and FSIs
(Fig. 3D), we fit a generalized linear model with a log link
function and factors distance, cell type, and their interac-
tion.

Detection of gamma bursts
For gamma burst extraction, we first applied zero-

phase 60 � 80Hz Butterworth bandpass filter of order
4, followed by the Hilbert transform to obtain the ana-
lytic signal of the LFP (Dvorak and Fenton, 2014). In-
stantaneous gamma amplitude was the modulus of the
analytic signal. Gamma burst occurrence was detected
when the amplitude exceeded its mean by 2 SDs. Burst
duration was defined as the duration during which the
amplitude was �25% of the peak value for the burst.

Propagation of gamma bursts
Using the 9 	 9 	 9 grid of LFP recording sites (see

Multiple extracellular electrodes), we examined the
properties of gamma bursts as spatiotemporal events.
Near the edges of our model, we found that the gamma
bump in the power spectrum shrunk, likely due to the
decrease in the number of neurons contributing to the
LFP and decrease in the absolute number of connec-
tions between PNs and FSIs. Therefore, to compen-
sate, we multiplied the Z-score of the LFP amplitude
from each recording site by a correction factor F with
the form:

F � �GammaAmpj

TotalAmpj
/�GammaAmpmiddle

TotalAmpmiddle
(14)

where GammaAmp is the area under the curve for the
bump in the gamma band after removing a power law fit
(Neske and Connors, 2016), TotalAmp is the total area
under the curve for the power spectrum, j denotes the
recording electrode, and middle indicates the value for the
electrode in the center of the model. The Z-scored LFP
Hilbert transformed amplitude at each site was multiplied
by this factor.

We then identified gamma bursts as spatiotemporal
events using a four-dimensional watershed algorithm that
identifies contiguous regions of elevated gamma power
that are convex. To minimize spurious detections of
gamma bursts driven by small variations in the power, we
discretized the Z-scored LFP Hilbert transformed ampli-
tude into bins of 0.1. In order for a region to count as a
gamma burst, its peak amplitude had to exceed two
Z-scores. The borders of the burst region were delineated
when power dropped by 25% of the peak. These were
criteria were intentionally similar to the ones used for
detecting gamma bursts on single electrodes (see above,
Detection of gamma bursts).

After identification of a gamma burst, its properties
were defined as follows. Gamma burst peak (Fig. 6B1)
was defined as the maximum Z-scored LFP amplitude
within the burst. Its time duration (Fig. 6B2) was calcu-
lated as the time duration during which at least one
recording site within the watershed region was above the
0.25% of the peak Z-score. Gamma burst volume (Fig.
6B4) was defined as the number of recording sites that
had reached the burst threshold with the same burst
region.

To estimate propagation of gamma bursts, we identi-
fied the gamma region composed of electrodes with the
same watershed label at each time step. Then, a burst
center point was defined as the mean coordinate from all
electrodes belonging to the same burst region. Gamma
burst path length (Fig. 6B5) was calculated as the total
distance that a burst center could travel in space.

To quantify instantaneous gamma burst synchrony (Fig.
6B3), we calculated the phase locking value (PLV) by
using the unbiased PLV (Aydore et al., 2013) of 27 elec-
trodes within a 3 	 3 	 3 grid located at the gamma burst
peak.

Statistical analysis
Values are mean 
 SD unless otherwise stated. Ad-

justed R2 value were reported when data points were fit
by a curve in Figure 3D,E. For Figure 5E, ANOVAs were
performed on fitted general linear models and p values
were reported. Two-tailed rank-sum tests were performed
and p values were reported for Figure 7B,D. Watson–
Williams tests by using Circular Statistics toolbox in MAT-
LAB (Berens, 2009) were performed and p values were
reported for Figure 7C. ANCOVA was tested and p values
were reported for Figure 7F.
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Original NEURON code for the model is available in
ModelDB public database with access number 247968
(http://senselab.med.yale.edu/ModelDB/).

Results
Validation of the BL model

A biophysically realistic computational model of the rat
BL was developed based on the known anatomy and

cellular neurophysiology (for details and supporting em-
pirical references, see Materials and Methods). The model
was a cube with PNs and FSIs distributed randomly
throughout (Fig. 1A,B). The dendritic compartments for
both PNs and FSIs were oriented randomly and spanned
several hundred microns from the cell body (Fig. 1C).
Using this model, we tracked both the intracellular and
extracellular signals associated with network events (Fig.
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1D1). The model network included extrinsic afferents con-
tacting both PNs and FSIs and intrinsic connections (Fig.
1D2), in keeping with previous anatomic (Paré et al., 1995;
Muller et al., 2006) and physiologic (Washburn and
Moises, 1992; Rainnie et al., 1993; Woodruff and Sah,
2007) observations.

Two types of PNs with marked (PNA) or negligible (PNC)
spike frequency accommodation were used based on
previous reports and our own investigations (see Materi-
als and Methods; Fig. 1E,F). Our in vitro recordings re-
vealed 41/56 PNA and 15/56 PNCs, so our model used
similar proportions (71% PNA, 29% PNC). We also in-
cluded FSIs, which are the prevalent type in BL (McDon-
ald and Mascagni, 2001; Fishell and Rudy, 2011), well
characterized biophysically and synaptically (Rainnie
et al., 2006; Woodruff and Sah, 2007), and are important
for gamma genesis in cortical circuits (Bartos et al., 2007).
Point conductance noise levels were adjusted so that the
firing rates of PNs and FSIs matched those observed in
vivo (Fig. 1G).

The LFP was calculated using the relative location of
cellular compartments, their transmembrane currents,
and an estimate of the extracellular conductivity (see
Materials and Methods). The model LFP exhibited several
well-established aspects of real extracellularly recorded
APs and excitatory postsynaptic potentials (EPs; Fig.
1H,I). PNs produced stronger dipoles than FSIs, resulting
in greater extracellular potentials. Near the soma, the
simulated extracellular AP was negative going, larger for
PNs, and faster for FSIs (Fig. 1J1,2, note scale difference).
A unitary EPSC evoked in a dendritic branch produced an
extracellular negativity near the dendrite that was sub-
stantially smaller than that arising from an AP (Fig. 1J2).
Additionally, the amplitude of extracellular APs decreased
with distance from the soma similarly between the model
and in vivo cases (Fig. 1H,K).

Emergence of gamma oscillations in the BL model
We next examined whether the spontaneous LFP at the

center of our BL model (Fig. 2A) matched in vivo BL
recordings when rats were in a QW state. A characteristic
of the LFP in vivo is that its power spectrum can be fit by
a 1/fa power law (Buzsáki et al., 2012). BL recordings from
Long–Evans rats showed a spectrum with the 1/fa falloff,
but also a bump in the gamma band between 54 and 70
Hz (Fig. 2B, gray lines). A gamma band signal was present
in the model’s LFP, with similar power (101 mV2/Hz) and
peak frequency (64 Hz; Fig. 2B,C, red line). However, the
model’s spectrum had substantially less power below 30
Hz. This may reflect the absence of volume conducted
activity or a lack of interactions with extrinsic structures.
The former possibility was studied by Łęski et al. (2013),
who showed that lower-frequency LFP components have
a larger spatial reach and extended further outside the
active population than high-frequency components. It has
also been found that increasing the correlations between
extrinsic afferents boosts power in the low-frequency
band (Łęski et al., 2013; Hagen et al., 2016). Our model
likely underestimates the contribution of correlated extrin-
sic inputs since our naturalistic spike trains only repre-

sented a fraction of the structures projecting to the BL,
each presumably with their own correlated spiking. Con-
sistent with this, we found that replacing the naturalistic
correlated spiking processes of our extrinsic afferents
with rate matched independent Poisson processes further
reduced the power of low frequencies (Fig. 2B, green line).
Importantly, gamma power from 50 to 80 Hz was unaf-
fected by this change, supporting the hypothesis that it is
locally generated and not imposed by upstream struc-
tures or volume conducted from adjacent regions. In ad-
dition, the gamma oscillations in our model occurred as
intermittent bursts, like those found in BL in vivo (Fig.
2D,E). The probability distribution of gamma bursts with
respect to their duration and amplitude was similar be-
tween the model and those recorded in vivo (Fig. 2F).

Neither the resonance properties of single cells (Fig.
2G1–3), nor the spectral content in EPSCs and IPSCs (Fig.
2H1,2) contributed to the gamma in the model. Also, there
was no enhancement in the gamma-band when synaptic
potentials were driven as Poisson processes with rates
ranging from 1 to 200 Hz (Fig. 2H3). This leaves interac-
tions between PNs and FSIs as the most likely candidate
causing gamma.

Entrainment of neurons to gamma in the LFP
We examined whether BL neurons showed a similar

entrainment (Fig. 3A) to in vivo recordings (Amir et al.,
2018). For neurons within 300 �m of the point where we
calculated the LFP we measured their resultant vector
(Fig. 3B,C). Both types of PNs were entrained to the
gamma rhythm, spiking during the trough, with a mean
resultant vector of 0.19 
 0.07 (mean 
 SD) for PNAs, and
0.17 
 0.06 for PNCs. On the other hand, FSIs tended to
fire during the ascending phase, and exhibited similar
mean entrainment, 0.17 
 0.04.

PNs and FSIs exhibited decreased entrainment to
gamma at longer distances (Fig. 3D; PN: 50% falloff at
409 �m, adjusted R2 � 0.37, df � 350; FSI: 50% falloff at
355 �m, adjusted R2 � 0.67, df � 146). A generalized
linear model also indicated a distance-dependent falloff (t
statistic � �15.29, df � 496, p � 1.63 	 10�43) and no
difference in falloff between cell types (distance 	 FSI, t
statistic � �0.95, df � 496, p � 0.34). To rule out the
possibility that the decrease in entrainment was driven
purely by the distance-dependent decay in a neuron’s
contribution to the extracellular potential, we examined
the contributions of individual PNs and FSIs at different
distances (Fig. 3E). Arguing against this, the falloff in the
contribution of both PNs and FSIs to the extracellular
potential was much sharper than the decay in their en-
trainment (PN: 50% falloff at 125 �m, adjusted R2 � 0.59,
df � 1435; FSI: 50% falloff at 113 �m, adjusted R2 � 0.67,
df � 749).

Circuit elements critical for gamma genesis
To identify the circuit elements that support the gener-

ation of gamma oscillations, we systematically eliminated
each connection type one at a time. Since the firing rates
of PNs and FSIs could change dramatically in the discon-
nected models, we adjusted the point conductance noise
of both cell types to bring them back into agreement with
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the original unperturbed model. For each perturbed
model, we measured the power spectrum of the simu-
lated LFP and unit entrainment to frequencies ranging
from 1 to 256 Hz with the PPC measure, which is unbi-
ased for changes in spike count (Vinck et al., 2010). To
clarify the changes, we saw in the power spectrum, we
calculated the cross-correlation between bursts of PN

activity (time points where the firing rate of the PN popu-
lation exceeded the 75th percentile) and spiking in the FSI
population.

Removal of the FSI¡PN connection eliminated the
mid-� bump in the LFP (Fig. 4A1), but increased power at
frequencies below 20 Hz. Consistent with this, the en-
trainment of PNs by low frequencies was increased as
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well (Fig. 4A2), with a particularly prominent peak at 6 Hz
(Fig. 4A2, inset). Also mirroring the LFP, PN and FSI
entrainment to gamma was substantially reduced. This
loss was evident in the response of the FSI network to
bursts of PN activity, which now lacked a prominent
gamma periodicity (Fig. 4A3). Instead, FSIs exhibited a
slow undulation in firing that was capped with a transient
burst of spikes in response to PN firing.

PN¡FSI connections were also critical to gamma gen-
eration (Fig. 4B1). Their removal reduced the entrainment
of PNs and FSIs in the gamma frequency range (Fig. 4B2).
Compared to the previous model, the increase in power in
the low-frequency band was smaller, so too was entrain-
ment by PNs (Fig. 4B1,2). FSIs, on the other hand, were
not entrained to the low-frequency rhythm, suggesting
that it originated with the PN network, from which it was
now disconnected. As expected, FSIs no longer re-
sponded to bursts of PN activity (Fig. 4B3).

The elimination of gamma by removing either PN¡FSI
or FSI¡PN connections is in agreement with a PING
based mechanism for gamma genesis (Whittington et al.,
2000). This does not rule out the importance of connec-
tions within the PN and FSI populations. Since these
connections were also present in the model, we also
examined their contribution.

An interconnected network of FSIs that receives tonic
excitatory drive can produce gamma oscillations, so
called interneuron network gamma (ING; Whittington
et al., 2000), which may occur in the model. Eliminating
FSI¡FSI connections (including gap-junctions), shifted
the peak frequency to 23 Hz (Fig. 4C1). Likewise, both
PNs and FSIs shifted their maximal gamma entrainment to
the new peak frequency (Fig. 4C2). Since the timescale
of feedback inhibition affects the frequency of gamma
(Wang and Buzsáki, 1996), the lower frequency likely
reflects the increased duration of the PN-evoked FSI
burst, which arose from the removal of feedback inhibition
generated by FSIs onto themselves (Fig. 4C3).

Removing PN¡PN connections had a modest effect on
gamma generation, shifting the peak frequency slightly
lower, which was also reflected in the entrainment of PNs
to gamma (Fig. 4D1,2). Notably, there was a large drop in
spectral power at lower frequencies, suggesting that it
partly depends on recurrent activity within the PN net-
work. Befitting these minor changes, FSI responses to PN
bursts were only marginally affected (Fig. 4D3).

Altogether these results suggest that reciprocal inter-
actions between PNs and FSIs support the generation of
gamma oscillations in BL, and that their frequency is
affected by connections within the PN and FSI popula-
tions.

Synaptic basis of gamma coordination in single cells
Since gamma in our model was similar to the in vivo

case, we explored how the convergence of excitatory and
inhibitory synapses affects a neuron’s entrainment to
gamma. We chose 300 PNs and FSIs at random and
recorded their EPSCs, IPSCs, spike times, and surround-
ing LFP (sampled �200 �m away; Fig. 5A). We limited
ourselves to neurons that fired over 100 spikes in the 165

s of simulation time, so only PNcs were present in the PN
sample.

Given that synaptic inputs constitute a major determi-
nant of neuronal firing, we first assessed the spectral
content of the EPSCs and IPSCs impinging on PNs and
FSIs (Fig. 5B). On average, IPSCs exhibited a pronounced
bump in the mid-gamma band for both cell types. This
contrasted with EPSCs, which lacked increased gamma-
band power for PNs, and only exhibited a shallow in-
crease in FSIs. The presence of a gamma bump in both
synaptic current power spectra for FSIs, but not PNs,
suggested that the coherence between excitatory and
inhibitory synaptic currents differs between cell types.
Indeed, EPSC-IPSC coherence at the gamma frequency
was higher in FSIs than in PNs (Fig. 5C).

To determine whether this effect was related to spiking
during gamma (Fig. 5D), we calculated the mean EPSCs
(Fig. 5D1, red lines) and IPSCs (Fig. 5D2, blue) during
gamma cycles with (solid) and without spikes (dashed),
and their difference (Fig. 5D3). For PNs, spiking was
associated with an increase in EPSCs, which started ris-
ing during the latter half of the prior gamma cycle, and
peaked at the trough of the oscillation, when PNs normally
fire (Fig. 3C). As was evident in the power spectrum for the
PN EPSC current (Fig. 5B, left, red), no gamma periodicity
was evident in the EPSC trace. On the other hand, the
IPSCs tracked the ongoing LFP gamma rhythm (Fig. 5B,
left, blue). While there was a slight decrease in IPSC
strength during the first half of the gamma cycles contain-
ing spikes, this reversed itself during the latter half, with
inhibition increasing following the phase when PN spiking
normally occurs (Fig. 3C), likely reflecting feedforward
activation of the FSI network.

FSIs exhibited a different pattern of postsynaptic cur-
rents during gamma cycles in which they spiked (Fig. 5D,
right). The EPSCs were entrained to the ongoing gamma
rhythm and elevated just before the neuron spiked, during
the ascending phase of the gamma cycle. Also, unlike
PNs, FSIs showed a decrease in IPSC amplitude through-
out the gamma cycle in which they spiked, followed by a
return to baseline. One similarity between PNs and FSIs
was that their IPSCs were similarly entrained to the
gamma rhythm. These results suggest that PN spiking
during a gamma cycle is mostly dependent on the pres-
ence or absence of an EPSC, while FSIs are more likely to
spike when both EPSC amplitudes are increased and
IPSCs are decreased. Despite these differences, it is
worth noting that PNs and FSIs tended to spike during the
phase of the gamma cycle when EPSCs were at their
maximum and IPSCs were at their minimum. Our finding
that spiking during gamma cycles was accompanied by
both EPSCs and disinhibition of IPSCs supports the claim
that the gamma in the BL network arises through a PING
mechanism, rather than the recurrent-excitation-inhibition
(REI) mechanism found in models of visual cortex
(Chariker et al., 2018).

Since spiking during gamma depends on the pattern of
postsynaptic currents, it could be that a neuron’s entrain-
ment to gamma depends on how many excitatory and
inhibitory synapses it receives. For each neuron, we mea-
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sured their entrainment to gamma using the resultant
vector metric and determined how it varied as a function
of their number of excitatory and inhibitory afferents (Fig.
5E). For PNs and FSIs there was a significant positive
relationship between entrainment and the number of in-
hibitory afferents received (PN: F(1,296) � 35.8, p � 6.3 	

10�9; FSI: F(1,296) � 770.3, p � 2.3 	 10�84). However, the
number of excitatory afferents did not alter entrainment in
PNs (F(1,296) � 0.16, p � 0.69), but decreased it in FSIs
(F(1,296) � 264.8, p � 5.7 	 10�43). Notably, FSI entrain-
ment was enhanced when both inhibitory and excitatory
afferents increased in tandem (F(1,296) � 5.1, p � 0.025).
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Overall, the dependence of PN and FSI entrainment on
the number of inhibitory connections agrees with the
relatively strong gamma periodicity of IPSCs.

Spatiotemporal properties of gamma bursts
Gamma oscillations not only persist in time but extend

across space. This introduces uncertainty about the am-
plitude and duration of gamma bursts when recording
from single sites. This is not a problem for our model,
which can support an arbitrary number of recording sites
arranged in any desired configuration. Thus, we charac-
terized gamma bursts as spatiotemporal phenomena.

A 9 	 9 	 9 grid of recording sites with an interelec-
trode spacing of 125�m spanned the entire BL model
(Fig. 6A). Spatiotemporal gamma bursts were identified in
a four-dimensional space (three spatial and one tempo-
ral). We measured gamma amplitude at each site and
identified spatially contiguous regions of elevated gamma
power at each time step. To count as a burst power had
to peak above 2 SDs of the mean and the edges of the
burst were thresholded at 25% of the peak power.

By surveying the entirety of each gamma burst, we
could unambiguously measure their properties (Fig. 6B).
Gamma burst peak amplitudes hugged the cutoff thresh-
old we had set at two Z-scores, with a mean of 2.8, and
�1% above 5 (Fig. 6B1). Burst durations were 108 ms on
average, enough time to encompass several gamma cy-
cles (Fig. 6B2). We also measured the mean phase locking
of the LFP in the gamma band surrounding the location of
peak power in the gamma burst. Most bursts had an
average PLV of 0.87 (Fig. 6B3), indicating that at the
center of the burst, adjacent LFP recording sites were
highly phase coherent.

Tracking across multiple recording sites revealed the
spatial properties of gamma bursts. Localized increases

in gamma power could start in one part of the model,
spread to adjacent areas, and then dissipate. Most bursts
were local, encompassing 44.3 recording sites on average
out of a possible 729 total (6% of the BL volume; Fig.
6B4). If the mean volume of a gamma burst were arranged
as a sphere, it would have a radius of �270 �m. Despite
being local, the center of the burst could move throughout
the BL, with bursts on average traversing 472 �m from
their start to end times (Fig. 6B5). Taking the distance a
burst traveled, and dividing that by the burst duration, we
could measure the average speed of its center, which was
4.4 �m/ms (Fig. 6B6), or 68 �m per gamma cycle (assum-
ing a cycle duration of �15 ms).

These results highlight the fact that gamma bursts,
even in relatively small nuclear structures like BL, can be
highly localized. However, they are not spatially confined;
they can emerge at one location and terminate in another.
Such propagation may mediate interactions between dis-
tant cell populations.

Computation in the BL network
To explore how the microcircuitry generating gamma

affects the interaction between BL neurons, we randomly
assigned PNs in the network to one of two populations
(group 1 and group 2), each receiving a different set of
extrinsic afferents (Fig. 7A1). The simulated LFP was re-
corded from the center of the model, along with the
spiking activity, IPSCs, and EPSCs of nearby neurons.
Each population had its extrinsic afferents driven as Pois-
son processes at a fixed rate (Fig. 7A2–4). For these
simulations we used a reduced BL model limited to 1000
neurons, with similar connectivity rules and proportions of
cells types as found in the full model.

We first examined how increases in afferent drive to
group 1 PNs affected synchronous spiking within each

lfp lfp lfplfp lfp

lfp lfp lfplfp lfp

lfp lfp lfplfp lfp

100μV

A

B1 B2

Phase locking value 

Gamma burst synchrony

0.
4

0 0.2 0.4 0.6 0.8 1.0

0.
2

0

Z-score

Gamma burst peak

Pr
ob

ab
ili

ty
0.

4

2 3 4 5 6

0.
2

0

ms

Gamma burst duration

0.
2

0 50 100 150 200 250

0.
1

0

# sites

Gamma burst volume

0.
6

0 200 400 600 800

0.
3

0

mm

Gamma burst path length

0.
2

0 0.5 1 1.5 2.0 2.5

0.
1

0

μm/ms

Gamma burst speed

0.
2

0 5 10 15 20 25

0.
1

0

B3 B5 B6B4
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group (Fig. 7B1). Randomly selected pairs of neurons had
their spike cross-correlations calculated. A robust gamma
frequency periodicity was evident in the cross-correlation
function of both groups (Fig. 7B2–4), with the group
receiving the strongest afferent drive exhibiting greater
synchronous spiking [group 1 � group 2, rank-sum test z
value � 11.8, p � 6.8 	 10�32 (Fig. 7B2); group 2 � group
1, z value � �13.7, p � 1.6 	 10�42 (Fig. 7B4)]. When
both groups were driven with equal strength there was not
significant difference in their spiking synchrony (group 1 �
group 2, z value � 0.2, p � 0.81; Fig. 7B3).

Previous analyses revealed that EPSCs in FSIs had a
gamma component (Fig. 5B,D), so we next determined
whether the more strongly driven PN group (group 1)
contributed to this effect. Spikes times were recorded in
tandem with the phase of the mean EPSC current in the
gamma band across all FSI neurons (Fig. 7C1). PNs
tended to spike before the peak of the EPSC, with a
quarter cycle lag (Fig. 7C2–4). Whichever group was
driven strongly had greater entrainment to the FSI EPSCs
[group 1 � group 2, group 1 spike resultant vector, RV �
0.54, group 2 RV � 0.5, Watson–Williams test, p � 1.1 	
10�16 (Fig. 7C2); group 2 � group 1, group 1 RV � 0.5,
group 2 RV � 0.54, p � 4.1 	 10�13 (Fig. 7C4)]. When
both groups were driven equally their entrainment with
FSI EPSCs did not differ (group 1 � group 2, group 1 RV
� 0.56, group 2 RV � 0.56, p � 0.17; Fig. 7C3).

Given that FSI spiking depends on EPSCs, it should be
the case that their spiking will be controlled mostly by the
PN population more entrained to the EPSC rhythm, i.e.,
the strongly driven group. We examined this by measuring
the cross-correlation between PNs from each group and
all spikes emitted by the FSI network (Fig. 7D1) after
correcting for the autocorrelations inherent in both spike
trains. This revealed a peak in the cross-correlation at a
4-ms lag (Fig. 7D2, inset), consistent with the previous
analysis (Fig. 7C2–4). Casting the normalized cross-
correlation function into the frequency domain returned a
measure of coherence between PN and FSI spiking. This
revealed that the more strongly driven PN group had
higher coherence with the FSI population, particularly in
the gamma band [group 1 � group 2, rank-sum test, z
value � 2.6, p � 0.009 (Fig. 7D2); group 2 � group 1,
rank-sum test, z value � �3.7, p � 2.3 	 10�4 (Fig. 7D4)],
and there was no difference when both groups were

equally driven (group 1 � group 2, z value � �0.3, p �
0.79; Fig. 7D3).

Since the more strongly activated PN group exerts a
greater influence over the FSI network, it seemed likely
that this would lead to suppression of the weaker PN
ensemble. Indeed, we found that as group 2 was more
strongly excited, it diminished the firing of group 1 (Fig.
7E1). Presumably, this effect was mediated by the
PN¡FSI connection, which were also critical for generat-
ing the gamma rhythm. Eliminating these connections
reduced the difference in firing rates between groups 1
and 2 (Fig. 7E2), suggesting that the FSI network may
mediate competition between PN ensembles.

If FSIs allow for competition between ensembles of
PNs, and FSIs tend to project locally, one would expect
that any competition effect will operate when the groups
of PNs overlap spatially, sharing the same FSI network,
and not when they are far apart from one another. To
explore this possibility, we returned to the original full
model with 27,000 neurons. Our spatial analyses of
gamma bursts revealed that they spanned an average
radius of �270 �m (Fig. 6B4), so we created spheroidal
subgroups of PNs with a similar size that were driven by
Poisson afferents. When those groups overlapped in the
model, they exhibited the competition effect (Fig. 7F1).
Increasing the afferent drive onto group 2 reduced the
firing rate of group 1, whose drive was held constant.
However, if they were completely separated then no com-
petition was evident (for group 1 interaction between
separation 	 group 2 afferent drive, ANCOVA, F(1,3474) �
7.8, p � 0.005; Fig. 7F2). Also in agreement with the
stronger group 1 exerting downward pressure, for group
2, we found a significant main effect increase in firing rate
on spatial separation (F(1,3471) � 120.5, p � 1.4 	 10�27).

The above analyses suggest that the competition be-
tween ensembles arose from the heightened gamma-
band interaction between a strongly driven group of PNs
and the local FSI network. Since the competition was
reflected mainly as a suppression of spiking, it was prob-
ably mediated by IPSCs impinging on the PN network.
Moreover, since PN spikes tended to precede FSI spikes
(Fig. 7D2 , inset), the dominant PN group should, on
average, control the inhibitory rhythm, which would peri-
odically modulate neuronal responsiveness to excitatory
drive, as found in sensory cortices (Cardin et al., 2009; Ni

continued
green), that received different subsets of afferents. Groups could be driven independently, with (2) group 1 receiving 20-Hz stimulation
while group 2 had 5 Hz; (3) group 1, 20 Hz and group 2, 20 Hz; or (4) group 1, 5 Hz and group 2, 20 Hz. B, (1) Spikes were recorded
from both groups of PNs and (2–4) we calculated their cross-correlation functions. C, (1) Spikes from PNs and the mean EPSC across
all FSIs were recorded. (2–4) Probability histograms of the EPSC gamma phases associated with spiking from either group 1 or group
2. The strongly driven group exhibits greater entrainment. D, (1) The coherence between PN spiking and FSI spiking for each group.
(2–4) FSIs were more coherent in the gamma-band with the population that received the strongest afferent drive. Inset, PN preceded
FSI spiking by 4 ms on average. E, (1) Group 1 receives 20-Hz extrinsic drive while group 2 receives a varying amount. Increasing the
firing rate of extrinsic afferents onto group 2 diminished the firing rate of group 1. (2) The difference in firing rate between these groups
was weakened when connections from PNs to FSIs were removed. F, Analysis of competition between groups in the full model when
they either (1) fully overlap or (2) are entirely segregated in space. G, top, Gamma cycles were divided into four phases and for each
phase the spike probability was measured as a function of the EPSC strength. Bottom left, For the weakly driven group there was
increased sensitivity for EPSCs during the trough and ascending phases of gamma, but a dampening of responsiveness during the
descending and peak phases. Bottom right, When connections from PNs to FSIs were removed, the discrepant sensitivities for EPSCs
across the four phases were diminished. Graphs are either mean or mean 
 SE when a shaded region is present.
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et al., 2016). To examine this, we measured the relation-
ship between EPSC strength and spiking probability dur-
ing different gamma phases. For the weakly driven group,
the trough phase of the gamma cycle showed the stron-
gest relationship between EPSC strength and spiking
probability, likely because of the waning inhibition (Fig.
7G, bottom left). Once that inhibition was reinstated dur-
ing the peak, it shunted EPSCs and degraded their ability
to drive spiking. We sought to determine if this depen-
dence was specific to gamma generation. Removing the
PN¡FSI connections eliminates gamma in the network
while sparing inhibitory drive onto PNs. Doing so dimin-
ished the gamma phase dependence of sensitivity to
EPSCs (Fig. 7G, bottom right).

Discussion
A biophysically and anatomically detailed 27,000-cell

model of BL produced transient gamma oscillations with
properties similar to those seen in vivo. This concordance
extended to gamma band entrainment and preferred
phase of PN and FSI spiking. BL gamma arose from
reciprocal interactions between PNs and FSIs, which sug-
gests a PING mechanism of rhythmogenesis. Having es-
tablished the validity of our model, we explored questions
that could not be tested experimentally. Underscoring the
importance of inhibitory connectivity, both PNs and FSIs
were more synchronized to gamma if they received a
greater number of inhibitory afferents. Finally, this con-
nectivity produced lateral inhibition, which mediated com-
petition between ensembles of PNs, with the more
strongly driven PN population exerting greater control
over the FSI network. It is noted that computational mod-
els of transient gamma have not been reported for the
amygdala, and the ones reported for other brain regions
are typically not biophysically or anatomically detailed to
the extent that we present here.

Emulation of BL gamma
BL has similar cell types and connectivity as found in

cortical circuits (Swanson, 2003). A majority of its neurons
are composed of PNs and FSIs (Rainnie et al., 1993, 2006),
are reciprocally connected with each other (Muller et al.,
2005; Woodruff and Sah, 2007), and like cortex (Braitenberg
and Schu¨z, 1991) the BL receives a substantial portion of its
input from other cortical regions (Sah et al., 2003). Also as in
cortex, examples abound of gamma oscillations recorded
from the amygdala (Oya et al., 2002; Bauer et al., 2007;
Stujenske et al., 2014), and in vitro slice preparations can be
coaxed into generating gamma through pharmacological
manipulations (Sinfield and Collins, 2006; Randall et al.,
2011) similar to those used in cortical slices (Whittington
et al., 2000). Thus, the importance of BL gamma oscillations
seems assured, and yet our understanding of how BL pro-
duces gamma is limited.

As a first step, we examined a fundamental question: are
the local circuits present in that area sufficient to produce
the intermittent rhythm measured in vivo? Doing this re-
quired collating the anatomic and physiologic properties of
BL neurons into a model and driving it with spike trains
mirroring those found in upstream areas. Then, we calcu-
lated the extracellular field that could be picked up by re-

cording electrodes (Pesaran et al., 2018). On running our
simulations, the LFP exhibited a peak in the gamma band
that was in the same range of frequencies and amplitudes as
observed in vivo. Moreover, the spiking of both PNs and
FSIs were entrained to the gamma rhythm as found in vivo
(Amir et al., 2018). This concordance suggested that the BL
network, as captured by our model, is sufficient for the
generation of gamma like that seen in vivo.

However, the model exhibited far less power in the low-
frequency bands. Given the concordance between our
model of the extracellular field for both APs and activity in
the gamma band, we suspect that this discrepancy reflects
the extrinsic origins of low-frequency activity. One possible
source is volume conduction from adjacent cortical regions.
It may also be that afferent synapses from upstream areas
contribute to the low-frequency band. Supporting this argu-
ment, driving the model with spike trains derived from cor-
tical recordings increased power in the low-frequency band
compared with rate matched Poisson inputs. Besides neo-
cortical and paleocortical afferents, BLA neurons receive
direct projections from the ventral hippocampus, and in turn
respond to hippocampal theta (Bienvenu et al., 2012) and
intermittent sharp wave associated population bursts (Gi-
rardeau et al., 2017), both of which occupy the low-
frequency range.

BL microcircuitry presented unique challenges to
gamma rhythmogenesis

The generation of gamma oscillations in our BL model
was not a foregone conclusion. While qualitatively the BL
network contains the microcircuitry required for produc-
ing gamma oscillations, quantitative differences in the
properties of this network from previous PING models
may have precluded gamma generation.

For a PING rhythm to emerge PNs must fire in advance
of FSIs (Whittington et al., 2000), and thus increasing the
average firing rates of PNs contributes to the strength of
gamma oscillations produced in PING models and in
slices (Adesnik and Scanziani, 2010). PN firing rates in the
BL are smaller than those in the cortical models used to
simulate gamma by at least a factor of 6 (Börgers and
Kopell, 2008; Hoseini and Wessel, 2016; Chariker et al.,
2018), which may have diminished the network’s ability to
produce a PING type gamma rhythm. Also important is
the strength of inhibitory feedback in the network (Börgers
et al., 2012). Two factors that contribute to this are the
strength of connections between PNs and FSIs and the
number of FSIs in the network. We and others have found
that the BL has a lower proportion of interneurons (Mc-
Donald and Mascagni, 2001) compared with standard
PING models (Börgers and Kopell, 2008; Hoseini and
Wessel, 2016; Chariker et al., 2018). Moreover, the con-
nection probability between PNs and FSIs in BL is lower
(Woodruff and Sah, 2007) than the aforementioned mod-
els. Thus, a priori the BL network may not be capable of
producing gamma, and so our model was essential to at
least test the possibility theoretically.

Another difference between our BL model and cortical-
based PING models is a lower proportion of recurrent
connectivity among PNs. Brunel and Wang (2003) found
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that including recurrent connections between excitatory
units in a PING model could downshift the frequency of
the network oscillation by half. On the other hand, our BL
PING model has fairly little dependence on these connec-
tions, since their elimination did not substantially affect
the prominence or peak frequency of gamma (Fig. 4D). In
addition, other models of gamma generation depend on
the recurrent excitation among excitatory units. For in-
stance, the REI model (Chariker et al., 2018) contains a
network of reciprocally connected excitatory and inhibi-
tory units. Unlike PING models, the gamma-periodic
bursts of activity depend on the buildup of recurrent
excitation in the PN network, which raises the membrane
potential for all units in the network, and drives them to fire
synchronously. This mechanism for producing gamma is
distinctly not PING, since the excitatory and inhibitory
units activate simultaneously, instead of with the inhibi-
tory units following the excitatory. Moreover, since BL
PNs and FSIs in vivo fire during different phases of the
gamma cycle (Amir et al., 2018), it is likely that the REI
mechanism does not operate within the BL.

Thus, our model establishes the sufficiency of the BL
network to produce gamma oscillations, and for those to
arise via a PING mechanism. Despite that, it was also
possible that any gamma produced by the model would
be of insufficient power to comprise what is observed in
the LFP in vivo. To address this, our model included a
realistic estimation of the LFP, which most PING models
lack (Brunel and Hakim, 1999; Traub et al., 2000; Brunel
and Wang, 2003; Börgers et al., 2005; Bathellier et al.,
2006; Neymotin et al., 2011; Economo and White, 2012;
Chalk et al., 2016; Hoseini and Wessel, 2016; Palmigiano
et al., 2017; Chariker et al., 2018). Since our model LFP
exhibited gamma oscillations that were close to the fre-
quency and power of those recorded in vivo, it establishes
the sufficiency of the local microcircuitry in BL to explain
the gamma observed in LFP recordings in vivo.

Circuit contributions to the properties of gamma
oscillations

Cortical gamma oscillations are thought to arise from an
interaction between PNs and FSIs, whereby PNs strongly
drive a recurrently connected network of FSIs, that in turn
inhibit PNs for a short period of time, after which PNs are
able to restart the cycle over again. We determined
whether a similar mechanism was operating in our BL
simulations, and investigated qualitative and quantitative
features of the underlying microcircuits. Systematically
removing each class of connections revealed that either
the connections from PNs to FSIs or vice versa were
crucial for generating the gamma rhythm, which is in
agreement with a PING type mechanism. Although inter-
actions between FSIs are sufficient to produce a gamma
rhythm (Whittington et al., 2000), this was not the case in
our model. Instead, they affected the peak frequency. This
could be functionally relevant because presynaptic recep-
tors specific to synapses between interneurons (Cossart
et al., 2001) may be able to regulate the frequency of
gamma rhythms.

The dynamics of EPSCs and IPSCs in our model (Fig.
5B,D) mostly aligned with those from a recent in vitro
model of cortical gamma (Salkoff et al., 2015). Using
paired whole-cell patch clamp recordings, synaptic cur-
rents were recorded in one cell, and correlated with the
spiking of an adjacent one. The power spectrum of IPSCs
in PNs and FSIs exhibited a prominence in the low gamma
band, while EPSCs in PNs did not. Moreover, they ob-
served that IPSCs weakened before PN and FSI spiking,
after which they rebounded. We observed that pattern for
PNs, while for FSIs the IPSCs returned to baseline after
spiking. Another significant difference was that they only
observed substantial increases in EPSC amplitude sur-
rounding spikes from FSIs, but not PNs. This likely re-
sulted from the fact that whereas FSIs receive convergent
inputs from many PNs (Oswald et al., 2009), excitatory
synapses are sparsely shared between PNs; in all likeli-
hood the afferents that elicited spiking in one PN did not
collateralize onto another. In contrast, we could monitor
both the EPSC and spiking in the same cell and found a
robust EPSC increase during PN spiking.

One unknown aspect of gamma generation that cannot
be readily explored at present either in vivo or in vitro is
the contribution of a neuron’s particular complement of
excitatory and inhibitory afferents to its entrainment by the
gamma rhythm. In addressing this, we found that the
number of inhibitory afferents was particularly important
for how a neuron would be affected by gamma. PNs and
FSIs with more inhibitory contacts were more strongly
entrained to gamma, while only FSIs showed a significant
reduction in entrainment as the number of excitatory af-
ferents increased. In agreement with these results, a pre-
vious study from our group (Amir et al., 2018) found that
PNs that received a monosynaptic input from a nearby
FSI showed stronger entrainment to gamma. However,
our model differed from this study regarding the contri-
bution of excitatory connections onto FSIs. In Amir et al.
(2018), the presence of an excitatory monosynaptic con-
tact onto an FSI was associated with increased entrain-
ment, whereas in our model, it was not. Perhaps resolving
this disagreement, we found that a concomitant increase
in both excitatory and inhibitory contacts onto an FSI
raised entrainment beyond what was expected by either
connection type alone. Thus, our two studies could be
reconciled if BL FSIs that receive more afferents from PNs
also receive more from other FSIs. Perhaps this suggests
that inhibitory and excitatory afferents need to be tuned
for single neurons to be strongly entrained by the gamma
rhythm. This may be reflected by experience-dependent
plasticity of inhibitory networks (Donato et al., 2013).

Computations emerging from gamma generating
circuits in BL

In cortical networks, several functions have been as-
cribed to gamma, but a particular emphasis has been
placed on their ability to synchronize spiking (Tiesinga
et al., 2008) and mediate competition between cell as-
semblies (Börgers et al., 2005; de Almeida et al., 2009;
Palmigiano et al., 2017). Our model exhibited both of
these phenomena. PNs synchronized their spiking by
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phase-locking to the gamma rhythm. This could be crucial
to BL function since its neurons fire at very low rates, and
so it is likely they need to coordinate their activity to drive
robust postsynaptic integration. We also found that acti-
vating a subset of PNs in the network drove a suppression
of those that received a weaker input, and that gamma
genesis played a critical role in this effect. This competi-
tion may be important in the BL for the selective recruit-
ment of particular PN ensembles, allowing it to drive its
many downstream targets with greater specificity.

Conclusions
Gamma oscillations are a feature of cortical processing

that is also expressed in BL, where they are likely gener-
ated via similar mechanisms, and perhaps perform the
same functions. Moving forward, there are two reasons
why having a detailed biophysical model of gamma gen-
eration in BL is important. First, we need a better under-
standing of the variety of situations that bring about and
alter gamma oscillations, and a concrete model provides
a framework in which these observations can be inte-
grated with one another. Second, a biophysically detailed
model can serve as a testbed for exploring the means and
algorithms that might be used to alter these oscillations
(Witt et al., 2013), and the functions of the BL itself.
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