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Chronic non-bacterial osteomyelitis (CNO) is an under-
recognised disorder of sterile bone inflammation associated
with significant morbidity in affected children and adolescents.
Disease onset typically occurs between 7 and 12 years of
age and is characterised by bone pain and swelling that can
significantly impact quality of life [1]. The annual incidence of
CNO is estimated as 6.5 cases per 1,000,000, but this is likely
an underestimate and the true incidence may be comparable to
bacterial osteomyelitis [2]. Clinician under-recognition and an
absence of disease-specific biomarkers for CNO contribute to
significant diagnostic delay. The aetiology of CNO is unknown
which has hampered the development of targeted treatments and
diagnostics. Improving our understanding of CNO pathogenesis
was recently identified as a research priority by patients, their
families and clinicians [3]. Dysregulated immune pathways have
been inconsistently identified in studies of similar monogenic
disorders (e.g., Majeed syndrome), mouse models and patients
with CNO [4].

Treatment with pamidronate (a bisphosphonate drug) is highly
effective in many patients, with complete remission in 54% of
children after 3 months and the absence of symptom flares in 80%
after 12 months [5]. Despite its beneficial impact on disease trajec-
tory, the mechanism of action of pamidronate in CNO is unclear.

The antiresorptive effects of bisphosphonates on osteoclasts
are well-recognised, but immunomodulatory roles are emerging
including inhibition of macrophage migration, cytokine secretion
and Th17 polarisation [5, 6]. To better understand pamidronate’s
effect in CNO and elicit potential pathogenic pathways, we
performed a before-after whole blood transcriptome analysis of
children with CNO treated with pamidronate.

Six children (five female, one male) with median (range) age of 8
(5-12 years) were identified with recently-diagnosed CNO requir-
ing pamidronate treatment Table 1, (Supporting Information).
There was no relevant past medical history except celiac disease
in one child. At initial presentation, painful sites included: jaw
(2/6 children), hip (2/6), knee (1/6), clavicle (1/6), thigh (1/6), and
back (1/6). All children had received an alternate initial diagnosis,
and the median (range) duration between initial presentation and
CNO diagnosis was 12 (3-41) months. HLA-B27 was positive in
one (17%) child. Imaging demonstrated multifocal disease in five
(83%) children. No children had previously received treatment
with corticosteroids, disease-modifying anti-rheumatic drugs,
biologics or pamidronate. Clinical metrics of disease activity
(visual analogue scales of pain at rest/exercise) were collected
immediately before the first cycle of pamidronate treatment and
3-5 months after [1]. The cohort exhibited an improvement in dis-

Abbreviations: CNO, chronic non-bacterial osteomyelitis; TCR, T-cell receptor; 8, gamma-delta.
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GO sets suppressed after pamidronate treatment
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Clinical metrics of disease activity and transcriptional differences pre- and post-pamidronate. (A) Pain at rest visual analogue-scale

(VAS), and pain with exercise VAS, scored 0-10 with 10 being worst pain. (B) Principal component analysis with ellipse demarcating pre- and
post-pamidronate samples from the same patient. (C) Volcano plot of differentially expressed genes in post-pamidronate samples compared with pre-

pamidronate counterparts, with red points representing genes meeting a threshold of log2 fold-change> 2 and FDR < 0.05. (D) Normalised counts per

child for differentially expressed genes. (E) Heatmaps showing gene expression log2 fold-change of upstream regulators of TRDV2 and TRGV9 in post-

treatment samples compared with pre-treatment samples. (F) KEGG and GO terms identified by gene set enrichment analysis comparing expression

pre- and post-treatment selected by biological relevance.
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ease activity measures post-pamidronate, except for one patient
who was clinically asymptomatic pre-treatment and remained so
post-treatment (Figure 1A).

The transcriptional profile of peripheral blood before and
after the first cycle of pamidronate treatment was compared
with RNA-seq. Principal Component Analysis revealed that
pre- and post-pamidronate gene expression clustered together
within the same individual, and the majority of variance was
observed between different individuals (Figure 1B). Differen-
tial gene expression analysis identified significantly reduced
expression of TRDV2 (log2 fold-change -3.5, false discovery
rate FDR < 0.001) and TRGV9 (log2 fold-change —1.8, FDR
< 0.003) in post-pamidronate samples relative to their pre-
pamidronate counterparts (Figure 1C,D). Upstream regulators
of differentially regulated genes in blood were predicted using
hTFtarget. There was relatively reduced expression of upstream
regulators of TRDV2 and TRGVY in post-treatment samples,
relative to their pre-treatment counterparts (Figure 1E). Gene
set enrichment analysis not restricted to differentially expressed
genes identified suppression of multiple pathways (Figure 1F),
including Th17 cell differentiation (normalised enrichment score
NES = —1.65, FDR < 0.05) and osteoclast differentiation (NES =
—1.64, FDR < 0.05).

Here, we describe the first gene expression data of children
with CNO before and after clinically effective treatment with
pamidronate. Strikingly, we identify significantly reduced expres-
sion of just two genes (TRDV2 and TRGV9) that encode subunits
of the yd T-cell receptor (TCR) expressed by y8 T cells. y5 T cells
are enriched in several tissues, including skin, intestine, and lung.
While the function of yd T cells is less well-characterised than
af T cells, they are thought to play important roles in tissue
homeostasis and immune surveillance [7]. While eight § and
seven y variable genes exist, TRDV2 and TRGV9 are selectively
expressed by y962 T cells, the predominant yd subset in peripheral
blood [7].

Our data merits further investigation of the role of yd T cells,
given that TRDV2 and TRGV9: (1) were the only two genes that
were significantly and highly differentially expressed; (2) are
independently regulated, and upstream genes exhibited reduced
expression following pamidronate treatment; and (3) biological
plausibility. Pamidronate is known to induce phosphoantigen
signalling through the y& TCR [8]. ¥ T cells and pamidronate
also both regulate osteoclast function, which includes bone
resorption that may play a role in CNO osteolytic lesions.
Phosphoantigen-stimulated & T cells inhibit osteoclastogenesis
and bone resorption in vitro [9] and our data indicates reduced
expression of genes involved in the osteoclast differentiation
pathway following pamidronate treatment.

We also found that transcriptional changes post-pamidronate
were associated with a reduction in genes involved in the Th17
cell differentiation pathway. Th17 cells have been linked to CNO
pathogenesis given elevated serum IL-6 concentrations (a key
Thl7-polarising cytokine) in CNO and clinical overlap between
CNO and other IL-17-mediated disorders, including psoriasis,
palmoplantar pustulosis, and ankylosing spondylitis [10]. Of note,
osteoclastogenesis is regulated by Th17 cytokines [10].

This study was limited by transcriptional profiling at a single
time-point post-pamidronate. While sufficient to observe a clini-
cally meaningful effect of pamidronate, this strategy could have
missed important changes in gene expression before and after
this time point. Another limitation of our data is that it describes
gene changes in peripheral blood, rather than the affected bony
site(s). Despite this, we find potentially biologically and clinically
relevant changes in gene expression in peripheral blood, suggest-
ing peripheral blood may yet yield further information on CNO
pathogenesis and biomarkers. We hypothesise that pamidronate
acts by the modulation of y§ TCR expression and regulation
of osteoclast activity, as indicated by the suppression of gene
expression in pathways related to osteoclastogenesis and Th17
differentiation. While our RNA-seq findings indicate suppressed
yd TCR expression and Thl17 differentiation, validation of these
effects at the protein expression and functional levels is necessary.
Future studies should also aim to confirm our findings in a
larger cohort, including assessment of IL-17 production and
Thl7-associated markers to confirm the suppression of Th17
polarisation by pamidronate. (Supporting Information)
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