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Abstract
The detection of short exons is a challenging open problem in the field of bioinformatics.

Due to the fact that the weakness of existing model-independent methods lies in their inabil-

ity to reliably detect small exons, a model-independent method based on the singularity

detection with wavelet transform modulus maxima has been developed for detecting short

coding sequences (exons) in eukaryotic DNA sequences. In the analysis of our method, the

local maxima can capture and characterize singularities of short exons, which helps to yield

significant patterns that are rarely observed with the traditional methods. In order to get

some information about singularities on the differences between the exon signal and the

background noise, the noise level is estimated by filtering the genomic sequence through a

notch filter. Meanwhile, a fast method based on a piecewise cubic Hermite interpolating

polynomial is applied to reconstruct the wavelet coefficients for improving the computational

efficiency. In addition, the output measure of a paired-numerical representation calculated

in both forward and reverse directions is used to incorporate a useful DNA structural prop-

erty. The performances of our approach and other techniques are evaluated on two bench-

mark data sets. Experimental results demonstrate that the proposed method outperforms

all assessed model-independent methods for detecting short exons in terms of evaluation

metrics.

1 Introduction
As an initial step in the analysis of eukaryotic genome sequences, detecting exons would lead
to a good understanding of the structure and function of a protein that is synthesized by
these exons [1, 2]. Unlike prokaryotes, eukaryotic genes are further divided into relatively
small exons called protein coding regions and the introns called non-coding regions, as
shown in Fig 1. In the past twenty years or so, many algorithms have been proposed for exon
detection and good detection rate has been achieved in the recognition of exon and intron
regions [1–33]. But despite the efforts spent, it is still an open question whether the strengths
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of the statistical features are sufficient to identify short exons. Typically, human exons are
much shorter in length (137 base pairs (bp) in average) [6]. So the task for accurate and reli-
able methods to automatically determine the lengths and locations of short exons still needs
to be solved today [2, 8–15, 32–33]. In addition, accurate location of short exons in genomes
can help to design drugs and cure diseases. For example, some short exons of BRCA1 gene
are related to ovarian and breast cancer [34–37]. Therefore, it is essential to develop an effi-
cient technique for detecting the short exons of eukaryotic DNA sequences.

The detection of exons suggested in the literature can be classified into two categories,
model-dependent methods and model-independent methods [38]. Model-dependent methods
employ previously known genomic information or learning models to train the classifiers in
the design of analysis stage [3–11], which means these techniques tend to be more precise.
However, the issue of detecting short exons in eukaryotic genomes by using these methods still
remain to be solved. Because on the one hand, assessing the coding potential of short sequences
is not self-evident as intrinsic signals are harder to detect with shorter sequence lengths [11];
and on the other hand, methods such as Markov models rely on more sequences that contain
short exons into the training sets [12]. Further, training datasets have limitations in dealing
with the next-generation genome sequencing projects and can attach ascertainment bias to
unknown genes or exons with a typical organization or structural components [10, 31]. By con-
trast, the methods designed to detect universal and statistical features of exons are model-inde-
pendent as they do not assume any a prior information to train models or estimate parameters
[38]. Model-independent methods for short exons detection, is considerably more challenging
for some reasons. First, it is difficult to reveal the underlying property in the data [14]. For
example, the statistic features obtained from short exons may be unreliable and the perfor-
mance for short exon detection may be poor. Second, sequencing and frame shift errors such
as insertions and deletions can also vitiate the techniques when the exons are short [15]. Never-
theless, model-independent methods may be adaptive enough to analyze the novel sequences
when prior genomic information or training dataset is unavailable from the existing databases
[2, 26–27, 30–31].

Fig 1. Organization of eukaryotic genes.

doi:10.1371/journal.pone.0163088.g001
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This paper is aimed at improving the detection accuracy of short exons in model-indepen-
dent domain. It is well-known that the exons exhibit three-base periodicity (TBP), which is
absent in other regions such as intergenic and intron regions in eukaryotes [39–43]. Model-
independent methods based on digital signal processing (DSP) techniques and TBP are built
upon the phenomenon that exon regions have a prominent power spectrum peak at frequency
f = 1/3 [16–17]. During recent years, a large number of model-independent methods have
been proposed to detect exons [1, 2, 16–31]. The detecting techniques which rely on discrete
Fourier transform (DFT) include the spectral content measure [16] and its various improved
versions [17–21]. The DFT-based methods have been the basis of several techniques in many
ways. Vaidyanathan and Yoon [22] utilized anti-notch filters to solve the same problem. Yin
and Yau [25] developed a novel exon detection algorithm, known as exon prediction by nucle-
otide distribution (EPND) to investigate the relationship between TBP and nucleotide distri-
butions. Mena-Chalco et al. [26] introduced a method based on modified Gabor-wavelet
transform (MGWT) for improving exon detection. This technique outperforms the sliding
window approaches with respect to detection accuracy. Zhang and Yan [27] combined DNA
structural profiles and empirical mode decomposition to improve short exon detection. This
novel method named as the fast Fourier transform plus empirical mode decomposition
(FFTEMD) provided a pictorial view of spectrum analysis of non-stationary signal. Recently,
Marhon and Kremer [31] proposed the wide-range wavelet window (WRWW) method for
extracting exon components. The WRWW can adapt its width to accommodate the change in
the window length and it outperforms all assessed model-independent methods with relatively
short and long exons.

To perform accurate detection of short exons, a natural solution of the problem is to extract
and enhance their weak features embedded in background noise of intron regions. Existing
methods provide a description of the overall regularity of exons, but they are not well adapted
for finding the location and spatial distribution of singularities represented by short exons.
This is the major motivation to study the singular measure and its application to short exon
detection. As a generalized multifractal formalism for fractal functions and singular measures,
the wavelet transform modulus maxima (WTMM) [44–45] has proved its success in studying
the long-range correlation properties of genomic DNA sequences [45–48] and analyzing the
strand compositional asymmetry profiles in relation to transcription and replication [49–52],
by providing “oscillating boxes” to get rid of possible smooth behavior that may either mask
the singularities or perturb the estimation of their strength. A comprehensive review of the
research of wavelet-based multi-scale signal processing and WTMM on genomic information
has been summarized in [53].

In this work, we will follow the WTMM-based strategy inspired from the one previously
used in the analysis of genomic information [45–53] to detect short exons. Firstly, the paired-
numerical representation is employed to incorporate a useful structural property and reduce
the computational cost. We apply this numerical representation to construct the nucleotide
distribution sequence. In this design, the statistical properties in the three reading frames is
extracted from DNA sequences to differentiate between exon and intron regions. Then the
nucleotide distribution sequence is used to calculated the TBP spectrum by an optimized
WTMM-based method. Finally, to reflect a reality of the structure of double helix DNA, the
output values are calculated along the forward and reverse directions. Case studies indicate
that the proposed method improves detection accuracy of exons in comparison with existing
methods and exceeds its counterparts in the ability to detect short exons.
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2 Methods

2.1 Related Works
2.1.1 Numerical representation of a DNA sequence. A symbolic DNA sequence is com-

posed of four different nucleotides (or bases) named Adenine (A), Thymine (T), Cytosine (C)
and Guanine (G). In order to employ DSP tools on a DNA sequence, the first step in the pro-
cess is to convert symbolic DNA sequences into numerical sequences. In this paper, we intro-
duce the paired-numerical representation [21]. The paired representation exploits the property
of the frequency distribution of nucleotides A−T and C−G, which is based on the fact that
intron regions are rich in nucleotides A and T while exon regions are rich in nucleotides C and
G. This representation could provide more differentiation between exon and intron regions
when the TBP is investigated. This paired representation scheme could decrease the computa-
tion time compared to three-(Z-curve) [9] and four-(Voss) [42] sequence representations.
Using this paired-numerical representation, the presence of nucleotide A or T at a particular
base pair position is denoted by 1, and the absence of it is denoted by 0. Similarly, the existence
of nucleotide C or G in a relative base pair position is represented by -1 and the absence of the
nucleotide is represented by 0. An example of this representation scheme of a DNA sequence is
presented in Table 1.

2.1.2 Calculating the TBP spectrum from occurrence frequencies of nucleotides. The
nucleotide distribution in the three reading frames incorporates the reality of proteins' prefer
specific amino acid compositions [39]. There exists a relationship between the occurrence fre-
quencies of a nucleotide in the three codon positions and the TBP spectrum [24]. In this sec-
tion, we introduce an efficient way to compute the TBP spectrum by calculating the nucleotide
occurrence frequencies in the three codon positions. This approach can reduce the computing
time significantly by comparing with Fourier transform.

Let ux(x 2 {A−T, C−G}) be a paired-numerical sequence of length N, the DFT power spec-
trum of a length-N block of ux is defined as follows:

Sx½k� ¼
XN�1

n¼0

ux½n�e�i2pnk=N

�����
�����
2

; k ¼ 0; 1; . . . ;N � 1; ð1Þ

where i2 = −1. The TBP in exon regions of a DNA sequence suggests that the DFT power spec-
trum Sx[k] corresponding to k = N/3 (where N is chosen to be a multiple of 3) in each DFT
sequence should be large [16, 17]. By sliding a window across the sequence, we can determine
the TBP value at each position.

Let fx(0), fx(1), fx(2) (x 2 {A−T, C−G}) denote the occurrence frequencies of a nucleotide in
the first, the second and the third codon position of ux, respectively. The occurrence frequency
fx(p) of nucleotide x at the codon position p is defined as

fxðpÞ ¼
XN3�1

p0¼0

ux½3p0 þ p�; p ¼ 0; 1; 2: ð2Þ

Table 1. An example of the paired-numerical representation scheme of a DNA sequence.

A C C A G G T A . . .

uA−T 1 0 0 1 0 0 1 1 . . .

uC−G 0 -1 -1 0 -1 -1 0 0 . . .

doi:10.1371/journal.pone.0163088.t001
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From fx(p) of Eq (2), the TBP spectrum takes the form [18, 19]:

Px ¼ Sx½N=3�

¼
XN=3�1

p0¼0

ux½3p0 þ 0�e�i2pð3p0þ0Þ=3

����� þ
XN=3�1

p0¼0

ux½3p0 þ 1�e�i2pð3p0þ1Þ=3

þ
XN=3�1

p0¼0

ux½3p0 þ 2�e�i2pð3p0þ2Þ=3

�����
2

¼ f ð0Þ � 1þ f ð1Þ � e�i2p=3 þ f ð2Þ � e�i4p=3j j2

¼ fxð0Þ � 1þ fxð1Þ � e�i2p=3 þ fxð2Þ � ei2p=3j j2:

ð3Þ

2.2 Procedures of Singularity Detection
The singularities (or sharp variation points) often carry the most important information in the
analysis of transient signal. Mallat's WTMM theory proves that the singularities of a signal can
be measured from the evolution of the wavelet transform maxima across scales [44]. In this sec-
tion, we first describe the implementation issues of the stationary wavelet transform (SWT)
[54–57]. The second part of this section introduces the basic principles of theWTMMmethod.
Then we give a fast reconstruction algorithm of wavelet coefficients fromWTMM points, based
on Hermite interpolation [58–59]. Finally, an optimized algorithm of singularity detection has
been proposed for tracking WTMM and extracting useful information easily and correctly.

2.2.1 SWT method. The SWT method having been independently discovered for different
purposes and given a number of different names [54–57], including shift/translation invariant
wavelet transform, undecimated discrete wavelet transform, or redundant wavelet transform.
The key point is that it is redundant, shift invariant, and it gives a denser approximation to the
continuous wavelet transform than the approximation provided by the orthonormal discrete

wavelet transform (DWT). Let h 2 ‘2ðZÞ and g 2 ‘2ðZÞ be the scaling and wavelet filters of an
orthonormal DWT, respectively. The scaling filter and wavelet filter of an SWT at scale j + 1 is
defined recursively as

�hjþ1½k� ¼ hj½k� " 2 ¼
hj½k=2�; if k is even

0; if k is odd

(
;

�g jþ1½k� ¼ gj½k� " 2 ¼
gj½k=2�; if k is even

0; if k is odd

(
;

ð4Þ

where �h0½k� ¼ h½k� and �g 0½k� ¼ g½k�.
The SWT decompose a signal v0 into a coefficient set C = {w1, . . .,wJ, vJ} using an analysis fil-

ter bank ð�h; �gÞ of Eq (4), where wj is the wavelet coefficients at scale j and vJ is the scaling coeffi-
cients at the coarsest resolution. The passage from one resolution to the next one is obtained by

vjþ1½k� ¼ �hj½�k� � vj½k�;
wjþ1½k� ¼ �g j½�k� � vj½k�;

ð5Þ

where j = 0, . . .J−1 and “�” denotes convolution.
The reconstruction of SWT is given by: vj½k� ¼ 1

2
ð~hj½k� � vjþ1½k� þ ~g j½k� � wjþ1½k�Þ. The filter

bank ð�h; �g ; ~h; ~gÞ needs to satisfy the exact reconstruction condition:
�Hðz�1Þ ~HðzÞ þ �Gðz�1Þ~GðzÞ ¼ 1.
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2.2.2 Basic principles of WTMM. Definition [44]: LetWa, t be the wavelet transform of a
signal s(t) at the scale a and the position t.

• AWTMM is defined as a point (a0, t0) such that jWa0;tj < jWa0;t0 j when t belongs to either a
right or the left neighborhood of t, and jWa0;tj � jWa0;t0 j when t belongs to the other side of
the neighborhood of t0. We call maxima line, any connected curve in the scale space (a, t)
along which all points are WTMM.

• For any point t1 2[p, q], t1 6¼ t0, s(t)is uniformly Lipschitz n in a neighborhood of t1. Let α<

n, a =2 Z, then the signal s(t) is Lipschitz α at t0, if and only if there exists a constant A at each
modulus maxima (a, t) it holds that

jWa;tj � Aaa; i:e:; logjWa;tj � logðAÞ þ alogðaÞ: ð6Þ

Let a = 2j, we can rewrite Eq (6) in the form: log|Wj, t|� log(A) + αj. Mallat has proved that
the signal has singularities whose Lipschitz regularity are positive, the amplitudes of the
WTMMwould increase as j increases, while the noise creates singularities whose Lipschitz reg-
ularity is negative, its modulus maximum will decrease with the increasing of the level j.

2.2.3 Reconstruction of wavelet coefficients using Hermite interpolation. As a method
of piecewise-polynomial interpolation, Hermite interpolation matches the observed values of
their first derivatives, which agrees well with the fact that the absolute value of the first deriva-
tive of a WTMM is zero. In [58] and [59], a Hermite interpolation polynomial is utilized to
reconstruct wavelet coefficients fromWTMM points, which yields to high computational effi-
ciency compared with Mallat's alternating projection reconstruction algorithm. In this study,
we use Hermite interpolation to accelerate the reconstruction process of wavelet coefficients.
For simplicity, letWj, t be the wavelet coefficients of a function at the position t, where j repre-
sents the resolution level. Let Aj, r(r = 1, 2, . . ., r0) denote the local maxima ofWj, t for modulus
maximum lines at the position tj, r, the reconstructed wavelet coefficients can be given as fol-
lows:

W 0
j; t ¼ Aj; r 1� 2

t � tj; r
tj; r � tj; rþ1

" #
t � tj; rþ1

tj;r � tj; rþ1

" #2

þ Aj; rþ1 1� 2
t � tj; rþ1

tj; rþ1 � tj; r

" #
t � tj; r

tj; r � tj; rþ1

" #2

; ð7Þ

where t 2 [tj, r, tj, r+1] and r = 1, 2, . . .,r0−1. Eq (7) gives the wavelet coefficient points between
adjacent local maxima at every resolution level. Note that the degree of the interpolation poly-
nomial is only three. Therefore, this reconstruction scheme simplifies and accelerates the
reconstruction process.

2.2.4 An optimized algorithm for singularity detection withWTMM. In this subsection,
we attempt to discriminate between the singular points of exons and introns, both presented in
the DNA sequences. Given the input signal and the input noise (detailed in Section 2.3.2), our
singularity detection algorithm for exon detection is described as follows:

1. Select the wavelet base and the maximum decomposition level J. Then, transform the input
signal and the input noise into the coefficient set C = {w1, . . ., wJ, vJ} and the wavelet coeffi-

cient setW ðnÞ ¼ fwðnÞ
1 ; . . . ;wðnÞ

J g, respectively, by the SWT method.

2. Calculate the local modulus maxima and their positions on each level from the wavelet coef-
ficient setW = {w1, . . ., wJ} of the input signal. At level J, retain the local modulus maxima
which is greater than a threshold value and delete the local modulus maxima which is less
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than this threshold. In this paper, the threshold value is decided by

Th ¼ c � ðmaxðwðnÞ
J Þ=JÞ; ð8Þ

where c is the weight value determined by experience.

3. At level j = J−1, search modulus maxima that propagate from level J to J−1. Set j = j−1,
repeat the process until J = 1. The maxima set for modulus maximum lines is marked as
W 0 ¼ fw0

1; . . . ;w0
Jg.

4. Utilize the Hermite interpolation polynomial method to reconstruct the wavelet coefficients
fromW 0 ¼ fw0

1; . . . ;w0
Jg, then perform the inverse SWT to obtain the desired signal.

2.3 Method for Short Exon Detection Based onWTMM
In this section, we first describe a method to estimate the background noise of intron regions
by using a notch filter with its notch centered at ω0 = 2π/3. The second part details the con-
struction algorithm of nucleotide distribution sequence. Finally, we present our WTMM-based
method for short exon detection.

2.3.1 Estimate background noise using notch filter. In order to estimate the noise level
in intron regions, we suppress the TBP components from background information by filtering
the genomic sequence through a notch filter with passband centered at ω0 = 2π/3. The notch
filter can be obtained by starting from a second order all-pass filter [22]

AðzÞ ¼ R2 � 2Rcosyz�1 þ z�2

1� 2Rcosyz�1 þ R2z�2
; ð9Þ

which has poles at Re±jθ and zeros at 1/Re±jθ. Then the notch filter G(z) has the form

GðzÞ ¼ 1þ AðzÞ
2

¼ K
R2 � 2coso0z

�1 þ z�2

1� 2Rcosyz�1 þ R2z�2

� �
; ð10Þ

where K = (1 + R2)/2, cosω0 = 2Rcosθ/(1 + R2) and R = 0.992. By choosing ω0 = 2π/3, the filter
G(z) can be used to suppress the TBP components of the DNA effectively [30]. The response of
G(z) is shown in Fig 2.

Fig 2. Notch filter responses for R = 0.992.

doi:10.1371/journal.pone.0163088.g002
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2.3.2 Construction algorithm of nucleotide distribution sequence. Set N and L to be
positive integers of multiple 3. Let ux(x 2 {A−T, C−G}) denote a DNA paired-numerical
sequence of length N. The sequence of nucleotide distribution is calculated as follows:

1. Slice ux into segments (or windows) of length L along the forward and reverse directions of
the DNA sequence respectively, where neighboring segments overlap by L − 3 points. The l-
th segment of ux in both directions can be represented as

Dk1; xðlÞ ¼ fuk1; x½3l�; uk1; x½3l þ 1�; . . . ; uk1; x½3l þ L� 1�g; l ¼ 0; 1; . . . ; LD ð11Þ

and

Dk2; xðlÞ ¼ fuk2; x½3ðLD � lÞ þ L� 1�; uk2; x½3ðLD � lÞ þ L� 2�; . . . ; uk2; x½3ðLD � lÞ�g;
l ¼ 0; 1; . . . ; LD; ð12Þ

where LD = (N−L)/3, κ1 and κ2 represent the forward and reverse directions of DNA
sequence respectively.

2. Let fκ, x(l, p) be the occurrence frequencies of nucleotides at codon position p of Dκ, x(l),
where κ 2 {κ1, κ2} and p 2 {0, 1, 2}. The sequence of nucleotide distribution along one
direction of the DNA sequence is defined as

Fk; x ¼ f�f k; xðl; 0Þ; �f k; xðl; 1Þ; �f k; xðl; 2Þg
¼ f�f k; xð0; 0Þ; �f k; xð0; 1Þ; �f k; xð0; 2Þ; �f k; xð1; 0Þ; �f k; xð1; 1Þ; �f k; xð1; 2Þ;
. . . ; �f k; xððN � LÞ=3; 0Þ; �f k; xððN � LÞ=3; 1Þ; �f k; xððN � LÞ=3; 2Þg;

ð13Þ

where �f k; xðl; pÞ ¼ fk; xðl; pÞ � 1
3

X2
p¼0

fk; xðl; pÞ.

3. With the DNA sequence ux(x 2 {A−T, C−G}) taken as input, let uðnÞx denote the output of

the notch filter G(z) of Eq (10). Set ux ¼ uðnÞx , and repeat the step (1) and step (2), the nucle-
otide distribution sequence for estimated noise is marked as

FðnÞ
k; x ¼ f�f ðnÞk; xðl; 0Þ; �f ðnÞk; xðl; 1Þ; �f ðnÞk; xðl; 2Þg: ð14Þ

2.3.3 Short exon detection algorithm based onWTMM. Following the Section 2.2.4 and
Section 2.3.2, our WTMM-based method for short exon detection works as follows, and the
flow chart of this algorithm below is shown in Fig 3.

Step 1: Take Fκ, x and �F ðnÞ
k;x as inputs, where κ 2 {κ1, κ2} and x 2 {A−T, C−G}. Then, perform

the singularity detection algorithm on the inputs, to obtain the desired sequence

F 0
k; x ¼ ff 0k; xðl; 0Þ; f 0k; xðl; 1Þ; f 0k; xðl; 2Þg; l ¼ 0; 1; . . . ; ðN � LÞ=3: ð15Þ

Step 2: From Eqs (3) and (15), the TBP spectrum for the l-th segment in one direction is

PkðlÞ¼
X
x

Pk; xðlÞ

¼
X
x

f 0k; xðl; 0Þ � 1þ f 0k; xðl; 1Þ � e�i2p=3 þ f 0k; xðl; 2Þ � ei2p=3
�� ��2: ð16Þ
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Step 3: In view of Eq (16), the output feature value can be calculated based on the following
equation:

PðlÞ¼
X
k

PkðlÞ: ð17Þ

Step 4: Interpolate P(l) to get the length of the signal back to N.

3 Results and Discussion

3.1 General Setting
In this section, we provide experiments of exon detection by using the WTMM-based method.
A window length of 90 points is used throughout the experiments, and the input is represented
up to 4 resolution levels through the biorthogonal wavelet function Bior1.3. In our WTMM-
based method, the moderate value of weight coefficient of Eq (8) is set to c 2 [0.6, 0.7]. Herein,
the WTMM-based method with weight coefficient c = 0.7 is denoted by WTMM I, while the
WTMM II denotes the WTMM approach for the weight coefficient c = 0.6.

As a comparison, we have evaluated the general performances of three other methods:
EPND [25], MGWT [26] and FFTEMD [27]. In the case of MGWT, the window length is
1200, and the scale parameter is set to 40 exponentially-separated values between 0.2 and 0.7
for four input-sequences. In order to investigate the performance of MGWT on short exon
detection, the operation on MGWT with window length 1200 points and scale values exponen-
tially separated between 0.1 and 0.7 is denoted by MGWT I, while MGWT II denotes the

Fig 3. Flow chart of theWTMMmethod for exon detection.

doi:10.1371/journal.pone.0163088.g003
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MGWT with window length 900 points and scale values exponentially separated between 0.2
and 0.7. To quantify the comparison, the magnitudes of TBP spectrums obtained from the
WTMM I, WTMM II, MGWT, MGWT I, MGWT II and FFTEMD on each DNA sequence
have been normalized with values between 0 and 1.

3.2 Data Resources
To evaluate the performance of various methods, the DNA sequence AB021866 of H. sapien
(GenBank file AB021866) is used in our study. In order to comprehensively evaluate and compare
ourWTMM-based algorithm with the other methods, the two benchmark data sets HMR195
[60] and BG570 [61] have been considered. Table 2 summarizes the statistics of the considered
test data sets. Fig 4 shows the distribution of the exon lengths in these two benchmark data sets.

3.3. Evaluation Metrics
In order to evaluate the performance of considered methods, we compute the following counts:
TP is the true positive, which is the length of nucleotides of correctly detected exons; TN is the
true negative, which is the length of nucleotides of correctly detected introns; FN is the false
negative, which is the length of nucleotides of wrongly detected introns; and FP is the false pos-
itive, which is the length of nucleotides of wrongly detected exons. Following the evaluation
metric included in [60], the performances of various methods are measured in terms of the cor-
relation coefficient (CC)

CC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp ; ð18Þ

which provides a measure of overall detection accuracy.
We also calculate the sensitivity Sn and specificity Sp:

Sn ¼ TP
TP þ FN

; ð19Þ

Sp ¼ TN
TN þ FP

: ð20Þ

The sensitivity provides a measure of the proportion of exon nucleotides that have been cor-
rectly detected as exons, and the specificity provides the proportion of intron nucleotides that
have been correctly detected as introns. We use the average value of Sn and Sp as a measure of
the probability of correct detection.

For validation of the classification of sequences, we employ the receiver operating character-
istic (ROC) curve [62, 63], which explores the effects on Sensitivity and 1 − Specificity.

3.4 Performance Evaluation on a Typical Sequence
The DNA sequence AB021866 of 3,611 bp contains seven exons located at relative positions of
43–93, 225–259, 1,573–1,681, 2,393–2,543, 2,683–2,801, 2,874–2,962 and 3,392–3,413. The

Table 2. Statistics of the test data sets.

Dataset Species Genes Length Exons Average length of exons Proportion of exons Exons (�150 bp) density in total exons

HMR195 Mammalian 195 1,383,720 948 208 14% 58.97%

BG570 Vertebrate 570 2,892,149 2,649 168 15.37% 62.67%

doi:10.1371/journal.pone.0163088.t002
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experimental results obtained from consider methods on this particular sequence are presented
in Fig 5. Abscissa axes of all the plots represent the relative base positions of nucleotides on the
DNA sequence, and the actual locations of exons are marked with rectangles in dashed line.
From Fig 5, the seven short exons are distinct in the results of WTMM I and WTMM II. The
CC values obtained from the WTMM I, WTMM II, EPND, MGWT, MGWT I, MGWT II and
FFTEMD on this particular sequence are 0.814, 0.740, 0.457, 0.543, 0.505 and 0.625, respec-
tively. The ROC curves achieved in the WTMM I, WTMM II, MGWT, MGWT I, MGWT II
and FFTEMDmethods for this sequence are shown in Fig 6. This figure clearly indicates that
our two WTMMmethods outperform their counterparts along the ROC curves at all classifica-
tion thresholds.

Fig 4. Distribution of exon lengths in two benchmark data sets.

doi:10.1371/journal.pone.0163088.g004
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3.5 Performance Evaluation on Benchmark Data Sets
To evaluate the performances of the considered methods over a larger number of sequences,
we carry the classification experiments to compare the efficiencies of the introduced methodol-
ogies over HMR195 and BG570 data sets.

In order to set up a comprehensive comparison for exon detection, especially short exon
detection, we first conduct an experiment to calculate the CC values achieved in considered
methods over exons in five ranges of lengths (length�50 bp, length�100 bp, length�150 bp,

Fig 5. Detection plots for sequence AB021866 using variousmethods.

doi:10.1371/journal.pone.0163088.g005

Fig 6. ROC curves for performance evaluation using the sequence AB021866.

doi:10.1371/journal.pone.0163088.g006
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length>150 bp and all length). In our view, the exons with these ranges are relatively short
(�150 bp) and long (>150 bp). Fig 7 depicts the best accuracy in terms of the correlation coef-
ficient calculated at each group of exons from the HMR195&BG570. Similar results are shown
in Figs 8 and 9 corresponding to the HMR195 and BG570, respectively. The results in Fig 7
show that the WTMM I outperforms the performance of the other consider methods at these
five ranges of exon lengths. The WTMM II gives good results at the first three ranges and is
close to the MGWT at the range>150, while it slightly exceeds the other methods at the range
�50. In addition, the performances of the MGWT I and MGWT II outperform the MGWT at
ranges�50,�100 and�150, but less than the MGWT at the ranges of>150 and all length. In
general, our WTMM-based method consistently generates higher detection accuracy when it
deals with exons that are either relatively short or long in length.

Table 3 summaries the experiment results of the different considered methods at each
group of exons from the HMR195&BG570 in terms of the correlation coefficient. Similar

Fig 7. The bar chart of CC of variousmethods over HMR195&BG570 when they have been applied to sequences of five ranges of exon lengths.

doi:10.1371/journal.pone.0163088.g007

Fig 8. The bar chart of CC of variousmethods over HMR195 when they have been applied to sequences of five ranges of exon lengths.

doi:10.1371/journal.pone.0163088.g008
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results are listed in Tables 4 and 5 corresponding to the HMR195 and BG570, respectively. By
comparison with the existing methods, the detection results of Table 3 show that: 1) Our
WTMM-based method exhibits at least improvement of 74.2%, 12.3% and 21.6% on the exons
of lengths not greater than 50 bp, 100 bp and 150 bp, respectively; 2) The WTMM-based
method reveals at least improvements of 10.3% and 14.1% over the exons of lengths greater
than 150 bp and all length, respectively.

An additional classification experiment is designed to assess the performances of introduced
methods. Fig 10 depicts the best accuracy in terms of the average of Sn and Sp calculated at
each group of exons from the HMR195&BG570. It should be noted that the EPND generates
high accuracy at the range�50, which can be contributed to the statement [25]: “If a DNA
region less than 50 base pairs is identified as an intron, and is flanked by two exon regions, this
region is often a false negative, and is reset as exon region; similarly, if a DNA region less than 50
base pairs is identified as an exon, and is flanked by two intron regions, this region is often a false
positive, and is reset as an intron region.”. These plots again establish the superiority of our
WTMM-based algorithm over other methods in short exon detection.

The ROC curves obtained from the WTMM I, WTMM II, MGWT, MGWT I, MGWT II
and FFTEMDmethods for HMR195&BG570 are shown in Fig 11. It can be observed that the
WTMM-based method generates higher detection accuracy compared with its counterparts.
The experiments in ROC plots are consistent with the results of Figs 7 and 10.

Fig 9. The bar chart of CC of variousmethods over BG570 when they have been applied to sequences of five ranges of exon lengths.

doi:10.1371/journal.pone.0163088.g009

Table 3. Summary of the experiment results of the different consideredmethods at each group of exons from HMR195&BG570.

Method Correlation coefficient (CC)

�50 bp �100 bp �150 bp >150 bp All length

WTMM I 0.163 0.437 0.513 0.620 0.583

WTMM II 0.256 0.431 0.474 0.558 0.521

EPND 0.049 0.064 0.116 0.344 0.294

MGWT 0.095 0.356 0.407 0.562 0.511

MGWT I 0.147 0.389 0.418 0.521 0.486

MGWT II 0.117 0.381 0.422 0.536 0.498

FFTEMD 0.115 0.265 0.318 0.475 0.424

doi:10.1371/journal.pone.0163088.t003
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3.6 Summary
This research is aimed at detecting short exons in eukaryotic DNA sequences. The misinterpre-
tation of exon locations will lead to a misunderstanding of the gene or exon properties. This
open problem poses a challenge to understand and define precisely the biochemical processes
and information involved in the pathway from DNA to proteins. Consequently, knowledge
pertaining to exon locations may result in the design of customized drugs and new cures for

Table 4. Summary of the experiment results of the different consideredmethods at each group of exons from HMR195.

Method Correlation coefficient (CC)

�50 bp �100 bp �150 bp >150 bp All length

WTMM I 0.230 0.380 0.480 0.638 0.600

WTMM II 0.312 0.427 0.481 0.571 0.540

EPND 0.065 0.068 0.110 0.381 0.332

MGWT 0.167 0.375 0.426 0.562 0.525

MGWT I 0.194 0.394 0.426 0.522 0.494

MGWT II 0.196 0.388 0.429 0.537 0.507

FFTEMD 0.120 0.274 0.321 0.487 0.443

doi:10.1371/journal.pone.0163088.t004

Table 5. Summary of the experiment results of the different consideredmethods at each group of exons from BG570.

Method Correlation coefficient (CC)

�50 bp �100 bp �150 bp >150 bp All length

WTMM I 0.147 0.458 0.526 0.621 0.585

WTMM II 0.251 0.434 0.475 0.564 0.524

EPND 0.043 0.062 0.118 0.327 0.277

MGWT 0.069 0.346 0.398 0.565 0.506

MGWT I 0.130 0.385 0.415 0.522 0.484

MGWT II 0.095 0.376 0.418 0.538 0.496

FFTEMD 0.123 0.258 0.314 0.471 0.416

doi:10.1371/journal.pone.0163088.t005

Fig 10. The plots of (Sn + Sp)/2 of various methods over HMR195&BG570 when they have been applied to sequences of five ranges of exon
lengths.

doi:10.1371/journal.pone.0163088.g010
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diseases [1]. Fig 12 is an example of the detection plots for gene BRCA1 (GenBank file
AY365046), in the range of 40,001–60,000 bp. This particular segment has five exons located at
relative positions of 43,505–43,676, 49,518–49,644, 51,608–51,798, 54,905–55,215 and 58,458–
58,545, corresponding to the exons 11–15 of BRCA1. Abscissa axes of all the plots represent
the relative base positions, and the actual locations of exons are marked with rectangles (dashed
line). In gene BRCA1, the mutations in exon 11 are associated with the forms of breast cancer
[34–37]. It is clear that our WTMM-based algorithm can generate high peaks in the region of
exon 11 than the other methods.

Fig 11. ROC plots for theWTMM I, WTMM II, MGWT, MGWT I, MGWT II and FFTEMD using HMR195&BG570.

doi:10.1371/journal.pone.0163088.g011

Fig 12. Detection plots for sequence BRCA1, in the range of 40,001–60,000 bp.

doi:10.1371/journal.pone.0163088.g012
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To summarize, we have used the WTMM technique to detect exons in eukaryotic genome
sequences. Compared with three existing algorithms, the technique described in this paper
provides an improvement in short exon detection. The WTMM-based method introduced in
this study has the following three features: (1) This technique first constructs a sequence of
nucleotide distribution to measure the 3-base periodicity. The spectral contents are calcu-
lated from the nucleotide frequencies in the three reading frames, which incorporates the
reality of proteins' prefer specific amino acid compositions and reduces the computational
cost. (2) The important feature of our method is to explore the evolution of singularities of
short exons across scales from the local maxima of their wavelet transform modulus. Unlike
the description of the overall regularity for exons, the proposed measure provides significant
patterns that are rarely observed with the traditional methods. (3) The method calculates
the output values from a paired-numerical representation in both forward and reverse
directions, which reflects the reality of the structure of DNA and increases computational
efficiency.

4 Conclusion
In this paper, a model-independent method based on the singularity detection with wavelet
transform modulus maxima has been developed for detecting eukaryotic exons, especially
short exons. The WTMM technique employed in our method makes it capable of working
with short exon detection in the performance of experimental evaluation. The analysis of the
proposed method has shown that it has an adaptive response to the location and spatial distri-
bution of singular points represented by short exons. Experimental results show that the
WTMM-based method outperforms the assessed model-independent methods for short exon
detection in terms of evaluation metrics.
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