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Abstract: Background: The purpose of this study was to demonstrate the usefulness of 3D image-based
virtual reduction by validating the evaluation criteria according to guidelines suggested by the AO
Surgery Reference. Methods: For this experiment, 19 intact radial ORTHObones (ORTHObones radius,
3B Scientific, Germany, Hamburg) without any fractures were prepared. All ORTHObones with
six cortical marking holes (three points on the distal part and three points on the proximal part)
were scanned using a CT scanner twice (before/after intentional fracture of the ORTHObone). After
the virtual reduction of all 19 ORTHObones, accuracy evaluations using the four criteria (length
variation, apposition variation, alignment variation, Rotation Variation) suggested in the AO Surgery
Reference were performed. Results: The mean (M) length variation was 0.42 mm, with 0.01 mm
standard deviation (SD). The M apposition variation was 0.48 mm, with 0.40 mm SD. The M AP
angulation variation (for alignment variation) was 3.24◦, with 2.95◦ SD. The M lateral angulation
variation (for alignment variation) was 0.09◦, with 0.13◦ SD. The M angle of axial rotation was 1.27◦

with SD: 1.19◦. Conclusions: The method of accuracy evaluation used in this study can be helpful in
establishing a reliable plan.

Keywords: virtual reduction; 3D image; surgical plan; 3D image accuracy; radial fractures

1. Introduction

Purpose of fracture treatment is to achieve the union of the bone fragments [1–9].
Moreover, it is to restore the function of the musculoskeletal system and prevent future
complications associated with the failure of restoration of the normal anatomy [10–13]. The
reduction of a fracture is the process of reconstructing the fractured bone by relocating the
pieces of the fractured bones in their original positions [14–17]. Because the prognosis of
the fracture can be concluded by the performance of the reduction, reduction is the one
of most significant steps in the surgery [18,19]. Although there have been many recent
studies regarding reductions using three-dimensional (3D) images or 3D printing, most
of the studies have reported results through tactile modeling or mirroring techniques [20].
Moreover, the authors in those studies concluded good performance using their own
measures of success without quantified assessments [1,21,22].

Conventional surgical simulation means brainstorming to establish surgical strat-
egy, usually using 3D computed tomography (CT) images of broken bones, rather than
3D-image-based reduction of the fractures [23,24]. Because most of the current viewer
systems are based on the picture archiving and communication system (PACS) used in
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most medical institutions, the function of editing or modeling 3D objects is not available
and pre-surgical simulation with the virtual reduction of bone fractures (hereafter referred
to as “3D-image-based reduction”) was not originally possible [25–30]. Thus, the accu-
racy and reliability of 3D image-based virtual reduction using quantitative assessment
also could not be determined using that software. If 3D-image-based virtual reduction
can aid in the restoration of the pre-injury anatomy of fractured bones, it will be able to
provide a model for 3D-printed implant fabrication and can be used as a highly reliable
pre-surgical simulation and fracture management tool. A more accurate surgical approach
can be realized with greatly reduced operation times, minimizing the associated surgical
complications [31–39]. However, to be helpful to the clinical field, the verification of the
accuracy of 3D-image-based virtual reduction should be determined. Although there are
several analysis methods for 3D objects, we found a suitable analysis method through
the quantitative approach with clinical guidelines for 3D anatomical bone structures after
reduction [40].

3D image-based virtual reduction can be helpful because orthopedic surgeons can
confirm the eventual shape of the reduced bone before the actual operation. That result can
be derived using the 3D modeling tool, or it can be automatically generated by dedicated
software such as KAVIPLAN (Ver 1.0, KAVILAB Co., Ltd., Seoul, Korea). However, to refer
the results of the 3D image-based virtual reduction to the actual surgery, the accuracy of
the results should be presented as the numerical values to confirm the reliability. The actual
reduction process is manually being progressed with the only naked eye, like doing a 3D
puzzle. And there can be some bone fragments which are occluded by the soft-tissue such
as blood vessels, nerves, etc. Moreover, surgeons normally can see only the restricted part
by an incision. For these reasons, it is not easy to progress the actual reduction when the
fracture case includes a high complexity level or the fracture is generated on the difficult
region. However, if the surgeon can perform the difficult reduction including even the
occluded fragments by the soft-tissue with seeing the 3D image for the reduced bone, the
3D puzzle can be done with seeing the feature of the true structure. The results of this
study and its trend can provide an opportunity to get insight for effective surgical strategy
as follows. If orthopedic surgeons can have faith for the final shape of virtually reduced
bone, it will be clearly helpful to select the kind of fixation device, and to expect its location.
Although the indefinite final shape of virtually reduced bone can be provided, orthopedic
surgeons are not easy to have confidence to correctly decide which one is the best device for
the surgery without the correct shape. In that case, they have to depend on the final shape
by the actual reduction rather than use of virtual reduction during the operation. Moreover,
many times of change for the kind of the device and its shape to fit the shape on the bone
will be essential. These kinds of concerns are caused by the indefinite final shape for the
reduced bone by the expectation. The pre-operative surgical plan including the virtual
reduction without the accuracy will make the meaning of planning weak. The purpose
of this study was to demonstrate the usefulness of 3D image-based virtual reduction by
validating the evaluation criteria according to guidelines suggested by the AO Surgery
Reference. All of the results in this study were based on numerical values measured in a
3D coordinate system with quantified assessments.

2. Materials and Methods
2.1. Material Preparation and CT Scanning

For this experiment, 19 intact radial ORTHObones (ORTHObones radius, 3B Scientific,
Hamburg, Germany) without any fractures were prepared. Each ORTHObone was tagged
with a number from 1 to 19. The average size was 25 cm (H), 7 cm (W), and 3 cm (T), to
reflect a typical adult’s radius bone. Each ORTHObone had small size and shape variations,
and both the rigidity and density of the ORTHObones were similar to those of human bones.
Firstly, ORTHObones with six cortical marking holes (three points on the distal part and
three points on the proximal part) were scanned using a CT scanner (120 kVp at 100 mAs;
Siemens, SOMATOM Definitions AS+, Munich, Germany). Moreover, the three center
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points of these marking holes satisfied a minimal condition to make a plane for generating
a normal vector, which is the signature of 3D angulation. CT images were acquired with a
0.75-mm slice thickness according to the digital imaging and communications in medicine
(DICOM) format with a 512× 512 pixel matrix. All DICOM images segmented for only part
of the bone were reconstructed as 3D images using dedicated MIMICS software (Ver 21.0,
Materialise, Leuven, Belgium). The next step was scanning after the intentional fracture of
the ORTHObone. Many fracture patterns are possible depending upon conditions such as
stress and the force vector. Obviously, the trend of actual fracture is too various to replicate
to all ORTHObones in this study. Instead, the regions of fracture were classified as proximal
fracture, mid-shaft fracture and distal fracture. And if the number of bone fragments is
over two pieces, that case is classified as the comminuted fracture. Moreover, the pattern
of fracture is classified as the spiral pattern, oblique pattern, and transverse pattern. In
order to reflect all classifications as possible, the experimenter who is one of the authors
intentionally gave forces as various methods to each ORTHObone, such as compressing,
bending, twisting, and universal crushing stress. As a result, the various fractures for the
ORTHObones were accomplished according to our intention. However, we intentionally
used simplified classifications, namely a simple fracture (2 pieces; a total of 11 cases) and a
comminuted fracture (more than 3 pieces; a total of 8 cases) [41]. When an external force
is applied to the ORTHObone in a relatively perpendicular direction, the probability of a
transverse fracture occurring is high. Otherwise, when the external force is applied with
twisting, the probability of a spiral fracture occurring is high. Each fracture classification
included both transverse (4 cases) and spiral patterns (15 cases), as shown in Figure 1.
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Figure 1. Experimental fracture models for 19 ORTHObone tag numbers. The simple fractures
(11 cases) involved only two fragments, while the comminuted fractures (8 cases) involved three or
more fragments. Each classification included both transverse fractures (4 cases) and spiral fractures
(15 cases).

2.2. Virtual Reduction and Accuracy Evaluation

The reduction of the fractured bone is a relocation of each bone fragment at the
appropriate position during surgery. Likewise, a virtual reduction is a work process for
relocating 3D bone fragment objects using a 3D modeling tool or a 3D space-based editing
tool. Mostly, a virtual reduction is used for establishing a reduction plan for trauma surgery.
Virtual reductions can be more effective in fractured bone models with high complexity. In
this study, the virtual reduction for all 19 ORTHObones was performed manually using the
3D modeling tool Metasequoia 4 (Tetraface, Ver 4.7.0, Tokyo, Japan). The 3D reconstructed
bone images from MIMICS were converted to the stereolithography (STL) format and then
imported into Metasequoia 4. Because the 3D object of each bone fragment was already
separated from MIMICS, the virtual reduction was conducted by intuitively operating
each 3D object, such as moving and rotating. When a virtual reduction is performed using
the 3D modeling tool, because there is no tactile sensation like in an actual reduction,
virtual reductions depend only on the shape of the ultimate feature. For this reason, an
accurate evaluation of the virtual reduction is essential. After the virtual reduction of all
19 ORTHObones, accuracy evaluations using the four criteria suggested in the AO Surgery
Reference were performed. The accuracy evaluation compared the image registration
between the 3D object for the original bone and the 3D object after the virtual reduction.
To adjust the location of the virtually reduced objects to the location of the original bone,
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the three cortical marking holes on the distal part of the radius were used. When the
three cortical marking holes on the distal part were matched between the virtually reduced
object and the original object, the dislocation of the other objects was easily revealed by the
variation in position (such as the length and angle) of the three remaining marking holes
on the proximal part. Figure 2 shows a process of preparation for evaluating the accuracy
of virtual reduction.
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Figure 2. Scheme of the workflow for virtual reduction and image registration between the virtually
reduced object and the original object. (1) CT scanning of the original bone, (2) assignment of patches
at the cortical marking holes, (3) fracture of the ORTHObone, (4) CT scanning of the fractured bone,
(5) virtual reduction, and (6) image registration.

The first evaluation was performed by measuring the vertical length between the
centers of the marking holes. Figure 3A shows the method used to measure the length
between the centers of the marking holes and the variation. The distance between Points
1 and 4, 2 and 5, and 3 and 6 were measured. When the Z-axis of the 3D modeling
tool agreed with the long axis of the long bone, the length in only the Z-axis direction
was measured and the variation between the original length and the length after virtual
reduction was calculated.

The second evaluation was a verification of the apposition, which can show the
location variation of objects on the XY plane. Figure 3B shows the method of the accuracy
evaluation of apposition in this study. When the viewpoint of the object in the 3D space
was fixed according to the Z-axis, the sky-blue 2D triangle shown in Figure 3B composed
of the centers of the three marking holes (Point 1, Point 2, and Point 3) was observed.
Moreover, the deep blue triangle in Figure 3B (Point 4, Point 5, and Point 6) in the original
object and the red triangle (Point 4′, Point 5′, and Point 6′) from the virtually reduced object
were also observed. The central point of each triangle was used to calculate the variation
in apposition. Because the apposition is based on the variation in the 2D coordinate, the
Z-coordinate was excluded from the consideration of apposition. The apposition variation
was calculated by the change in the central point from the blue point on the blue triangle to
the red point on the red triangle after the virtual reduction.
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Figure 3. 3D-based method of accuracy evaluation for virtual reduction. (A) There were three cortical
marking holes on the distal part and three points on the proximal part. The three original lengths only
in the Z-axis were measured as Length 1 (between Point 1 and Point 4), Length 2 (between Point 2 and
Point 5) and Length 3 (between Point 3 and Point 6). The length variation was calculated using the
change in length (Length 1′, Length 2′, and Length 3′). (B) When the 2D sky blue color triangles for
both the original object and the virtually reduced object were fixed at the same position, the location
of the deep 2D blue triangle belonging to the original object was converted to the location of the 2D
red triangle in the virtually reduced object. The variation of apposition was calculated by measuring
the variation of the X and Y coordinates from the central point of the triangles (from deep blue to
red) (C) The three marking holes on the distal part generated Normal Vector 1 via Plane 1, and the
other three marking holes on the proximal part generated Normal Vector 2 via Plane 2 (from original
object), and Normal Vector 2′ via Plane 2′ (from the virtually reduced object). AP angulation and
Lateral angulation indicate the difference in the angle between Normal Vector 2 and Normal Vector 2′

on the AP plane and the lateral plane, respectively. The angle difference in the rotation was measured
by the variation in the angle between Normal Vector 2 and Normal Vector 2′ on the axial plane.

Although the third and last evaluation corresponded to the measurements of alignment
and rotation, respectively, both evaluations are performed at once using 3D angulation.
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Because 3D angulation includes three angles for the X-axis, Y-axis, and Z-axis, 2D angles
can be measured when the 3D angulation vector is projected onto a 2D plane with one
reference axis, which is included on that plane. For example, when there is a 3D angulation
vector with X, Y, and Z coordinates, if the Z-coordinate is changed to 0, the angulation
vector will be a 2D vector on the XY plane. To measure both the alignment and rotation of
the bone by converting to 2D vectors, a 3D angulation vector induced by the three cortical
marking holes was required. The bone objects on the left side of Figure 3C show the set of
planes used to generate the 3D angulation vectors. Plane 1 was a plane composed of two
vectors (Point 1→ Point 2 and Point 1→ Point 3). Normal Vector 1, which was a vertical
vector with Plane 1, was set. Using the same principle, Normal Vector 2 from Plane 2 (Point
4→ Point 5 and Point 4→ Point 6) originated from the original object and Normal Vector 2′

(Point 4′→ Point 5′ and Point 4′→ Point 6′) from Plane 2′ belonged to the virtually reduced
object. After the projection of the 3D angulation vectors (Normal Vectors) on the 2D plane,
the intrinsic 2D angle between Normal Vector 1 and Normal Vector 2 was measured. The
changed 2D angle was also measured using Normal Vector 1 and Normal Vector 2′. The
variation in the 2D angle was calculated by the difference between the intrinsic 2D angle
and the changed 2D angle on the same plane. In this study, we set the long axis of the long
bone as the Z-axis. And because the bone objects on the left side of Figure 3C were set to
the X-axis, the anteroposterior (AP) plane was set as the YZ plane, and the lateral and axial
planes were set as the XZ and XY planes, respectively. Hence, we calculated the alignment
variation from the variances in angulation in the AP plane and lateral plane. Moreover, the
difference in the angle caused by rotation was calculated from the variance in angulation in
the axial plane.

2.3. Statistical Analysis

For statistical analysis, the model of the paired t-test with an alpha of 0.05 was adopted
using Statistics and Machine Learning Toolbox in MATLAB (R2021b, MathWorks, MA,
USA). When we validated the standard normal distribution of the original object data using
criteria that corresponded to both the mean and standard deviation (SD), the results for all
raw data showed normality [42–44]. When the null hypothesis is rejected (h = 0), it means
that two samples are not significantly different. However, if the null hypothesis is not ‘0′,
there should be a clear difference between the samples.

3. Results
3.1. Ultimate Shape of the Virtual Reduction

Figure 4 shows the ultimate shape of all virtually reduced objects for the fractured
ORTHObones. The original shapes of the bones before the fractures are arranged at the
top of Figure 4. The virtually reduced objects for the fractured bones are arranged at the
bottom. Each bone fragment is represented in different colors such as blue, green, red, etc.
It was difficult to visualize specific differences between the original shape and the shape of
the virtually reduced object.

3.2. Length Variation

Figure 5A shows the measured lengths of the original objects and the virtually reduced
objects. Length 1, Length 2, and Length 3 are the distances between Points 1 and 4, Points 2
and 5, and Points 3 and 6, respectively. Both the mean and SD (S in the figure) shown on the
bar in the graph were calculated using the results of the 19 cases. The means measured from
the original object for Length 1, Length 2, and Length 3 were 227.53 mm (SD: 1.72 mm),
188.95 mm (SD: 1.66 mm), and 186.78 (5.89 mm). The means measured from the virtually
reduced object for Length 1′, Length 2′, and Length 3′ were 227.13 mm (SD: 1.83 mm),
188.54 mm (SD: 1.76 mm), and 186.38 (5.99 mm), respectively. There were no statistical
differences between the original object and the virtually reduced object in the three lengths
analyzed by the paired t-test. The results for the individual variation in length according to
each case are shown in Figure 5B. The mean length variation was 0.42 mm, with 0.01 mm
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SD. The maximum and minimum variations were 0.94 mm (Case 10) and 0.00 mm (Case
13), respectively. Length variation values on the graph below 0 indicated that the length of
the virtually reduced object was shorter than that of the original object.
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3.3. Apposition Variation

The apposition variation after virtual reduction was also measured (Figure 6). The
graphs on the left, middle, and right show the results of apposition variation for Cases 1 to
7, Cases 8 to 14, and Cases 15 to 19, respectively. The central point of the deep blue triangle
in Figure 3B was calibrated at X = 0, and Y = 0 on the graph and the apposition variation
by the central point of the red triangle (in Figure 3B) is presented as a colored line. The
mean apposition variation was 0.48 mm, with 0.40 mm SD. The maximum and minimum
variations were 1.76 (Case 19) mm and 0.08 mm (Case 1), respectively.
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3.4. Alignment Variation

The results of alignment variation based on angulation in the virtual reduction are
shown in Figure 7. Each color line represents an individual AP angulation measured from
the angle between Normal Vector 1 and Normal Vector 2(2′). The alignment variation was
considered by the two kinds of angulations, AP angulation (Figure 7) and lateral angulation.
Figure 7A,B present the AP angulation of the original object (blue line) and the virtually
reduced object (red line), respectively. For intuitive comparison, both results overlapped
on the same graph are presented in Figure 7C (blue line; AP angulation measured from the
original object, red line; AP angulation measured from the virtually reduced object). The
difference in AP angulation between the original object and the virtually reduced object
is shown as a black line in Figure 7D. The mean AP angulation variation was 3.24◦, with
2.95◦ SD. The maximum and minimum variations were 9.35◦ (Case 13) and 0.00◦ (Case 4),
respectively. There was no statistical difference (h = 0) between the two samples with a
p-value of 0.9744 analyzed by the paired t-test.

Figure 8 shows the results of lateral angulation measured from the 2D angle on the
XZ plane and the variation. Figure 8A, B present the lateral angulation of the original
object (blue line) and the virtually reduced object (red line), respectively. The overlapping
results of both cases (blue line; lateral angulation measured in the original object (red line;
lateral angulation measured in the virtually reduced object) are shown in Figure 8C. The
difference in the lateral angulations is shown as a black line in Figure 8D. The mean lateral
angulation variation was 0.09◦ with SD: 0.13◦ The maximum and minimum variations
were 0.54◦ (Case 19) and 0.00◦ (Case 4 and Case 18), respectively. There was no statistical
difference (h = 0) between the two samples with a p-value of 0.9986 in the paired t-test.
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3.5. Rotation Variation

The 2D angle of rotation variation after virtual reduction was measured on the XY
plane using the 3D angulation set from Planes 1 2 (2′). Figure 9 shows the results of the
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measured angles of axial rotation and the variation. Figure 9A,B demonstrate the angles of
axial rotation of the original objects (blue line) and the virtually reduced objects (red line),
respectively. The overlapped results for both cases (blue line: the angle of the axial rotation
measured in the original object, red line: the angle of the axial rotation measured in the
virtually reduced object) are shown in Figure 9C. The rotation variation is represented by
a black line in Figure 9D. The mean angle of axial rotation was 1.27◦ with SD: 1.19◦ The
maximum and minimum variations were 3.80◦ (Case 13) and 0.00◦ (Case 4), respectively.
There was no statistical difference (h = 0) between the two samples with a p-value of 0.9852
analyzed by the paired t-test.
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variation between the original object and the virtually reduced bone. (A) The axial rotation measured
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4. Discussion

Virtual reductions using 3D object images can provide insight and guidelines for
surgery strategy planning in cases of trauma. Such surgical planning is especially more
helpful and effective in highly complex trauma cases [45]. Thus, to use patient-specific
fixation devices created using a 3D printer, an accurate model for virtual reduction is re-
quired. For this reason, an accurate evaluation of the virtual reduction before the operation
can promote more precise surgery, and quantitative assessments of the accuracy will lead
to reliable surgery results. We evaluated the accuracy of 3D image-based virtual reduc-
tions according to four criteria. The criteria from the AO Surgery Reference are focused
on the reduction of the tibia. However, because the accuracy evaluations in many other
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studies [46–49] of long bone reductions used the same criteria, we also performed the
evaluations using the above criteria.

The length variation results showed that the maximum variation was below 1 mm.
This variation in all cases showed the relatively high accuracy of the criterion for length.
However, some cases showed length variations below 0 (negative value). This means that
the length of the reduced bone was shorter than the original length. When the virtual
reduction is performed in a 3D space because there is no tactile impression between the
bones by the reduction, part of the object might invade the internal space of another object.
Although the results of this study cannot absolutely represent the major relation between
the length variation and the type of fracture, most of the results in this study showed a
bigger difference of the length variation in the case of comminuted fracture than the case
of single fracture. In the case of the comminuted fracture, because the virtual reduction is
one of processes for the relocation of the bone fragment, there are obviously more chances
to occur the length variation when the virtual reduction is progressed, due to the several
bone fragments. If the human who performs the virtual reduction sensitively considers
the collisions between bone fragments or the invasion of fragments to other fragments, the
above trend will be more remarkable.

Originally, the concept of apposition in bone reduction was the degree of conformity
of the side of the bone body between different fragments. Hence, we used the central
point of projected triangles, which were composed of three marking holes. The movement
of the central point corresponded to the movement of the side of the bone body. This
one point could provide information on the degree of conformity of the side of the bone
body. In the apposition variation results, there were only two cases over 1 mm in total
apposition variation length. However, because the mean variation was less than 0.5 mm,
the range of apposition variation was acceptable for the clinical application. The direction
of apposition was varied and there were no specific trends for the direction. However, the
trend in apposition variation was similar to the trend in rotation variation. The reason for
the similar tendency was that changes in the coordinates were limited to the XY plane only.

Different criteria were applied to alignment and rotation evaluations in this study. The
evaluation of alignment was divided into AP angulation and lateral angulation. Moreover,
the AP angulation, lateral angulation, and rotation variation results originated from the
same 3D angulation vector. We found the greatest difference in AP angulation in Case 13
(9.35◦). Although the difference seemed not to be acceptable for clinical application, the
difference in 3D angulation was only 0.11◦ (the worst case was 0.54◦) because compensation
from the lateral angulation was applied. Moreover, when several orthopedic surgeons
who were not aware of the AP angulation saw the registered image between the original
object and the virtually reduced object, they had difficulty finding the tilting point in the
AP view. The reason for the difficulty was that the difference in the 3D angulation was too
low to identify the tilting point. Because orthopedic surgeons cannot know the original
shape of the patient’s bone when they view an X-ray image or CT image of a fractured
bone, and although the ultimate shape of the reduced bone after surgery might look good,
surgeons can miss the tilting point by the hidden angle in the 3D angulation. For example,
although Cases 8 and 14 showed good ultimate shapes, both cases reached almost 5◦ AP
angulation. In this case, the decision on accuracy can be evaluated differently according to
the orthopedic surgeons. Although both cases had similar results in that the ultimate shape
looked good, the completely different results regarding the bone union and the structural
changes in the body can be caused by one factor. The results of the lateral angulation and
axial rotation showed good performance when compared to the AP angulation results. The
influence of the X-axis was the most impactful factor in AP angulation. Most movements of
the cortical marking holes were remarkable on the X-axis after virtual reduction. The mean
AP angulation variation for both and the mean angle of axial rotation were reported at
almost the same level with each SD which is smaller than mean. However, the only mean
lateral angulation variation showed smaller value than its SD. The reason for this result
is that there are abnormally large values or small values by comparing with most of the
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values. In the case of the mean lateral variation, the only one value showed an abnormally
large value from the data list.

Reduction evaluations have been performed using AP/lateral X-ray images to date.
The results in this study are meaningful in that methodology for the evaluation of reductions
in 3D coordinates was introduced. The rotation variation was especially hard to measure
using the general evaluation method. However, the rotation variation after the virtual
reduction in this study was presented as a quantified assessment. The alignment results
showed that specific point in that the measurement of the AP/lateral angulation on the 2D
X-ray image has probability for the inaccuracy of evaluation of the reduction. Moreover, 2D
X-ray images include disorder factors such as the dispersion of the X-ray, grid, positioning,
etc. For this reason, the accurate evaluation of alignment requires validation based on
3D angulation rather than the measurement of AP/lateral angulation on the 2D image.
Nevertheless, because we cannot ask all patients to undergo CT scanning after surgery to
evaluate the reduction outcome, we need to adopt a proper evaluation method according
to the condition of the patient.

This study had a limitation in that the virtual reduction was manually performed
and the results could change depending upon the engineer who is conducting the virtual
reduction. For this reason, the numerical results in this study cannot be absolute indicators
for evaluating the virtual reduction. We tried to provide a method to evaluate the accuracy
of virtual reductions using quantified assessments. However, because the results showed
high accuracy in the virtual reduction, it is possible that this methodology may be applied
to establish reliable surgical plans. In addition, it will be helpful to fabricate patient-
specific devices using a 3D printer without the mirroring technique. Because the mirroring
technique needs additional CT scanning of the opposite part (or through a wide field of
view) to extract the specific structure, the reliable virtual reduction results can be a good
resource for fabricating devices using a 3D printer.

From all of the results, we provide several visions to use the virtual reduction at the
clinical field as follows. First, the reliability of the virtual reduction using the proposed
method was secured due to high-level reduction quality. The virtual reduction using
the actual patient image means only relocation of the bone fragment because there is no
original bone image of the patient. Then, the comparison between the original image
and the reduced bone image is naturally impossible. If the proposed method can show
high accuracy, the results of virtual reduction using the patient image can also show the
high-level reduction quality using the proposed method with high probability. Second, the
reliability of the virtual reduction using the proposed method leads to efficient operation.
Because the shape of the virtually reduced bone is almost the same with the shape of the
original bone, the selected fixation device will be more proper to fit to the bone than the
surgical preparation using only a patient image which does not include the feature of the
reduced bone, with high probability. Third, if the method of artificial intelligence (AI) based
automatic virtual reduction is applied, the results in this study will be used as the index of
the evaluation for this AI. The development of technology will remove manual work step
by step, and the proposed method for virtual reduction in this study will also be replaced
by AI. At that time, the performance of the AI can be compared with the results of this
study to show the reliability.

5. Conclusions

In this study, the accuracy of 3D image-based virtual reductions and their usefulness
were investigated through the quantitative assessments. The accuracy evaluations had four
categories including length, apposition, alignment, and rotation, and we measured all four
categories using six cortical marking holes on the bones. Although virtual reduction can
provide insight for surgical planning before the operation, the accuracy of the reduction
plan must have reliability for clinical application. The method of accuracy evaluation used
in this study can be helpful in establishing a reliable plan. In the future, we will evaluate
more cases to provide quantified indicators for reduction plans.
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