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Genetic and epigenetic characteristics are core factors of cancer. MicroRNAs (miRNAs)

are small non-coding RNAs which regulate gene expression at the post-transcriptional

level via binding to corresponding mRNAs. Recently, increasing evidence has proven that

miRNAs regulate the occurrence and development of human cancer. Here, we mainly

review the abnormal expression of miR-625 in a variety of cancers. In summarizing the

role and potential molecular mechanisms of miR-625 in various tumors in detail, we reveal

that miR-625 is involved in a variety of biological processes, such as cell proliferation,

invasion, migration, apoptosis, cell cycle regulation, and drug resistance. In addition,

we discuss the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks and briefly

explain the specific mechanisms of competing endogenous RNAs. In conclusion, we

reveal the potential value of miR-625 in cancer diagnosis, treatment, and prognosis and

hope to provide new ideas for the clinical application of miR-625.

Keywords: miR-625, cancer, proliferation, therapeutic target, ceRNA

INTRODUCTION

Cancer is a severe health problem worldwide given its increasing incidence and high mortality (1).
According to reports, in 2018, there were 9.6 million cancer-related deaths and 18.1 million new
cancer cases all over the world (2). Isabelle Soerjomataram and Freddie Bray recently pointed out
that the number of cancer patients worldwide is predicted to increase in the next 50 years. It is
predicted that 34 million new cancer cases will be diagnosed by 2070, double the number in 2018
(3). Although the understanding of cancer biology is increasing, and efforts are being made to
develop more effective and targeted diagnosis, treatment, and prevention strategies, cancer is still
the main cause of severe social pressure and a substantial economic burden (4). Current research
focuses on finding new diagnostic and prognostic biomarkers and potential molecular targets.

In recent years, evidence has shown that non-coding RNAs, as epigenetic factors, are important
in the occurrence and development of cancer, including microRNA (miRNA), long non-coding
RNA (lncRNA), and circular RNA (circRNA). Among them, miRNAs are the most studied
(5–7). miRNAs, with about 22 nucleotides in length, control numerous biological processes,
including proliferation, differentiation, and apoptosis (8–11). As a kind of non-coding RNA,
miRNAs mainly interact with complementary sequences in the 3′-untranslated regions (3′-UTRs)
of correspondingmRNAs through their seed regions and play a role in inhibiting gene expression at
the post-transcriptional level (12, 13). Since a single miRNA can interact with hundreds of mRNAs
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simultaneously, aberrant miRNA expression is involved in the
occurrence and development of numerous diseases, especially
cancer (14). The expression of most miRNAs is decreased in
cancers; for example, miRNA-4317 is low in gastric cancer (GC)
and exerts a tumor suppressor effect through inhibiting cell
proliferation by targeting ZNF322 (15). The expression of miR-
186 is reduced in hepatocellular carcinoma (HCC), and it can
inhibit the occurrence and development of HCC by targeting yes-
associated protein 1 (YAP1) (16). miR-186 is also expressed at
low levels in breast cancer (BC), and low expression of miR-186
is closely associated with the poor prognosis of BC (17). Some
miRNAs are increased in cancers; for example, miR-106b-5p is
highly expressed in glioma, non-small-cell lung cancer (NSCLC),
HCC, and other tumors (18–21). miR-140-5p is upregulated
in renal cell carcinoma and promotes tumor cell progression
through the miR-140-5p/KLF9/KCNQ1 axis (22).

miR-625 is a recently discovered miRNA that is widely
involved in countless human diseases, including cancer. miRNAs
are a group of non-coding RNA with a length of∼22 nucleotides
(23–25). They guide the RNA-induced silencing complex (RISC)
to degrade mRNA by base pairing with target gene mRNAs, thus
inhibiting the expression of the target genes (26, 27). Single-
stranded RNA monomers (pre-miRNAs) of ∼70–100 bases in
size and have a hairpin structure (28). These pre-miRNAs are
processed by Dicer enzyme digestion to form mature miRNAs
(28–30). For some miRNA precursors, the two separate arms
target different sites and comprise the functional mature miRNA;
these arms are represented by the notation−5p and−3p, as
processed from the 5′ end arm and the 3′ end arm, respectively
(e.g., miR-625-5p or miR-625-3p) (28, 31).

In this review, we comprehensively summarize the expression
and functions of miR-625 in a variety of cancer types and
its underlying mechanisms. Importantly, we will discuss the
lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks
and briefly discuss the specific mechanism of competing
endogenous RNAs (ceRNAs). Overall, this article reveals the
powerful potential of miR-625 as a cancer biomarker and
therapeutic target and aims to provide some suggestions for
further basic research or clinical applications.

MIR-625 IN CANCERS

Aberrant Expression of MiR-625 in Cancers
Recently, many studies have shown that miR-625 expression
is aberrant in tumor tissues compared to nontumor tissues.
Researchers often use quantitative real-time RT-PCR (qRT-PCR)
to detect the expression of miRNAs in the tissues and plasma
of cancer patients (32, 33). Furthermore, they also perform
further verification at the cellular level. We found that miR-
625 expression was decreased in most cancers and increased in
a small number of cancers. In malignant pleural mesothelioma
(MPM) (34, 35) and thyroid cancer (TC) (36, 37), miR-625
was found to be upregulated. It is downregulated in bladder
cancer (38), nasopharyngeal carcinoma (NPC) (39), lung cancer
(40–46), HCC (47), cervical cancer (CC) (48, 49), osteosarcoma
(50), melanoma (51–54), laryngeal squamous cell carcinoma

(LSCC) (55), acute myeloid leukemia (AML) (56), BC (57–
59), glioma (60, 61), esophageal cancer (EC) (62–64), clear cell
renal cell carcinoma (65), GC (66–70), and pancreatic ductal
adenocarcinoma (PDAC) (71). In colorectal cancer (CRC), the
expression of miR-625 seems to vary, being either high or
low. Lou et al. found that miR-625 expression was low in
cancer tissues compared with adjacent normal tissues (72).
Shang et al. also revealed that miR-625-5p was downregulated
in CRC (73). In addition, other researchers found that miR-
625-3p expression was increased in CRC (74–76). Furthermore,
Rasmussen reported that miR-625-3p was not dysregulated
between cancer and non-cancer samples (77). These conflicting
findings may be attributed to the different action sites of miR-625
and differences in sample size and source. The expression status
of and other parameters related to miR-625 in different cancers
are depicted in Table 1.

Non-Small-Cell Lung Cancer (NSCLC)
Lung cancer is one of the most malignant tumors in the world,
and it is also a leading cause of cancer-associated deaths among
males and females (79, 80). Lung cancers are categorized into
two major histological types: NSCLC and small-cell lung cancer
(81). NSCLC accounts for approximately 85% of all lung cancers
(82, 83). An increasing number of studies have revealed the
anti-cancer effect of miR-625 in NSCLC. Xiaoxia Tan found
that low expression of miR-625 was related to advanced clinical
characteristics and poor overall survival (OS) of patients with
NSCLC (44). In addition, in vitro and in vivo studies have
proven that miR-625 suppresses cell proliferation, migration and
invasion and induces apoptosis in NSCLC. Further experiments
proved that miR-625 inactivated the Wnt/β-catenin pathway by
targeting Homeobox B5 (HOXB5), thereby exerting a tumor
suppressor effect in NSCLC. Homeobox (HOX) genes are a
family of transcription factors (84), and HOXB5 belongs to the
HOX gene family (85, 86). Zhang et al. previously reported
that knockdown of HOXB5 inhibited β-catenin expression
and its downstream targets cyclin D1 and c-Myc in A549
cells (87). HOXB5 significantly promoted NSCLC cell growth,
invasion, metastasis, and epithelial-mesenchymal transition
(EMT), partly through the Wnt/β-catenin signaling pathway.
Another study revealed that miR-625 suppresses NSCLC cell
metastasis by obstructing the resistin/PI3K/AKT/Snail pathway
and by decreasing EMT (43). Lung adenocarcinoma (LAC)
is the most common histological subtype of NSCLC (88).
Xue and Yang et al. reported that miR-625 was involved
in the process by which lncRNAs promoted the progression
of LAC (45, 46). Interestingly, miR-625 shows obvious anti-
inflammatory effect in both lung injurymodel and asthmamodel,
through completely different molecular mechanisms (89, 90).
And there is an inseparable relationship between inflammation
and tumorigenesis. This also explains anti-tumor effect of miR-
625 in the deeper mechanism.

In addition to participating in the regulation of a series of
biological processes, miR-625 is also closely related to drug
resistance and disease diagnosis. Du et al. found that miR-625-
3p overexpression reversed gefitinib resistance (41). At present,
gefitinib is the preferred treatment NSCLC patients with for

Frontiers in Medicine | www.frontiersin.org 2 March 2022 | Volume 9 | Article 845094

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Z
h
a
n
g
e
t
a
l.

C
ru
c
ia
lR

o
le
s
m
iR
-6
2
5
in

C
a
n
c
e
r

TABLE 1 | The expression, clinical significance, function, and mechanism of miR-625 in different cancers.

Cancer types miRNA Expression Clinicopathologic

features

Prognosis Target gene Pathway Functions References

Bladder cancer miR-625-5p Down / Poor Runx1t1, TCF4, RBM24 / Inhibits proliferation (65)

Nasopharyngeal carcinoma miR-625 Down / / NUAK1 / Inhibits proliferation,

migration, invasion,

metastasis, induces

apoptosis

(37)

Non-small cell lung cancer miR-625-3p Down / / AXL TGF-β/Smad pathway Attenuates gefitinib

resistance

(39)

miR-625-5p Down / / PCNA, cyclin D1, cyclin E,

p16, p21

/ Inhibits proliferation, induces

apoptosis

(40)

miR-625 Down / / Resistin Resistin/PI3K/AKT/Snail

pathway

Inhibits proliferation,

invasion, migration, EMT

(41)

miR-625 Down Tumor size, lymph node

metastasis, TNM stage

Poor HOXB5 Wnt/β-catenin pathway Inhibits proliferation,

migration, invasion,

metastasis, induces

apoptosis

(42)

Lung adenocarcinoma miR-625-5p Down / / PKM2 / inhibits proliferation,

invasion, migration

(43)

miR-625-5p Down / / CPSF7 / Inhibits proliferation,

migration, invasion, induces

cell cycle arrest and

apoptosis

(44)

Hepatocellular carcinoma miR-625 Down Higher lymph node and

distance metastasis,

the presence of portal

venous invasion, TNM

stage

Poor IGF2BP1 IGF2BP1/PTEN pathway Inhibits migration, invasion,

metastasis

(45)

Cervical cancer miR-625-5p Down / Poor NFKB1, cyclin D1, CDK4 NF-κB Signaling Inhibits proliferation (46)

miR-625-5p Down / / LRRC8E / Inhibits proliferation,

migration, invasion,

metastasis, induces cell

cycle arrest and apoptosis

(47)

Osteosarcoma miR-625 Down / / YAP-1 / Inhibits proliferation and

invasion

(48)

Melanoma miR-625-5p Down Tumor stage, lymph

node metastasis

Poor IGF-1R / Inhibits proliferation,

migration, invasion, induces

cell cycle arrest and

apoptosis, attenuates

cisplatin resistance

(49)

miR-625 Down / / YY1 / / (50)

miR-625-5p Down TNM stage, tumor size,

and poor differentiation

/ PKM2 / Inhibits proliferation and

glycolysis

(51)

(Continued)
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TABLE 1 | Continued

Cancer types miRNA Expression Clinicopathologic

features

Prognosis Target gene Pathway Functions References

miR-625 Down / / SOX2 / Inhibits proliferation,

clonogenicity, migration,

invasion

(52)

Laryngeal squamous cell

carcinoma

miR-625 Down Advanced clinical

stage, lymph node

metastasis

/ SOX4 / Inhibits proliferation,

migration, invasion, EMT

(53)

Acute myeloid leukemia miR-625-5p Down / / SOX12 / Inhibits proliferation, induces

apoptosis

(54)

miR-625 Down / / / Wnt/b-catenin signaling Inhibits proliferation,

migration

(78)

Thyroid cancer miR-625-3p Up / / MMP-9 PI3K/AKT and MEK/ERK

signaling pathways

Promotes migration and

invasion, induces apoptosis

(34)

miR-625-3p Up / / AEG-1 Wnt/β-catenin and JNK

pathways

Promotes proliferation,

migration, invasion

(35)

Colorectal cancer miR-625-3p Up / / MAP2K6 MAP2K6-p38 signaling Induces oxaliplatin

resistance

(72)

miR-625-5p Down / / LASP1 / / (71)

miR-625-3p Up / / / / Induces oxaliplatin

resistance

(73)

miR-625 Down Advanced lymph node

metastasis, liver

metastasis, poor overall

survival

Poor / / Inhibits migration, invasion,

metastasis

(70)

miR-625-3p / / / / / Induces oxaliplatin

resistance

(75)

miR-625-5p Down / / ZEB2 / / (55)

Breast cancer miR-625 Down / / HMGA1 / / (56)

miR-625 Down Estrogen receptor,

human epidermal

growth factor receptor

2, clinical stage

Poor HMGA1 / Inhibits proliferation and

migration

(57)

miR-625-5p Down / / / / Inhibits migration and

invasion

(58)

Glioma miR-625 Down / / AKT2 / Inhibits proliferation, colony

formation, induces G0/ G1

arrest, increases the

chemosensitivity

(59)

miR-625 Down / / / / Inhibits proliferation,

migration, invasion,

(60)

Esophageal cancer miR-625 Down Tumor depth, tumor

stage, metastasis

/ SOX2 / Inhibits proliferation,

invasion, metastasis.

(61)

(Continued)
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epidermal growth factor receptor (EGFR) mutation (91, 92).
Mechanistically, miR-625-3p overexpression was found to inhibit
the EMT induced by TGF-β1 and enhance gefitinib sensitivity
by targeting AXL (41). Roth et al. conducted a blood-based
microRNA expression profile analysis, and the results showed
that miR-625∗ was lower in NSCLC patients than in healthy
controls or those with benign disease (40). In addition, the
levels of miR-625∗ were noticeably lower in patients who smoked
and large-cell lung cancer patients than in nonsmoking patients
and adenocarcinoma patients, respectively. Therefore, miR-625∗

expression can be used as a blood-based marker for disease
diagnosis. Figure 1 summarizes the regulatory mechanism of
miR-625 in lung cancer. These results reveal that miR-625 is a
novel diagnostic and prognostic biomarker and treatment target
for lung cancer.

Cervical Cancer (CC)
Cervical cancer is the fourth most common malignant tumor
in women and is the main cause of gynecological tumor-
related death in the world (93, 94). The most common
predisposing cause of CC is high-risk human papillomavirus
(HPV) infection (95, 96). Persistent HPV infection can lead to
chronic inflammation, thereby causing cervical intraepithelial
neoplasia (CIN) as well as cervical cancer (97). Although great
progress has been made in the prevention, diagnosis, and
treatment of CC, the OS rate of patients is still unsatisfactory,
partly due to its late detection and late recurrence (98, 99).
In recent years, there have been many studies on miRNAs in
CC. Researchers have tried to find new tumor markers for the
early diagnosis of CC to improve the disease detection rate
and reduce the mortality rate. Li et al. found that miR-625-
5p expression was significantly low in CC tissues and cell lines
(48). The downregulation of miR-625-5p is linked to unfavorable
clinical prognosis of CC patients. Overexpression of miR-625-
5p suppresses cell proliferation in cervical carcinoma. Another
study confirmed that the LINC00958/miR-625-5p/LRRC8E axis
participated in CC cell proliferation and metastasis (49).

Melanoma
Melanoma arises from the deterioration of melanocytes located
in the basement of the epidermis (100). It is the most aggressive
form of skin cancer (101, 102). Pyruvate kinase (PK) participates
in the transformation of phosphoenolpyruvate to pyruvate and
is a rate-limiting enzyme in the last step of the glycolysis process
(103, 104). Pyruvate kinase m2 (PKM2) is an alternative splice
variant of PK (105). Evidence from clinical in vitro and in vivo
studies shows that PKM2 is an important molecule in processes
related to progression of cancer, such as glucose metabolism
and apoptosis (78, 106, 107). Zhang et al. found a negative
correlation between the expression of miR-625-5p and PKM2
in clinical melanoma specimens (53). They further revealed that
miR-625-5p inhibited the proliferation, lactic acid production,
ATP production, and glucose consumption of melanoma cells
by targeting PKM2. Another study also revealed a tumor
suppressor role of miR-625 in melanoma. miR-625 can inhibit
melanoma cell proliferation, wound healing, migration, and
tumorigenicity. Mechanistically, miR-625 plays a role at least
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FIGURE 1 | Summary diagram of the roles and mechanisms of miR-625 in lung cancer (Created with BioRender.com).

in part by inhibiting SOX2 (54). In addition, a relationship
between the expression of miR-625 and clinical characteristics
has been noted. The results show that miR-625 is associated
with tumor size, lymph node metastasis, TNM stage, and
differentiation (51, 53).

Acute Myeloid Leukemia (AML)
AML is a malignant hematopoietic system disease with
high morbidity and mortality (108, 109). Gain-of-function
assays suggested that after transfection with miR-625-5p, the
proliferation of U937 and HL60 cells was significantly reduced,
whereas the miR-625-5p + SOX12 group had the opposite
pattern. Therefore, miR-625-5p can regulate AML cell growth by
targeting SOX12 (56). Ma et al. also pointed out that miR-625
participated in the occurrence and development of AML through
Wnt/β-catenin signaling (110).

Thyroid Cancer (TC)
Although miR-625 is down-regulated in most human diseases,
its expression in TC is increased (36, 37). Fang et al. investigated
the function, molecular mechanism, and signaling pathways of
miR-625 in TC (37). The researchers found that miR-625-3p
overexpression promotes cancer cell proliferation, migration,
and invasion by upregulating the expression of astrocyte elevated
gene 1 (AEG-1). Moreover, overexpression of AEG-1 promotes

the activation ofWnt/β-catenin and JNK pathways (37). Another
study showed that icariin (ICA) exerted tumor inhibitory effect
by blocking TC cell proliferation, and metastasis by suppressing
miR-625-3p. In addition, ICA can also inactivate the PI3K/AKT
and MEK/ERK signaling pathways by regulating miR-625-3p in
CC cells (36).

Colorectal Cancer (CRC)
An increasing number of researchers are exploring the link
between miRNAs and CRC and possible mechanistic targets.
miR-625-3p was found to play an oncogenic role in CRC:
it could promote cell migration and invasion and induce
oxaliplatin resistance (74–76). The SCAI/E-cadherin/MMP-9
pathways (76) and MAP2K6-p38 signaling are involved in this
process (74). Lou et al. revealed the tumor suppressor effect
of miR-625 in CRC (72). The researchers found that miR-625
was obviously downregulated in CRC tissues and cell lines.
The expression of miR-625 had an inverse relationship with
the lymph node metastasis and liver metastasis status. The
univariate and multivariate analysis results both showed that
miR-625 could be used as an independent prognostic factor for
CRC. In vivo and in vitro experiments also revealed that miR-
625 inhibited invasion and migration. Similarly, another study
reported that miR-625-5p was involved in the inhibition of CRC
development (73).
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Breast Cancer (BC)
BC is the most frequently diagnosed malignancy in females
worldwide (80, 111). At present, the main treatment strategies
include surgical resection, radiotherapy and chemotherapy,
hormone therapy, and targeted biological therapy (112).
Although the prognosis of BC patients has improved, BC is
still the main cause of cancer-related deaths in women (113,
114). Zhou and his colleagues conducted clinical studies and
in vitro cell function experiments, revealing the clinical value
of miR-625 in BC. They found that miR-625 expression was
decreased in BC and related to poor outcomes. The decreased
expression level of miR-625 was closely associated with estrogen
receptor (ER) and human epidermal growth factor receptor 2
(HER2) expression and clinical stage (59). In addition, miR-625
inhibits cell proliferation and migration by regulating HMGA1,
its downstream target. Mechanistically, HMGA1 transfers YAP
to the nucleus by regulating the activity of cyclin E2, thereby
promoting cell migration and invasiveness (115). Wu and Qi et
al. also reported that miR-625 exerted a tumor suppressor effect
in BC (57, 58).

Glioma
Glioma accounts for ∼80% of brain malignancies and is the
most common intracranial tumor (116–118). It is characterized
by high malignancy, strong invasiveness, and poor prognosis
(119, 120). Studies have found that circDENND2A promotes
hypoxia-induced migration and invasion of U87MG and A172
cells. However, miR-625-5p inhibited these effects and had a
tumor suppressor effect in gliomas (60). In addition, Zhang and
his colleagues conducted a series of studies to explore the role of
miR-625 in glioma. They used BALB/c nude mice to conduct in
vivo experiments, and the results showed that miR-625 inhibited
tumor growth and angiogenesis. In vitro functional experiments
revealed that miR-625 suppressed glioma cell proliferation and
colony formation and induced G0/G1 arrest, thereby influencing
cell cycle progression (61). Moreover, miR-625 enhanced
temozolomide (TMZ) chemosensitivity by targeting AKT2. Drug
resistance has always been a difficult problem in cancer treatment
(121). Therefore, miR-625 can be used as a treatment target
for glioma.

Esophageal Cancer (EC)
miR-625 has been reported to be downregulated in EC. Low
miR-625 expression was significantly correlated with tumor
stage, tumor depth, and metastasis. Functionally, miR-625
inhibits tumor cell proliferation, migration, and metastasis
but does not affect apoptosis. Mechanistically, miR-625 works
by directly binding to the 3′-UTR of SOX2 (63). Chuan
Li evaluated the correlation of miR-625 expression with
clinicopathological features in 169 pairs of ESCC tissues and
adjacent non-tumor tissues (64). Low miR-625 expression is
closely linked to lymph node and distant metastasis, poor tumor
differentiation, and advanced TNM stage. Moreover, the 5-
year OS rate in the low expression group is 38.1%, compared
with 68.8% in the high expression group. All these results
suggest that down-regulation of miR-625 may serve as a novel

biomarker to predict tumor progression and poor prognosis
in EC patients.

Gastric Cancer (GC)
Accumulating evidence has shown that miR-625 is involved in
many processes in the development and progression of GC.
Wang et al. reported the tumor suppressor effect of miR-
625 in GC (70). In clinical application studies, it was found
that low expression of miR-625 was related to lymph node
metastasis. In mechanistic studies, the results showed that miR-
625 was an important regulator of the migration and invasion
potential of GC cells. miR-625 inhibits the migration and
invasion of cells by regulating ILK. Furthermore, miR-625 is also
involved in influencing multidrug resistance (MDR). According
to a study report, miR-625 reverses MDR in GC cells by
inhibiting ALDH1A1 (69). Consistent with previous studies, Li
and colleagues also found that low miR-625-3p had a close
relationship with lymph node and distant metastasis. A Kaplan-
Meier survival curve analysis indicated that low miR-625-3p
expression was remarkably associated with poor prognosis in
GC patients. In addition, miR-625-3p was found to regulate the
proliferation and migration of GC cells through the inhibition of
EZH2 expression (67).

Other Cancers
In bladder cancer (38), NPC (39), HCC (47), osteosarcoma
(50), LSCC (55), ccRCC (65), and PDAC (71), miR-625 plays
a protective role. Up-regulation of miR-625 can affect tumor
progression through different mechanisms of action. Zhou et
al. found that a decrease in miR-625 was obviously associated
with lymph node and distant metastasis, the presence of portal
venous invasion, advanced TNM stage, and unfavorable OS (47).
Further investigation revealed that the miR-625/IGF2BP1/PTEN
axis participated in the occurrence and development of HCC.
Moreover, we know that liver cirrhosis is an important risk factor
for HCC. The latest research shows that the expression level
of miR-625 is related to the levels of alanine aminotransferase
(ALT) and aspartate aminotransferase (AST), and the results
of receiver operating characteristic (ROC) analysis show that
miR-625 has ideal sensitivity and specificity in the diagnosis
of liver cirrhosis (122). Therefore, we have reason to believe
that miR-625 will contribute to the early diagnosis of HCC.
EMT is a complicated trans-differentiation process that is a
hallmark of cancer (123, 124). Cancer cells gain the ability
to migrate and invade through this process (125, 126). Li et
al. point out that up-regulated miR-625 promoted E-cadherin
and inhibited N-cadherin and vimentin, suppressing EMT of
LSCC cells (55). Interestingly, through a systematic review
and a qualitative meta-analysis, a series of miRNAs have
been found which have the potential to diagnose malignant
mesothelioma, including miR-625. Although this result was
found several years ago and had limitation, it still can confirm the
biomarker potential of miR-625 again. In addition, researchers
found that miR-625 worked by targeting Sex-determining
region Y-box 4 (SOX4). Researchers have found that miR-
625-3p could be used as a marker to assess the prognosis of
cancer (34, 35).
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CERNA NETWORKS RELATED WITH
MIR-625
Salmena et al. first proposed the ceRNA hypothesis, which
concerns how RNA interacts through microRNA response
elements (MREs) (127). As mentioned above, miRNAs mainly
inhibit the expression of target genes at the post-transcriptional
level (12, 13). ceRNAs can function as natural miRNA sponges
and competitively bind to and deactivate miRNAs through
MREs, hence influencing the mRNA level of target genes
(128–130). Theoretically, any RNA molecule may become an
active ceRNA if it shares miRNA binding sites with other
RNAs (131). Currently, the most studied ceRNAs are lncRNAs,
circRNAs, pseudogenes, and protein-coding transcripts (131–
135). Cancer is usually related to abnormal gene expression at
the transcriptional and post-transcriptional levels (124). Gene
expression is a key determinant of cell phenotype (136). In
recent years, studies have found that ceRNAs play an important
role in the pathogenesis and development of cancer by affecting
the expression of carcinogenic and tumor suppressor genes.
Figure 2 shows the ceRNA network of circRNAs/lncRNAs-miR-
625-mRNAs clearly and comprehensively.

CircRNAs and MiR-625
Table 2 summarizes known circRNA-miR-625-mRNA networks.
Y Zou evaluated the expression of circ0016418 in skin melanoma
(52). The qRT-PCR results showed that compared with that
in adjacent normal tissues, the circ0016418 in melanoma
tissues was remarkably higher. Further research revealed that
circ0016418 exerted a carcinogenic effect by regulating the
miR-625/YY1 axis. Shang et al. found that down-regulation of
circ0012152 suppressed proliferation and induced apoptosis of
AML cells via the miR-625-5p/SOX12 axis (56). In addition,
the circMMP11/miR-625-5p/ZEB2 axis is involved in the BC
cell proliferation, migration and apoptosis (57). Moreover,
circDENND2A promotes the migration and invasion of glioma
cells by sponging miR-625-5p (60). Hao et al. found that
circ0007534 was significantly related to PDAC stage and lymph
node infiltration (71). The results of survival analysis shows
that an increase in circ0007534 indicates a poor prognosis.
Mechanistically, the carcinogenic function of circ0007534 partly
depends on the regulation of miR-625 and miR-892b.

LncRNAs and MiR-625
Table 3 summarizes known lncRNA-miR-625-mRNA networks.
In LAC, ccRCC, and GC, LINC00511 exerts carcinogenic effects
by sponging miR-625. Members of the LINC00511/miR-625-
5p/PKM2 axis may be helpful therapeutic targets for LAC (45).
Similarly, Huanghao Deng pointed out that the LINC00511/miR-
625/CCND1 axis participated in ccRCC progression and was
a potential therapeutic target (65). LINC00511 promotes GC
progression through the miR-625-5p/STAT3 axis and miR-625-
5p/NFIX axis (66, 68). In NPC (39), LAC (46), and CC (49),
LINC00958 functions as a ceRNA that can promote the growth,
migration, and invasion of tumor cells by sponging miR-625.
The study found that an increase in circulating miR-625-3p
and a decrease in lncRNA GAS5 were significantly related to
MPM progression. Reduced GAS5 is significantly associated

with shorter OS and progression-free survival. The study also
revealed the potential value of GAS5 in patients treated with
platinum-adjuvant chemotherapy (34). Dao et al. reported that
knockdown of the lncRNA MIR503HG inhibited proliferation
and induced apoptosis of NSCLC cells by regulating miR-625-5p
and miR-489-3p (42). Ma and his colleagues explored the clinical
significance of LINC00909 expression in AML patients. The
results showed that LINC00909 was an independent prognostic
indicator of OS for AML patients. Further research found
that LINC00909 promoted disease progression by regulating
the miR-625/b-catenin axis (110). Wang et al. reported that
expression of the lncRNA SNHG7 was enhanced in ESCC,
promoting ESCC cell proliferation, and metastasis by regulating
miR-625 (62). In addition, the lncRNA MALAT1/miR-625-
5p/NF-κB, LINC01291/miR-625-5p/IGF-1R, LINC01123/miR-
625-5P/LASP1 and LINC00963/miR-625/HMGA1 pathways play
important roles in CC, melanoma, CRC, and BC, respectively
(48, 51, 58, 73).

CONCLUSIONS AND PERSPECTIVES

In recent years, increasing evidence has shown that miRNAs
participate in the occurrence and development of cancers.
miRNAs are abnormally expressed in cancers and are widely
involved in a variety of biological processes, including
proliferation, migration, invasion, cell cycle regulation,
apoptosis, and intracellular metabolism. Some abnormally
expressed miRNAs are closely related to clinical features and
can also be used as independent markers of disease prognosis.
Further understanding the miRNA biogenesis plays a vital role in
the follow-up miRNA drug research and exploring the functions
of miRNA in the occurrence and development of cancers.
Therefore, we summarized the latest miRNA biogenesis process
in Figure 3. In addition, miRNAs also play an important role
in tumor treatment, especially in drug resistance. For example,
Wang et al. found that FER1L4 could suppress miR-106a-
5p/miR-372-5p expression, activating the E2F1-mediated NF-κB
pathway and thus leading to drug resistance in liver cancer (137).
Luo et al. also reported that FOXO3a-miRNA feedback could
lead to Herceptin resistance in BC (138). In CRC, it was reported
that the HSF1/miR-135b-5p axis could promote oxaliplatin
resistance via the MUL1/ULK1 pathway (139). Interestingly,
chronic accumulation of senescent cells and the concomitant
senescence-associated secretory phenotype contribute to tumor
microenvironment remodeling. In this process, the levels of a
large number of related miRNAs have changed greatly. After
measurement the level of miRNAs one by one, it is found that the
level of miR-625 continues to decline with cell senescence. The
trend of miR-625 in cell senescence is consistent with the trend
of miR-625 in tumors (140). So, we can guess that the level of
miR-625 may be a part of the tumor microenvironment affecting
the occurrence and development of cancer.

There has been increasing research on miR-625. miR-625 can
function as a tumor suppressor or a tumor-promoting factor.
The abnormal expression of miR-625 in whole blood, plasma,
urine, and other samples of tumor patients can be assessed to
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FIGURE 2 | The competing endogenous RNA (ceRNA) network of circRNAs/lncRNAs-miR-625-mRNAs. The green dots represent lncRNAs, and the orange dots

represent circRNAs. The blue dots represent miR-625-5p or miR-625-3p. The pink dots represent mRNAs (Created with BioRender.com).

TABLE 2 | Summarization of circRNA-miR-625 in human cancers.

Cancer types CircRNA Expression miRNA References

Melanoma CircRNA-0016418 Up miR-625 (50)

Acute myeloid leukemia CircRNA-0012152 Up miR-625-5p (54)

Breast cancer CircRNA-MMP11 Up miR-625-5p (55)

Glioma CircRNA-DENND2A Up miR-625-5p (58)

Pancreatic ductal

adenocarcinoma

CircRNA-0007534 Up miR-625 (69)

diagnose cancer with non-invasive methods (34, 35). In fact,
according to the existing research progress, we believe that the
clinical diagnostic biomarker value ofmiR-625 will be expected to
play in the clinic in the near future. The future research direction
should focus on the statistical work before clinical application
and clinical application verification. LncRNAs and circRNAs
participate in the occurrence and progression of various cancers
by regulating miR-625. In addition to ncRNAs, icariin also
promotes the development of cancer through the regulation
of miR-625 (36). In addition, we believe that miR-625 is an

extraordinarily valuable target for cancer treatment, especially in
the treatment of drug resistance. Wu et al. found that inhibiting
miR-625-5p or up-regulating IGF-1R could offset the regulatory
effect of siLINC01291 on the sensitivity of melanoma cells to
cisplatin chemotherapy (51). In NSCLC (41), CRC (75), and GC
(69), miR-625 has also been reported to affect drug resistance.

In this review, the expression and function of miR-625 in
cancer were reviewed, and the related molecular mechanisms
were briefly discussed. However, due to the limited number
of existing studies and the dual role of miR-625 in the
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TABLE 3 | Summarization of lncRNA-miR-625 in human cancers.

Cancer types LncRNA Expression miRNA References

Nasopharyngeal carcinoma LINC00958 Up miR-625 (37)

Malignant pleural mesothelioma GAS5 Up miR-625-3p (32)

Non-small lung cancer MIR503HG Up miR-625-5p (40)

Lung adenocarcinoma LINC00511/LINC00958 Up miR-625-5p (43)

Cervical cancer MALAT1/LINC00958 Up miR-625-5p (44)

Melanoma LINC01291 Up miR-625-5p (49)

Acute myeloid leukemia LINC00909 Up miR-625 (78)

Breast cancer LINC00963 Up miR-625 (56)

Esophageal cancer SNHG7 Up miR-625 (60)

Clear cell renal cell carcinoma LINC00511 Up miR-625 (63)

Gastric cancer LINC00511 Up miR-625-5p (64)

Colorectal cancer LINC01123 Up miR-625-5p (71)

FIGURE 3 | Biogenesis and mechanism of miRNA. RNAPII transcribes miRNA genes into pri-miRNAs, and the pri-miRNAs are cleaved by Drosha into the

pre-miRNAs. Pre-miRNAs are transferred from nucleus to cytoplasm with the help of XPO5, and Dicer can process the pre-miRNAs into mature miRNAs. Mature

miRNAs then combine with AGO2 to form RISCs, which further play an important role in regulating gene expression. RNAPII, RNA polymerase II; XPO5, exportin-5;

AGO2, argonaute RISC catalytic component 2; RISC, RNA induced silencing complex (Created with BioRender.com).

development of some tumors, a large number of basic
experiments, animal models, and clinical studies are needed to
further reveal and verify its function and clinical significance.
Overall, miR-625 is expected to be a promising new target for
cancer treatment.
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