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SIGNIFICANCE
For all Swedish citizens extensive healthcare data are av-
ailable in several registries and databases. In this proof of 
concept study, this data was used to train a machine lear-
ning model to predict future risk of melanoma, a potentially 
lethal skin tumour. Registry data ranging from 2005 to 2011 
was used to predict risk of melanoma in the period 2012 
to 2016. Using merely this data-set, the machine learning 
algorithm achieved significantly better than chance alone. 
While the model needs to be improved and refined in up-
coming investigations, this study demonstrates potential 
usefulness for machine learning in this setting.

Research relating to machine learning algorithms, in-
cluding convolutional neural networks, has increased 
during the past 5 years. The aim of this pilot study was 
to investigate how accurately a convolutional neu-
ral network, trained on Swedish registry data, could 
perform in predicting cutaneous invasive and in situ 
melanoma (CMM) within 5 years. A cohort of 1,208,393 
individuals was used. Registry data ranged from 4 July 
2005 to 31 December 2011, predicting CMM between 
1 January 2012 and 31 December 2016. A convolutio-
nal neural network with one-dimensional convolutions 
with respect to time was trained using healthcare 
databases and registers. The algorithm was trained 
on 23,886 individuals. Validation was performed on 
a hold out validation set including 6,000 individuals. 
After training and validation, the convolutional neural 
network was evaluated on a test set (1,000 individuals 
with an CMM occurring within 5 years and 5,000 with-
out). The area under the receiver-operating characte-
ristic curve was 0.59 (95% confidence interval (95% 
CI) 0.57–0.61). The point on the receiver-operating 
characteristic curve where sensitivity equalled speci-
ficity had a value of 56% (sensitivity 95% CI 53–60% 
and specificity 95% CI 55–58%). Albeit at an early 
stage, this pilot investigation demonstrates potential 
usefulness for machine learning algorithms in pre-
dicting melanoma risk. 

Key words: area under curve; deep learning; epidemiological 
methods; machine learning; melanoma; receiver-operating 
characteristic curve; sensitivity and specificity.
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Machine learning (ML) algorithms including con-
volutional neural networks (CNNs) have recently 

pervaded every aspect of medical imaging, and notewor-
thy advancements have been made in several medical 
fields, including radiology (1), dermatology (2–5) and 
pathology (6). Furthermore, significant progress has been 
made using neural networks in domains other than image 
analysis, such as prediction models for specific diseases 
using available electronic healthcare data and registries. 
The concept of using neural networks on electronic 

healthcare data for prediction models, often referred to as 
computational phenotyping, was first published in 2016 
by Cheng et al. (7). To date, only a few investigations 
have been performed to predict specific dermatological 
outcomes (8). In future healthcare, it is expected that 
prediction algorithms will be important to target the 
increased demands for precision medicine. Moreover, 
ML algorithms may prove particularly useful for targeted 
population screening, where high-risk individuals could 
be identified and automatically invited to screening visits, 
based on available data in healthcare registries. Finally, 
these models may reduce healthcare costs and prove to 
be time efficient. 

For a Swedish population, setting up a risk prediction 
model for cutaneous malignant melanoma (CMM) would 
be appealing, since the incidence is one of the highest 
in the world (9). The incidence of CMM has increased 
dramatically in the Nordic population during the past 3 
decades. In Sweden, approximately 500 individuals die 
from advanced melanoma disease annually. In the early 
stages, CMM is treatable with an overall good prognosis, 
whereas in more advanced stages, the prognosis is poor 
and treatment is costly (10, 11). From a societal perspec-
tive, finding novel and complementary tools to identify 
individuals at higher risk of skin cancer in general and 
for CMM in particular is a high priority. 

Sweden has a public healthcare system, which is 
largely documented with nationwide registers. This is a 
world-unique source of information, which, unlike many 
other countries, is completely disconnected from insu-
rance and compensation systems. The aim of this pilot 
study was to investigate how accurately a CNN trained 
on Swedish registry data could perform in predicting 
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CMM within 5 years in individuals without a previous 
history of CMM.

MATERIALS AND METHODS 

Cohort description

This retrospective investigation included individuals from 8 co-
horts used in previous research projects. This previous research 
primarily investigated patients with psoriasis and their respective 
controls. When merging all of these, the original source cohort 
consisted of approximately 1.7 million individuals. One of the 8 

Table I. Time-independent variables

Time-independent variables Variable description

Age Normed age at 2012 
normed in [–1,1]

Sex Males: 1. Females: –1
One-hot encoding
Region of birth
  Africa Yes: 1. No: –1
  Asia Yes: 1. No: –1
  European Union (EU) except the Nordic countries Yes: 1. No: –1
  Europe except the EUUnion and Nordic countries Yes: 1. No: –1
  North America Yes: 1. No: –1
  Nordic countries except Sweden Yes: 1. No: –1
  Oceania Yes: 1. No: –1
  Soviet Union Yes: 1. No: –1
  Sweden Yes: 1. No: –1
  South America Yes: 1. No: –1
Disposable income
  Disposable income 1st quartile Yes: 1. No: –1
  Disposable income 2nd quartile Yes: 1. No: –1
  Disposable income 3rd quartile Yes: 1. No: –1
  Disposable income 4th quartile Yes: 1. No: –1
  Missing data Yes: 1. No: –1
Level of education
  Pre-high-school education less than 9 years Yes: 1. No: –1
  Pre-high-school education less than 9–10 years Yes: 1. No: –1
  High-school education Yes: 1. No: –1
  University education shorter than 2 years Yes: 1. No: –1
  University education 2 years or longer Yes: 1. No: –1
  Postgraduate education Yes: 1. No: –1
  Missing data Yes: 1. No: –1
Marital status
  Surviving partner (previously unmarried) Yes: 1. No: –1
  Married Yes: 1. No: –1
  Unmarried Yes: 1. No: –1
  Registered partner Yes: 1. No: –1
  Divorced Yes: 1. No: –1
  Divorced partner Yes: 1. No: –1
  Widow/widower Yes: 1. No: –1
  Missing data Yes: 1. No: –1
Origin
  Born abroad Yes: 1. No: –1
  Born in Sweden with both parents born abroad Yes: 1. No: –1
  Born in Sweden with 1 parent born abroad Yes: 1. No: –1
  Born in Sweden with both parents born in Sweden Yes: 1. No: –1
  Missing data Yes: 1. No: –1

Table II. Time-dependent variables

Time-dependent variables Variable description

221 rows in total
International Classification of Diseases 10th Revision (ICD-10) symbol
1 row for each occurring first symbol of ICD-10 Yes: 1. No: –1
1 row for each occurring second symbol of ICD-10 Yes: 1. No: –1
1 row for each occurring third symbol of ICD-10 Yes: 1. No: –1
1 row for each occurring fourth symbol of ICD-10 Yes: 1. No: –1
1 row for each occurring fifth symbol of ICD-10 Yes: 1. No: –1

Inpatient and/or outpatient diagnosis
Inpatient diagnosis present Yes: 1. No: –1
Outpatient diagnosis present Yes: 1. No: –1

Anatomical Therapeutic Chemical (ATC) symbol
1 row for each occurring first symbol of ATC Yes: 1. No: –1
1 row for each occurring second symbol of ATC Yes: 1. No: –1
1 row for each occurring third symbol of ATC Yes: 1. No: –1
1 row for each occurring fourth symbol of ATC Yes: 1. No: –1
1 row for each occurring fifth symbol of ATC Yes: 1. No: –1
1 row for each occurring sixth symbol of ATC Yes: 1. No: –1
1 row for each occurring seventh symbol of ATC Yes: 1. No: –1

Fig. 1. Flow chart for selection of eligible controls. *All individuals 
were included in a previous research project (Appendix S1). §The disease 
cohort consisted primarily of patients with psoriasis (Appendix S1). ¶ 
Included individuals were drawn from the general Swedish population and 
were randomly matched to the disease cohort with respect to age, sex 
and geographical location. #The listed exclusion criteria are not mutually 
exclusive. †The individuals without CMM were matched to the individuals 
with CMM with respect to sex and age (same birth year). CMM: cutaneous 
malignant melanoma including in situ melanoma.

http://medicaljournalssweden.se/actadv
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original cohorts (i.e. patients with psoriasis) has been used in 2 
previous investigations (12, 13). A detailed description of all 8 co-
horts is presented in Appendix S1. To exclude any systematic bias 
(i.e. to avoid an over-representation of patients with psoriasis), we 
only included the 4 control cohorts in our analyses. When merging 
all these data, 1,489,519 individuals were available. 

The registry data ranged from 4 July 2005 to 31 December 2011, 
predicting CMM between, 1 January 2012 and 31 December 2016. 
The data comprised time-independent (age, sex, origin, country of 
birth, income and educational level) and time-dependent variables, 
including drug prescription (Anatomical Therapeutic Chemical 
(ATC) and diagnosis (International Classification of Diseases 10th 
Revision (ICD-10)) codes (Tables I and II). A brief overview of 
the registries and databases used is shown in Appendix S2. 

Included individuals needed to be ≥ 18 years on 4 July 2005 and 
were excluded if they were ≥ 95 years during 2012. All individuals 
had to be alive on 31 December 2011. No migration events between 
4 July 2005 and 31 December 2016 were allowed. All individuals 
with a history of CMM (including melanoma in situ) before 1 
January 2012 were excluded. After exclusions, the final cohort 
comprised 1,208,393 individuals in the age range 25–94 years. 
All these individuals were drawn from the general population, and 
constituted approximately 18% of the Swedish population within 
the same age range (i.e. 6.7 million individuals) (14).

Randomization of training, validation, and test-set

All individuals with an occurring CMM in the time-period 1 
January 2012 to 31 December 2016 were identified (n = 5,981). 
To each such individual, 5 age- and sex-matched individuals 
were drawn randomly from the available controls (n = 29,905). 
The controls did not develop CMM in the same time-period. All 
included individuals (n = 35,886) were randomized into a training, 
validation, and test-set (Fig. 1). The default random number ge-
nerator was used (Mersenne-Twister) in R version 3.5.3 (https://
www.r-project.org/) for the randomization process. 

The study was reviewed and approved by the Swedish Ethical 
Review Authority (registration number 2020-06761) and the Ethics 
Review Appeals Board (registration number Ö14-2021/3.1).

Outcome

The primary outcome was to investigate at what sensitivity and 
specificity level a CNN, trained on Swedish registry data, could 
predict which individuals would be diagnosed with CMM within 
5 years. A receiver-operating characteristics curve (ROC) was 
used to demonstrate the sensitivity and specificity for correctly 
identifying individuals that would develop CMM. The area under 
the ROC (AUC) was used to assess the overall model performance. 

Model architecture

Different models were trained and validated on the holdout valida-
tion set after each epoch. All models were trained using healthcare 
databases and registers (Appendices S3 and S4). The number of 
dense layers in models varied from 1 to 5. Within dense layers the 
number of nodes varied from 64 to 1,024. Models with 1 and 2 
convolutional layers (with strides) were trained and the number of 
filters within the convolutional layers were 4 or 8. In total, 68 dif-
ferent models were trained. Finally, a primary model was selected 
that achieved maximum performance on the holdout validation 
set. Only the primary model, along with 9 variations of the model 
(post-hoc analyses; Table III) were evaluated on the test-set. 

The primary model used 1 convolutional layer with 4 filters 
and a kernel of size (1, 351); i.e. 351 weeks. There were 3 dense 
layers with 512, 256 and 128 nodes in each, respectively (Fig. S1). 

Sensitivity (post-hoc) analyses

To evaluate which data points were important for the model’s 
AUC, 9 sensitivity (post-hoc) analyses were conducted, which 
systematically omitted ICD-10 codes and/or ATC-codes, and/or 
demographic factors, respectively. Models that used 2 convolu-
tional layers were also used, in which the first layer used kernels 
of size (1, 52) using strides; i.e. 1 year. The second convolutional 
layer had kernels of size (1, 6); i.e. 6 years. This implied that the 
last 39 (351-52•6) weeks of the time-dependent variables were 
censored (i.e. ICD-10 and ATC codes) (Appendices S5 and S6).

Statistical analysis

All data were analysed using R version 3.5.3 (https://www. 
r-project.org/). All tests were 2-sided and p < 0.05 was considered 
statistically significant. DeLong’s test for 2 correlated ROC curves 
was used to compare the performance of different models. Fisher’s 
exact test and Wilcoxon’s rank sum test were used for 2-sample 
comparisons. 

Hardware and software

The Keras library (version 2.3.1) using the Tensorflow backend 
(version 1.14.0) was used running on Python version 3.6.9. Model 
construction was performed using R version 3.5.3 (https://www. 
r-project.org/) and the R-package Keras was used to call Python and 
its above libraries. The computer running the training was using 
the central processing unit (CPU) version on the Keras/Tensorflow 
routines. The CPU used was an Intel Xeon W-2135 @ 3.7 GHz, 
with 128 GB random-access memory (RAM). The training of the 
primary model (147 epochs) took 1 h and 11 min (Fig. S2).

Table III. Primary and sensitivity (post-hoc) analyses

ICD-10 codes included
(126 rows)

ATC-codes included
(95 rows)

Demographic data included
(37 rows)

Last 39 weeks 
censored in input

Uses 2 convolutional 
layers AUC 95% CI p-valueb

Primary model
  Yes Yes Yes No No 0.59a 0.57–0.61 –
Sensitivity (post-hoc) analyses
Yes Yes Yes Yes Yes 0.59 0.57–0.61 0.79
Yes No Yes No No 0.60 0.58–0.62 0.26
No No Yes No No 0.59 0.57–0.61 0.39
No Yes Yes No No 0.59 0.57–0.61 0.52
Yes Yes No No No 0.56 0.54–0.58 0.009
Yes No No No No 0.54 0.52–0.56 < 0.0001
No Yes No No No 0.53 0.51–0.55 < 0.0001
Yes Yes No Yes Yes 0.55 0.53–0.57 0.0004
Yes Yes No Yes No 0.56 0.54–0.58 0.008

aPrimary model. bp-value compared with primary model. 
AUC: area under the receiver operating characteristic curve; 95% CI: 95% confidence interval; ATC: Anatomical Therapeutic Chemical; ICD-10: International Classification 
of Diseases 10th Revision.

http://medicaljournalssweden.se/actadv
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RESULTS

Overall, median age at baseline was 65 years and there 
was a slight predominance of females (Table IV). The 
mean number of outpatient ICD-10 diagnoses before 1 
January 2012 among all individuals was 14.0 (95% CI 
13.7–14.3). The individuals with CMM had a mean of 
15.2 diagnoses (95% CI 14.4–16.0) and the correspond-
ing number for the controls was 13.8 (95% CI 13.5–14.1, 
p < 0.0001). The mean number of inpatient ICD-10 
diagnoses before 1 January 2012 among all individuals 
was 7.4 (95% CI 7.3–7.6). The individuals with CMM 
had a mean of 6.9 diagnoses (95% CI 6.6–7.2) and the 
corresponding number for the controls was 7.5 (95% 
CI 7.4–7.7, p = 0.069). Individuals without CMM had 
dispensed more pharmaceutical drugs compared with 
individuals who developed CMM (Table IV). 

Of individuals with CMM, 5,786 (96.7%) originated 
from Nordic countries. The corresponding number 
among individuals without CMM was 27,212 (91.0%, 
p < 0.0001) (Table V). Among all 29,905 individuals 
who did not develop CMM in the time-period, 3,359 
(11.2%) had no available ICD-10 diagnoses. The cor-
responding value among individuals who developed 
CMM (n = 5,981) was 564 (9.4%, p < 0.0001). Overall, 
355 (5.9%) and 2,450 (8.2%) of the individuals with 
and without CMM died during the observation period 
(p < 0.0001). For individuals who developed CMM, the 
median time (interquartile range; IQR) from baseline 
(i.e. 1 January 2012) to their first CMM was 2.8 years 

(1.4–3.9) (range 0–5.0 years). The median (IQR) age at 
CMM diagnosis was 67 years (57–75) (Table V). 

Primary analysis
The AUC for correctly identifying individuals with 
CMM was 0.59 (95% CI 0.57–0.61). The point on the 
ROC where sensitivity equalled specificity had a value 
of 56% (sensitivity 95% CI 53–60% and specificity 95% 
CI 55–58%) (Fig. 2). 

Sensitivity (post-hoc) analyses
The model that used only ICD-10- and ATC-codes, but 
not demographic data, had an AUC of 0.56 (95% CI 
0.54–0.58). The models that censored the last 39 weeks 
did not perform significantly worse than the correspon-
ding non-censored models (p = 0.98). Moreover, using 
2 convolutional layers did not alter the performance 
compared with similar models with 1 layer (p = 0.79). The 
model that included only demographic data performed 
on par with the primary model that included ICD-10-, 
ATC-codes and demographic data (Table III).

DISCUSSION

In this pilot investigation, using only routinely sampled 
registry data, we were able to predict the risk of deve-
lopment of CMM within a 5-year time period with an 
AUC of 0.59, when matching individuals with respect 

Table IV. Age, sex distribution and mean number of diagnoses and dispensed prescriptions of the individuals with and without cutaneous 
malignant melanoma including in situ melanoma (CMM)

n

Sex Agea Diagnosesb

Dispensed
prescriptionsc

Mean n (95% CI)
Females
n (%)

Males
n (%)

Median 
[IQR] Mean (95% CI)

Outpatient
Mean n (95% CI)

Inpatient
Mean n (95% CI)

All individuals
   Individuals without CMM 29,905 16,405 (54.9) 13,500 (45.1) 65 [55–73] 63.3 (63.1–63.4) 13.8 (13.5–14.1) 7.5 (7.4–7.7) 91.1 (89.2–93.0)
   Individuals with CMM   5,981 3,281 (54.9) 2,700 (45.1) 65 [55–73] 63.3 (62.9–63.6) 15.2 (14.4–16.0) 6.9 (6.6–7.2) 81.1 (78.0–84.3)
Training set
   Individuals without CMM 19,905 10,879 (54.7) 9,026 (45.3) 65 [55–73] 63.3 (63.1–63.5) 13.8 (13.4–14.1) 7.5 (7.3–7.7) 90.1 (87.9–92.4)
   Individuals with CMM 3,981 2,190 (55.0) 1,791 (45.0) 65 [55–73] 63.3 (62.9–63.7) 15.6 (14.5–16.7) 6.8 (6.4–7.1) 80.3 (76.6–83.9)
Holdout validation set
   Individuals without CMM 5,000 2,801 (56.0) 2,199 (44.0) 65 [55–72] 63.1 (62.7–63.4) 13.6 (13.1–14.3) 7.6 (7.3–8.0) 92.0 (87.3–96.7)
   Individuals with CMM 1,000    560 (56.0)    440 (44.0) 65 [55–72] 63.1 (62.3–63.9) 14.8 (13.6–16.0) 7.4 (6.5–8.3) 82.9 (74.3–91.5)
Test set
   Individuals without CMM 5,000 2,725 (54.5) 2,275 (45.5) 65 [56–73] 63.4 (63.0–63.8) 14.0 (13.0–14.9) 7.6 (7.2–8.0) 94.1 (89.4–98–8)
   Individuals with CMM 1,000    531 (53.1)    469 (46.9) 65 [56–72] 63.4 (62.6–64.2) 14.1 (13.0–15.2) 7.1 (6.3–7.9) 82.9 (74.6–91.3)

The individuals without CMM were drawn with respect to age and sex distribution compared with the individuals with CMM.
aAge at 1 January 2012. bMean number of in- and out-patient diagnoses in the period 4 July 2005 to 31 December 2011. cMean number of dispensed pharmaceutical 
drug in the period 4 July 2005 to 31 December 2011.
95% CI: 95% confidence interval; IQR: interquartile range.

Table V. Additional characteristics of the individuals with and without cutaneous malignant melanoma including in situ melanoma (CMM)

Age at CMM 
diagnosis, years
Median (IQR)

Time from baseline to 
CMM diagnosis, years
Median (IQR)

Individuals without 
ICD-10 diagnoses
n (%)

Individuals born in the 
Nordic countries
n (%)

Individuals that died during 
the observation period
n (%)

Patients with CMM 67 (57–64) 2.8 (1.4–3.9) 564 (9.4) 5,786 (96.7) 355 (5.9)
Patients without CMM – – 3,359 (11.2) 27,212 (91.0) 2,450 (8.2)
p-value – – < 0.0001 < 0.0001 <  0.0001

ICD-10: International Classification of Diseases 10th Revision; IQR: interquartile range.

http://medicaljournalssweden.se/actadv
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to age and sex. Non time-dependent variables (including 
origin, marital status, education level, disposable income, 
and region of birth) played a more important role for 
the model performance compared with time-dependent 
variables (including ATC- and ICD-10 codes).

In a publication by Wang et al. (15), the authors 
conducted a retrospective analysis of a randomized set 
of the Taiwanese population. The aim was to generate 
a prediction model for 1-year risk of non-melanoma 
skin cancer (NMSC) in previously cancer-free indivi-
duals, based on routinely sampled healthcare registry 
data. Similar to our model, their CNN did not include 
traditional risk factors, such as sun exposure, smoking, 
or family history of skin cancer. Instead, the prediction 
model included sequential diagnoses and a selection of 
prescription codes for the past 3 years. The training of 
the model used 5-fold cross-validation, which included 
1,829 individuals with NMSC and 7,665 randomly se-
lected controls. The sensitivity (standard deviation; SD) 
and specificity (SD) for identifying those individuals who 
developed NMSC was 83.1% (3.5) and 82.3% (4.1), re-
spectively. The network achieved an AUC of 0.89 (0.007) 
and a positive predictive value (SD) of 57.1% (4.9). The 
authors concluded that the predictive analytic model 
may help healthcare professionals to target high-risk 
populations and optimize prevention strategies. However, 
the control individuals were not matched with respect 
to age, meaning that they were significantly younger 
(47.5 years) than the corresponding individuals who had 
NMSC (65.3 years). In their investigation age alone was 
an important predictor for NMSC. Most importantly no 
holdout validation set nor external test set was used (16, 

17). This limits the external validation of the findings to 
the general population at large. Finally, the investigation 
included a population with Asian descent, which limits 
the external generalizability to other populations.

This investigation has some important limitations. For 
this binary classification problem, a CNN model was 
employed; however, other approaches could have been 
used, including recurrent neural networks, random forests 
and gradient boosting (18). While the model outperformed 
chance alone, the overall AUC (0.59, 95% CI 0.57–0.61) 
for predicting CMM within 5 years, is low and far from 
acceptable to be used in routine healthcare. Nonetheless, 
we cannot rule out that other ML models would outper-
form a CNN in this setting. Future investigations with 
direct comparison of the performance level of a variety 
of ML architectures would be useful to investigate the 
most appropriate modality for this setting. The peak AUC, 
using registry data alone, that can be expected for CMM 
prediction is yet to be determined. Moreover, what AUC 
levels would be acceptable to move forward with this 
application as a tool in healthcare is also subject to debate. 
Even then the place for these algorithms must be clearly 
defined. One potential application would be to use this 
tool as a guide to select individuals for CMM screening or 
CMM prevention campaigns. Another, and perhaps more 
clinically feasible, application is to let trained physicians 
use the algorithmic output as an aid when weighing risk 
factors for skin cancer in the in- and out-patient settings. A 
complete patient history, including all previous diagnoses 
and a detailed list of all medications dispensed for the past 
decade, is of, course, impossible to systematically compile 
during a patient visit. However, if this data, including an 
algorithmic output of the future risk of skin cancer, were 
available using simple computer techniques it might add 
value to the physicians and could help enable personalized 
precision medicine. Moreover, if clinicians could gain 
access to the registry data that is important, the usability 
of this method would probably increase further. This 
type of application would only be suitable for physicians 
who have received adequate training in interpretation of 
algorithmic output. Finally, it should preferably be used 
when a physician is able to integrate other risk factors 
that are not captured in the registries.

This investigation included time-dependent variables 
(dispensed pharmaceutical drugs and diagnoses). This 
deserves particular mention as they, intrinsically, may 
indicate information about future events (i.e. disease 
evolution). However, we believe that this is of minor 
importance, since our post-hoc analysis, in which the last 
39 weeks of time-dependent variables were censored, 
yielded results on par with our primary model. However, 
to limit this issue further all individuals with a history 
of CMM at 31 December 2011 were excluded. Notably, 
the model only including demographic data performed 
on par with our original model including demographic 
data, ATC- and ICD-10 codes. One possible explanation 

Fig. 2. Receiver-operating characteristics (ROC) curve. The ROC curve 
represents the overall model performance (i.e. sensitivity and specificity) 
in terms of correctly identifying individuals with CMM in a 5-year time-
period (i.e. in the period 1 January 2012 to 31 December 2016) based on 
registry data obtained in the period 4 July 2005 to 31 December 2011.

http://medicaljournalssweden.se/actadv
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could be that the demographic data already captures 
the relevant information in the ICD-10- and ATC-codes 
needed to predict CMM. However, the models in which 
demographic data were omitted still performed better than 
chance alone (AUC, 0.56). While there are thousands of 
available ATC- and ICD-10 codes, in order to preserve 
computing memory, a generic lossless embedding was 
used, in which each character in the respective position 
in the code was simply given its own row (Table II). This 
means that if several different ICD-10 or ATC codes, 
respectively, occurred in the same week, then the model 
could not distinguish between them. However, the model 
could still learn that certain combinations of characters are 
probabilistically related to certain outcomes. In upcoming 
investigations, it is our intention to update the model and 
include a less compressed version of the set of these codes. 

Importantly, our investigation was performed in a 
population that is comprised mainly of individuals with 
Fitzpatrick skin types ranging from I to III. Furthermore, 
melanoma incidence in Sweden is high (9), and Swedish 
citizens have universal access to healthcare. The external 
validity of the current findings is, by design, intrinsically 
limited to the Swedish population alone, and the useful-
ness of similar prediction models in other populations 
with more limited access to healthcare might be more 
restrained. Finally, while 1.2 million individuals were 
used as eligible controls in the current investigation, also 
drawn from the general population, the controls represent 
a non-random subset of the corresponding Swedish adult 
population (approximately 6.7 million individuals). In 
future studies, the complete adult population will be used 
to further develop, refine, and update new registry-based 
prediction models for skin cancer including CMM. While 
computational phenotyping holds promise in this setting, 
future prospective clinical trials integrating algorithmic 
output with relevant clinical metadata will be required to 
fully assess the potential of these ancillary tools. More-
over, even if these models perform well in a research 
setting, political stakeholders and legislation must be 
involved before any broad implementation of these tools 
can be made in everyday clinical practice. 

Research involving ML prediction models, based on 
registry data, is still in its initial stages, and adequate 
standardization is still pending (19). Nonetheless, the 
current investigation illustrates the potential usefulness 
of computational phenotyping for risk assessment in 
prediction of CMM in a Swedish population.
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