
Coordinate Based Meta-Analysis of Functional
Neuroimaging Data Using Activation Likelihood
Estimation; Full Width Half Max and Group Comparisons
Christopher R. Tench1*, Radu Tanasescu1,2, Dorothee P. Auer3,4, William J. Cottam3,4,

Cris S. Constantinescu1

1 Division of Clinical Neurosciences, Clinical Neurology, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom, 2 Department of Neurology,

Neurosurgery, and Psychiatry, University of Medicine and Pharmacy Carol Davila Bucharest, Colentina Hospital, Bucharest, Romania, 3 Division of Clinical Neurosciences,

Radiological and Imaging Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom, 4 ARUK National Pain Centre, University of

Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom

Abstract

Coordinate based meta-analysis (CBMA) is used to find regions of consistent activation across fMRI and PET studies selected
for their functional relevance to a hypothesis. Results are clusters of foci where multiple studies report in the same spatial
region, indicating functional relevance. Contrast meta-analysis finds regions where there are consistent differences in
activation pattern between two groups. The activation likelihood estimate methods tackle these problems, but require a
specification of uncertainty in foci location: the full width half max (FWHM). Results are sensitive to FWHM. Furthermore,
contrast meta-analysis requires correction for multiple statistical tests. Consequently it is sensitive only to very significant
localised differences that produce very small p-values, which remain significant after correction; subtle diffuse differences
between the groups can be overlooked. In this report we redefine the FWHM parameter, by analogy with a density
clustering algorithm, and provide a method to estimate it. The FWHM is modified to account for the number of studies in
the analysis, and represents a substantial change to the CBMA philosophy that can be applied to the current algorithms.
Consequently we observe more reliable detection of clusters when there are few studies in the CBMA, and a decreasing
false positive rate with larger study numbers. By contrast the standard definition (FWHM independent of the number of
studies) is demonstrated to paradoxically increase the false positive rate as the number of studies increases, while reducing
ability to detect true clusters for small numbers of studies. We also provide an algorithm for contrast meta-analysis, which
includes a correction for multiple correlated tests that controls for the proportion of false clusters expected under the null
hypothesis. Furthermore, we detail an omnibus test of difference between groups that is more sensitive than contrast meta-
analysis when differences are diffuse. This test is useful where contrast meta-analysis is unrevealing.
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Introduction

A very popular method of performing a meta-analysis (MA) of

functional magnetic resonance imaging (fMRI) and positron

emission tomography (PET) data is coordinate based meta-analysis

(CBMA). There are various approaches [1–10], but the common

aim is to locate regions where different studies agree on the

location of activation peaks (foci) better than expected by chance

alone. Results are then thought to be of significance to the

common functional aspect(s) of the studies included in the analysis.

A further aim is to compare different groups, for example healthy

control and patient groups, using contrast meta-analysis.

Here we focus on the activation likelihood estimate (ALE) based

method, which is possibly the most widely known of the CBMA

schemes. The ALE method models the uncertainty of the reported

foci using a Gaussian function with specified full width half max

(FWHM) [1]. It then estimates the likelihood, at each voxel, that

there is consistent activation across multiple studies. Clusters of

voxels with significantly high ALE are tested for by a permutation

test. The ALE method is very popular, and has been, and is being,

used to generate many publications. Despite this, there remain

major problems.

The FWHM parameter, which is often set at <10 mm, has a

major effect on the results [11]. In the similar kernel density

analysis (KDA) method of CBMA, a FWHM of 10 mm or 15 mm

is reported to produce the best results [7]. The signed differential

mapping (SDM) uses 25 mm [5]. For the ALE methods, in an

attempt to quantify the FWHM it has recently been estimated by

fMRI experiment and a dependency on the number of subjects

suggested [3]. Nevertheless, the lack of consensus on this

parameter is one of the issues for CBMA. Indeed some CBMA

methods remove the FWHM as a fixed parameter [9,10].
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However, these methods are sensitive to the required prior

knowledge elicited from experts, and in the case of the method of

Yue et. al. has not been generalised, in a computationally practical

sense, to three dimensions.

Here a new FWHM scheme is introduced. This is motivated by

the reasonable requirement that CBMA of a small set of studies

should ideally produce results commensurate with those produced

if the number of studies were increased. It redefines the FWHM as

a density clustering parameter, rather than a specification of the

uncertainty of the reported foci used by current ALE algorithms.

The correction for many correlated statistical tests is a problem

for contrast meta-analysis that has not yet been addressed [12];

indeed contrast meta-analysis has previously been performed

without any correction [13], which will inevitably lead to false

positive results. Several methods are used to impose voxel-level

(since testing is performed at each voxel) control of the rate of

falsely rejected null hypotheses in CBMA; for example false

discovery rate (FDR) control [4,14]. The latest ALE algorithms

have introduced cluster-level control to CBMA [2], which is

preferred to voxel-level control since it directly relates to the

results, by limiting cluster sizes to be larger than expected under

the null hypothesis. CBMA is performed many (*103) times using

foci randomised throughout a brain mask and a user specified

voxel-level threshold (for example pv0:001 uncorrected). The

distribution of the size of the resulting clusters is recorded, and a

user specified quantile of this distribution (for example 95%)

subsequently used as a lower permissible cluster size in the CBMA

of the original foci. However, this scheme requires two indepen-

dent user specified thresholds, so it is not clear exactly what this

means for the proportion of falsely rejected null hypotheses.

Furthermore, while this cluster-level control may be appropriate

for CBMA where the null hypothesis is closely related to that

obtained using random foci, it is not appropriate for contrast meta-

analysis where the null hypothesis is obtained by permutation of

the grouping variable.

We previously detailed a CBMA method that employed a false

cluster discovery rate (FCDR) control scheme that has the

particularly interpretable aim of limiting the proportion of the

significant clusters expected under the null hypothesis. The control

problem is further tackled by substantially reducing the number of

statistical tests by testing only at the reported foci (*102 tests),

rather than at each voxel (*105 tests). We showed that this leads

to fewer false positive results than using FDR correction at the

voxel level, or using cluster-level control via minimum cluster size

thresholding, yet maintains sensitivity [15]. Here we extend FCDR

to contrast meta-analysis. The proposed method requires specifi-

cation of only one threshold, is interpretable, and does not assume

independence of the many tests.

The contrast meta-analysis method can localise significant focal

differences between groups, indicating brain structures where

functional activation differs. However, due to the need to correct

for multiple comparisons, this method lacks sensitivity for

detecting more diffuse subtle differences between the groups; such

differences do not produce the very small p-values required to

survive the correction. Lack of significant results from contrast

meta-analysis is not, therefore, a good indicator that the two

groups do not differ in activation pattern. Here we introduce an

omnibus test of difference between groups. Only one test is

performed, so no correction is necessary; this is similar to Fisher’s

combined probability test [16], but without the assumption for

independence of the probabilities. Consequently it is better able to

detect diffuse differences than contrast meta-analysis. The test can

provide evidence for difference between groups when the contrast

meta-analysis is unrevealing.

In summary, this report describes new tools for ALE based

experiments. Specifically: 1) a new definition and method for

setting the FWHM parameter, 2) a description of the contrast

meta-analysis algorithm and subsequent correction for multiple

correlated comparisons at the cluster-level, and 3) an omnibus test

of difference between groups.

Materials and Methods

Statistical significance in the ALE method is judged relative to a

null distribution of ALEs, generated by permutation of the foci

throughout a grey matter (GM) mask [2,7]. When many studies

report activations in similar locations, the foci density is high so

there is little distance between them. In regions reported as active

by few studies, the foci are lower in density.

While our algorithm (LocalALE) has been detailed previously

[15], some specifics are important to the methods presented in this

report. The ALE method models the spatial distribution (Sij(r)) of

the ith reported foci in the jth study (rij ) by a Gaussian distribution

of specified standard deviation (s) or FWHM. The Gaussians are

truncated at 2:8|s, or equivalently 1:2|FWHM,

Sij(r)~w Dr{rij D
� �

exp {
Dr{rij D2

2s2

� �
, ð1Þ

where

w Dr{rij D
� �

~
1ffiffiffiffiffiffi

2p
p 3

s3
if Dr{rij Dv2:8s, ð2Þ

and is zero otherwise. The truncation removes 5% of the ‘mass’ of

the Gaussian, and is performed to reduce the influence of foci over

long distance, and to make testing only at the foci possible [15]. It

has previously been shown that with 5% truncation, the resulting

clusters are similar to those obtained using the ‘full’ Gaussian [15];

clearly some truncation is always present even with the ‘full’

Gaussian, imposed by the brain volume. The spatial activation

distribution for study j is

maj rð Þ~ max
i

Sij(r), ð3Þ

from which the ALE is computed.

Foci separated by a distance ƒ1:2|FWHM overlap (are

separated by less than the truncation distance). Overlapping foci

across studies form clusters, which, if significant, are the results of

the CBMA.

The software is available to download and use freely from www.

nottingham.ac.uk/research/groups/clinicalneurology/neuroi.aspx.

The FWHM in ALE based CBMA
The FWHM can affect the results of ALE based CBMA [11].

Often the FWHM is set to &10mm, but there is some variance on

this. An empirical FWHM has been described [3], based on the

idea that it measures the variance of activation peak position on

repeating the same experiment in a group of volunteers. This

suggests that the FWHM should depend on the number of subjects

within a study; the larger the number, the smaller the uncertainty

in the location of the peak of the activation, and so the smaller the

FWHM. While this is intuitively reasonable, it does create some

CBMA Using ALE; Full Width Half Max and Group Comparisons
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issues. Firstly, the suggested estimate is based on a specific

functional experiment, and might not be generalizable. Secondly,

ideally the results from a small CBMA study should agree with a

larger CBMA performed if more studies were available. In this

report a new definition and estimate for FWHM that depends on

the number of studies in the CBMA is presented.

Each study in the CBMA reports foci of activation, some of

which are common to a proportion of the studies, while others are

due to some study specific aspect. Where there is better than

chance agreement across studies about the activation peaks, the

foci form clusters of higher than average density. Between the

clusters, the study specific foci form a lower than average density

noise. Identifying clusters of high density points in the presence of

noise can be tackled using the density-based spatial clustering in

applications with noise (DBSCAN) [17] algorithm. Clusters in

DBSCAN are formed by points that are density reachable, such

that any point in the cluster can be connected to any other within

the cluster via a chain of points that are separated by a distance

less than parameter ‘Eps’. The problem is depicted in figures 1a

and 1b; figure 1a shows a sparse set of points and figure 1b a

larger set of points. If Eps is set too large, the clusters begin to

merge, and the noise points are recruited to the clusters. If Eps is

set too small, the clusters are missed. In figures 1c and 1d Eps is

represented by the radius of the dotted circles. For the algorithm to

succeed the Eps parameter must be set such that within-cluster the

points fall within a distance Eps of other points in the cluster, while

the noise must be beyond this distance. Consequently, for the

sparse set of points (figures 1a and 1c), Eps is larger than for the

larger set of points (figures 1b and 1d).

Since the density clustering problem is analogous to CBMA, it is

proposed that the FWHM parameter be redefined to be analogous

to the Eps parameter in density clustering. The aim is to increase

the FWHM for small numbers of studies such that the within-

cluster foci can overlap, and reduce the FWHM for larger

numbers of studies to prevent the study specific foci joining the

clusters. To achieve this it is proposed that the characteristic

volume occupied by each foci (*FWHM3) is inversely propor-

tional to the number of studies such that

FWHMEps~
affiffiffiffiffi
N3
p ð4Þ

where N is the total number of studies, and a is a constant to be

estimated. The proposed estimate of FWHM is now FWHMEps to

signify its relationship to both the FWHM conventionally used in

CBMA and the clustering parameter used by DBSCAN. The

parameter a can be estimated under the null hypothesis

(randomised foci) where the average density of the foci across

studies is higher than the study specific foci, and lower than the

clustered foci. It is hypothesised that this scheme will: 1) help to

prevent incidental recruitment of study specific foci to the clusters,

and 2) help with the detection of low density clusters when there is

little data.

This constitutes a redefinition of the FWHM parameter. It no

longer represents spatial uncertainty in the location of the foci, but

rather it is a density parameter similar to Eps, used in the

DBSCAN [17] algorithm.

FWHM Experiments. The effect of varying the FWHM

between 6 mm and 18 mm is visually assessed, using LocalALE, in

three sets of fMRI data: 1) the pain data (47 experiments) used in

[15], 2) n-back data (61 experiments) used in [18] and downloaded

using Sleuth (downloadable from www.BrainMap.org) from the

BrainMap database [19], and 3) Stroop test data used in [20] and

again downloaded using Sleuth; workspace files for downloading

the data via Sleuth are available from the BrainMap website. It is

expected that if the FWHM is too small, the clusters will be small,

or even vanish. It is also expected that if the FWHM is too large,

the clusters will merge and expand in spatial extent by including

more nearby foci. In the case of the Stroop experiment, the data

are separated into two groups: pooled studies requiring either a

verbal response or a mechanical response (19 studies), and those

specifically requiring mechanical response (6 studies). From the

original meta-analysis it is expected that there is some similarity

between these, and certainly this is expected on the grounds that

one is a subset of the other. The difference in numbers of

experiments in the two groups is used to demonstrate how FWHM

must be modified to make the results commensurate.

The mean effect of FWHM on the clustering under the null

hypothesis is also investigated; under the null hypothesis it is

expected that large clusters do not form on average. Foci are

randomised throughout a grey matter mask, as detailed in [15], 10

times. For each randomisation the number of clusters (sets of foci

in different studies separated by a distance smaller than

1:2|FWHM) is counted. The mean number of clusters, as a

proportion of the total number of foci, is plotted against FWHM to

see when the clusters begin to form. It is expected that for very

small FWHM the foci in different studies do not overlap under the

null hypothesis, so the number of clusters will be equal to the

number of foci; each non-overlapping focus being considered a

cluster of one focus. As the FWHM is increased, foci will start to

overlap and form larger clusters. An empirical estimate for

parameter a (equation (4)) is obtained by identifying the point

where clusters just begin to form under the null hypothesis.

Two large data sets used previously [21] to examine the

functional connectivity of two structures, the right amygdala (RA;

Figure 1. Depicts how the Eps parameter in the density
clustering algorithm DBSCAN is modified as the size of the
data set is changed. For sparse data sets (a) the Eps parameter is
large (represented by the radius of the circles in (c)). For the larger data
set, Eps is smaller. Eps is chosen so that the dense cluster of points and
the noise are separate. This clustering algorithm is analogous to CBMA,
and the Eps parameter analogous to the FWHM.
doi:10.1371/journal.pone.0106735.g001
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189 studies) and the orbitofrontal cortex (OFC; 142 studies), are

explored. The data sets are available for download from www.

BrainMap.org, and were originally created by searching the

BrainMap database [22] for any studies that report at least one

activation within a seed region of interest (ROI); the ROIs are

depicted in [21]. These datasets are of interest since it is obvious

that there are significant clusters where the seed ROIs are defined,

and that those clusters should be similar in size to the seed ROIs

because they determine where the foci are located. Coordinate

based meta-analysis is performed on the full datasets, and also on

smaller subsets of 25 (25 is arbitrary, but not an unusual size for a

typical CBMA experiment) randomly selected studies from each

full dataset. The proposed FWHMEps, and the FWHM specified

in [3] and incorporated into GingerALE (a popular and freely

available program used for ALE analysis; available from www.

brainmap.org) are compared; GingerALE is used to demonstrate

that the sensitivity to FWHM is not specific to our LocalALE

method. It is expected that the clusters in the RA and OFC should

be similar in the small and full datasets.

Finally a numerically generated pseudo experiment is created.

Each pseudo study in the experiment has 10 foci (around 10 foci

would not be unusual in a real study), which are placed either

within one of three clusters, or at random with uniform probability

within the GM mask but outside of the clusters. The experiment is

performed twice: a) with the proportion of studies reporting in the

three clusters being 40%, 50%, and 60%, to reflect the proportion

ranges observed in most significant clusters from the pain, Stroop,

and n-back experiments, and b) with the proportion of studies

reporting in the three clusters being 20%, 30%, and 40%, to

consider the impact of less consistent activations. Foci that are

truly members of the ith cluster are placed at location

fxizdx, yizdy, zizdzg, where d are randomly generated from

a truncated (at +2 standard deviations from the mean) Gaussian

distribution with mean zero and FWHM = 10 mm. The results of

CBMA on these experiments are depicted for: 1) FWHMEps using

a (equation (4)) estimated from the pain, n-back, and Stroop

experiments, 2) FWHM = 10 mm, and 3) using the FWHM

estimate detailed by [3] and employed in GingerALE.

True and false positive rates are explored quantitatively for this

numerical experiment as a function of the number of studies (10 to

150 studies); 100 averages are performed for each number of

studies. The true positive rates are the proportion of true cluster

foci that are declared as cluster members, while the false positive

rates are the non-cluster foci declared as members of a cluster.

Both true and false rates are expressed as a proportion of the total

number of true cluster foci to make them easy to compare. If the

clustering analogy is valid for our CBMA experiment, it is

expected that with FWHM = 10 mm there will be fewer true

positive results for few studies compared to FWHMEps. Further-

more, it is expected that for large numbers of studies that the false

positive rate will be higher for FWHM = 10 mm than for

FWHMEps.

Contrast meta-analysis
Contrast meta-analysis attempts to find differences in activation

pattern between two groups of studies. The results are clusters of

foci where there is localised significant difference in ALE between

the groups. The null hypothesis is that there is no difference

between the groups, so a permutation (of the group variable) test is

employed. Following on from our LocalALE algorithm, tests for

differences are performed only at the foci in the method reported

here; instead of at each voxel. It also employs the false cluster

discovery rate (FCDR) control of false positive results, as detailed

previously in [15]. FCDR is particularly interpretable since it

controls for the proportion of significant clusters expected under

the null hypothesis. It also takes account of the correlated nature of

the tests; the ALE values, and p-values, for each focus depends on

the other foci and are therefore not independent. Contrast meta-

analysis is useful when there are very significant localised

differences between the groups that can survive the FCDR control.

Studies are separated into two groups, A & B, containing NA

and NB studies, respectively. Of all the permutations, the ith is

specified by

Ai~fai1,ai2, . . . ,aiNA
g ð5Þ

and

Bi~fbi1,bi2, . . . ,biNB
g, ð6Þ

where aij (bij) are the study numbers, and aijvaijz1(bijvbijz1)

since order is not important. The ALE for group A, permutation i,
at location r is

ALEAi
(r)~1{P

NA

j~1

1{maaij
(r)

� �
, ð7Þ

and similar for group B. The difference in ALE between the two

groups is

Di(r)~ALEAi
(r){ALEBi

(r): ð8Þ

For a particular permutation, k, and for a particular focus rij ,

the significance (p-value) of the difference in ALE between the

groups is

Figure 2. CBMA results for the 47 studies included in the pain
CBMA for a range of FWHM produced using LocalALE. With
small FWHM, the clusters shrink, or vanish. With large FWHM, the
clusters merge and expand.
doi:10.1371/journal.pone.0106735.g002

CBMA Using ALE; Full Width Half Max and Group Comparisons

PLOS ONE | www.plosone.org 4 September 2014 | Volume 9 | Issue 9 | e106735

www.BrainMap.org
www.BrainMap.org
www.brainmap.org
www.brainmap.org


pkij~

X
l[V

I Dl(rij)ƒDk(rij)
� �
X

l[V
1

if j[Ak ð9Þ

or

pkij~

X
l[V

I Dl(rij)§Dk(rij)
� �
X

l[V
1

if j[Bk; ð10Þ

I(E) is an indicator function that equals 1 if E is true, and zero

otherwise. A small value of pkij indicates that the magnitude of the

ALE difference for foci rij is particularly large for the kth

permutation. The sums in these expressions are over the set (V) of

all possible permutations of the grouping. However, since V is

typically very large, p-values are estimated using a random

selection of 10|103 permutations. Here, as suggested previously

[13], statistical tests are performed only for foci that are found to

be significant by CBMA. This reduces the number of tests, and so

increases the power, at the expense of testing for differences

between the complete groups.

It is hypothesised that the groups A0 and B0, which might be

patients and healthy controls for example, have localised

differences in activation pattern. The p-values p0ij measure the

significance of that difference. Clusters of significant foci are

found, and counted, using the clustering algorithm provided in the

supplement (File S1); the algorithm finds the most significant foci

first then uses Dijkstra’s algorithm [23] to locate all other foci in

the cluster, repeating the process to locate all clusters. The number

of significant clusters is N0(c), which is computed using only the

foci with p0ijƒc. To control the FCDR, an estimate of the number

of clusters expected under the null hypothesis is needed. This is

estimated using a randomly selected set of 2000 permutations

(K~fk1,k2, . . . ,k2000g), computing the number of clusters for

each of these permutations (Ni(c) with i[K) and averaging; 2000

is considered sufficient as repeating the experiments gives similar

estimates of FCDR. Controlling the FCDR at a level of 0.05 (for

example) is then performed by maximising c such that

1

2000

X
k[K

Nk(c)

N0(c)
ƒ0:05; ð11Þ

the proportion of clusters expected under the null hypothesis is, at

most, 0.05 with this c. Further detail about the calculation of

FCDR is given in [15].

An omnibus test for difference between groups. Contrast

meta-analysis looks for differences in activation patterns, between

groups, by location. But such analysis requires very significant

differences; since the p-values need to be very small to remain

significant after controlling for many statistical tests. An omnibus

test can provide evidence of pattern differences when contrast

meta-analysis produces no significant results. Such a test may be

Figure 3. CBMA results for the 61 studies included in the n-
back CBMA for a range of FWHM produced using LocalALE.
With small FWHM, the clusters shrink, or vanish. With large FWHM, the
clusters merge and expand.
doi:10.1371/journal.pone.0106735.g003

Figure 4. CBMA results for the Stroop experiment, for a range
of FWHM produced using LocalALE. Top row shows the Stroop
studies where manual response was required (6 studies). Bottom row
shows the pooled Stroop studies (19 studies). The studies give similar
activation patterns, but only if the FWHM is modified to account for the
number of studies per experiment.
doi:10.1371/journal.pone.0106735.g004

Figure 5. Depiction of cluster forming under the null hypoth-
esis (randomised foci) as a function of FWHM. For small FWHM,
the foci do not overlap, so there are as many clusters as foci (single
focus clusters). As the FWHM increases, larger clusters begin to form.
doi:10.1371/journal.pone.0106735.g005

CBMA Using ALE; Full Width Half Max and Group Comparisons
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useful for detecting differences that are subtle, but spread across

substantial regions of the activation pattern.

A log likelihood value can be computed using the p-values from

equations (9) and (10),

Lk~
X

ij

log ( pkij), ð12Þ

where the sum is over all foci in permutation k. The magnitude of

this will be small under the null hypothesis and larger when the

data are critical of the null hypothesis. The distribution of Lk is not

known because the p-values are not independent (for independent

p-values, Fisher’s combined probability test can be used), but can

be estimated using a random selection of permutations

K~fk1,k2, . . . ,k1000g. Only 1000 permutations are used, and

found to be sufficient, to estimate the single p-value for the

omnibus test

p0~

X
k[K

I(LkƒL0)X
k[K

1
: ð13Þ

This test is performed including all foci in the experiment.

Experiments for contrast analysis. To explore the two

different scenarios considered above (highly significant local

differences between groups, and more subtle wide spread

differences) numerical experiments have been devised.

The first experiment involves two groups of studies with a

cluster reported at {34, 10, 16}mm (Talairach coordinates) in

group A and {234, 10, 16}mm in group B. A further eight

clusters are reported similarly by both groups. All foci that form

part of a cluster have a random spatial perturbation as described

for the FWHM numerical experiment. From the pain and n-back

experiments, about 50% of studies report at the site of the most

significant clusters. Therefore, each of the clusters in this

Figure 6. CBMA of the orbitofrontal cortex (OFC) and right amygdala (RA) studies, and smaller sub-studies. The top row depicts the
results using FWHMEps, the middle row is the result from GingerALE, and the bottom row depicts the number of clusters, as a function of FWHM,
counted under the null hypothesis.
doi:10.1371/journal.pone.0106735.g006
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experiment contains foci from half of the studies, and half of the

foci in each study are distributed randomly, and with uniform

probability, throughout the GM mask.

The two clusters at f+34,10,16gmm should be highly

significant with sufficient studies in the experiment. The clusters

that are reported similarly by both groups should not produce

significant differences. Results are reported in a table indicating

number of clusters reported by both groups, number of studies per

group, and significances by contrast meta-analysis and the

omnibus test.

The second experiment involves up-to sixteen clusters reported

by both groups. In group A the clusters involve foci (with the

random perturbation used in the first experiment) from 50% of the

studies, and half of the foci in each study will be randomly

distributed, with uniform probability, throughout the GM mask.

Group B is similar, but the proportion of studies reporting at each

cluster is lower. The differences between the studies are then

subtle, and spread across the activation pattern. Results are

reported in a table indicating number of studies, proportion of

studies reporting at clusters, and significances by contrast meta-

analysis and the omnibus test.

The contrast meta-analysis and omnibus tests are performed

using FWHMEps.

Results

FWHM experiments
Assessment of the effect of the FWHM parameter on real

data. Figure 2 shows the result of CBMA of 47 pain studies

performed on healthy subjects. Result are shown for two different

slices (top and bottom rows) using FWHM ranging from 6 mm to

14 mm. For very small FWHM the clusters (outlined in green)

become fragmented and small. At larger FWHM the clusters begin

to merge and grow.

Figure 3 shows the CBMA results for the 61 n-back studies.

Two different slices are shown (top and bottom rows) using

FWHM ranging from 6 mm to 14 mm. As expected, for very

small FWHM the clusters become fragmented and small. At larger

FWHM the clusters begin to merge and grow.

Figure 4 shows the CBMA results for the 6 manual (top row)

response and 19 pooled (bottom row) Stroop studies. The results

are similar, but at different FWHM. Below 18 mm in the manual

Stroop experiment, the clusters vanish or shrink. Above 12 mm in

the pooled stroop experiment the clusters just increase in size.

Estimating the parameter a. Figure 5 depicts the number

of clusters, under the null hypothesis (foci randomised), for each

experiment as a function of FWHM. Also indicated are the

FWHM where clustering just begins (number of clusters = 0.5)

under the null hypothesis for the pain, n-back, and Stroop

experiments. Higher FWHM generates larger clusters, which is

not expected under the null hypothesis.

An estimate of a can be obtained from figure 5. If the

FWHMEps is the parameter value that just starts to form clusters

under the null hypothesis, such that the foci overlap on average

with one other, then the intercept of the curves with 0.5 on the y
axis gives FWHM estimates of around 7 mm, 8 mm, 12 mm, and

18 mm for these experiments. Given the number of studies in the

experiments, and using equation (4), yields an estimate for a of

about 30 mm. The FWHMEps estimates are then 8.3 mm,

7.6 mm, 11.2 mm, and 16.5 mm for the pain, n-back, pooled

Stroop, and manual Stroop studies respectively.

Figure 6 shows the results from CBMA of the RA and OFC

experiments. Using FWHMEps (top row), with a~30mm,

produces clusters that are quite independent of the number of

studies. Furthermore, the clusters are of a reasonable size given the

seed ROIs presented in [21]. When the FWHM is determined as

detailed in [3] (middle row), the clusters are quite large for the

complete data sets, particularly considering the seed ROIs. The

cluster sizes are also quite dependent on the number of studies.

The number of clusters expected under the null hypothesis, as a

function of FWHM, is shown on the bottom row. Estimates of a

obtained at the point where the foci just begin to cluster

(intercepting the y axis at 0.5) are 29 mm, 29 mm, 29 mm, and

31 mm for these four experiments.

Numerical simulation experiments. Figure 7 shows the

CBMA results for the simulated experiments; only the experiment

with 40%, 50% and 60% of studies reporting in the clusters is

shown as the lower proportion experiment is visually similar. The

number of studies per experiment clearly has an impact on the

results when using fixed FWHM; middle (FWHM = 10 mm) and

bottom (FWHM as defined in [3] and produced using GingerALE)

rows. When using FWHMEps with a~30mm in equation (4) (top

row) the results are not so dependent on the number of studies.

Furthermore, the cluster size, using FWHMEps, is the most

consistent with the foci distribution function, shown as a blue

overlay on the left-most image; with the other FWHM estimates

the clusters are small with just 10 studies, but expand in size

beyond the boundary of the distribution function for large number

of studies.

Figure 8a explores the true and false positive rates associated

with the numerical experiment where the proportion of studies

reporting at the clusters is in the range 40% to 60%; both rates

expressed as a proportion of the true cluster members. True cluster

rates were very high regardless of the FWHM estimate used,

except for ten studies where the larger FWHMEps estimate is able

to detect a greater proportion of true cluster members. This,

however, is associated with an increase in the false cluster rate,

since the larger FWHMEpswill also capture some of the study

specific foci, which is noticeable in figure 7. More striking are the

false cluster rate trends in this plot. For a FWHM of 10 mm, the

false cluster rate is increasing with the number of experiments.

Figure 7. CBMA results for various numbers of studies, and
using three definitions of the FWHM: top row uses FWHMEps,
middle uses FWHM = 10 mm, and bottom uses the method
reported by [3]; produced using GingerALE. The left-most image
shows the distribution function of the foci as a blue overlay.
doi:10.1371/journal.pone.0106735.g007
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This leads to the paradoxical observation that increasing the

number of studies included in the meta-analysis can be detrimental

to the results. Using FWHMEps results in a reducing false cluster

rate with increasing study numbers, which is sensible for a meta-

analysis; a fit revealed that the false cluster rate was !N{0:5 for

this experiment.

Figure 8b explores the true and false positive rates associated

with the numerical experiment where the proportion of studies

reporting at the clusters is in the range 20% to 40%. In this case

the true cluster rate is reduced when there are few studies because

the FWHM is not large enough to cause clustering. The impact of

this is reduced in the proposed method, which has a larger FWHM

for fewer than 30 studies, but at the expense of higher false cluster

rates. For larger numbers of studies the true cluster rate reaches

100% for FWHM = 10 mm, but is slightly lower (97%) for the

proposed method due to its smaller FWHM. Once more the most

striking trends are those of the false cluster rates. While using

FWHMEps reduces this as the number of studies increases (again

the rate was !N{0:5), it is increased when the FWHM is fixed at

10 mm.

These results are not specific to LocalALE, as we have shown in

figure 7. Indeed the contribution list for each cluster provided by

GingerALE confirmed that a very high proportion of studies were

reported falsely. Adjustment of the FWHM to account for the

number of studies is therefore suggested.

Contrast analysis experiments. Figure 9 shows the clusters

used for the first contrast meta-analysis experiment. The eight

clusters reported by both groups are seen in the left and middle

image, along with the group specific clusters; highlighted by green

ROIs. The rightmost image shows the contrast image, indicating

where the activation patterns differ. In both groups 50% of studies

report in each cluster.

Table 1 shows that the results of contrast meta-analysis are not

significant (FCDR.0.05) for 10 or 14 studies per group, and just

Figure 8. True and false cluster rates for FWHMEps and for FWHM = 10 mm. a) shows rates when the proportion of studies reporting in the
clusters is 40%, 50%, and 60%. b) shows the rates when the proportion of studies reporting in the clusters is 20%, 30%, and 40%.
doi:10.1371/journal.pone.0106735.g008
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about significant with 16 studies per group. When contrast meta-

analysis was significant, it managed to find both group specific

clusters, as expected. The omnibus test is significant in all of the

experiments, indicating greater sensitivity. This is because the

omnibus test needs no correction for the multiple tests. It should be

noted that the p-values and FCDR values reported in table 1 are

approximate; partly because they are estimated by permutation

test, but mostly because the experiments include random foci,

which would be different if the experiment were re-generated.

Experiments were therefore repeated several times to check that

the results presented were representative.

Figure 10 shows the 16 clusters used for the second contrast

meta-analysis experiment. Both group A and group B report some,

or all, of these clusters. In group A 50% of studies report in each

cluster, while a smaller percentage of studies in group B report at

each cluster (see table 2).

Table 2 shows the results of contrast meta-analysis and the

omnibus test when differences between groups are spread over the

activation pattern. As the differences between the studies increase,

either per cluster or as the number of clusters that are different

increases, the tests become more sensitive as expected. However,

contrast meta-analysis is not completely successful in finding all

differences between the two groups, as indicated by the range of

clusters found on repeating the experiment; with different random

foci. The omnibus test is certainly more sensitive, able to detect

differences between even small groups of studies. It should be

noted that the smallest p-value reported for the omnibus test is

0.001; since only 1000 permutations are used to compute the p-

value, 0.001 is the smallest non-zero value possible.

Discussion

We have detailed three tools for use with coordinate based

meta-analysis. By analogy with density clustering, we have

redefined the FWHM parameter used in CBMA as a cluster

density parameter, which depends on the cube root number of

studies in the analysis, and is based on the idea that the results of

CBMA should be commensurate when performed with different

numbers of studies. We have also detailed an algorithm for

comparing activation patterns between groups, contrast meta-

analysis, using similar methods to our previously described

LocalALE algorithm. Statistical testing is performed only at the

foci, rather than at each voxel, and our FCDR method of false

positive control is employed. Such contrast meta-analyses are only

sensitive to very significant localised differences in activation, so we

also detail an omnibus test of difference between groups. The

omnibus test is sensitive even to subtle diffuse differences between

activation patterns, and can provide evidence for a difference

where contrast meta-analysis is unrevealing.

By visually inspecting the resulting clusters for several CBMAs,

it becomes clear that the FWHM parameter has a major effect on

the results. To preserve the cluster characteristics we proposed, by

analogy with the density clustering algorithm DBSCAN, that the

characteristic volume of each foci (*FWHM3) should be

adjusted for the number of studies included in the analysis. This

Figure 9. CBMA results of the first contrast meta-analysis
experiment. The left and middle images show groups A & B, which
have eight clusters in common, and two (one each) group specific
clusters. The right image shows the difference between the groups
found using contrast meta-analysis. This experiment tests the ability of
contrast meta-analysis and the omnibus test to detect very significant
differences between groups in the presence of an otherwise similar
activation pattern. Note that while an intensity threshold (the lowest
significant ALE value) is applied the leftmost and middle images, no
such threshold is applied to the ALE difference image (right).
doi:10.1371/journal.pone.0106735.g009

Table 1. Results for the first group comparison experiment.

Number of studies per group Results of contrast meta-analysis Omnibus test using all foci (p-value)

10 0.4 0.04

14 0.1 0.02

16 0.05 0.01

20 0.02 0.002

The omnibus test is able to find differences between the two activation patterns (see figure 9), even when the contrast meta-analysis test is unrevealing. The two tests
are more sensitive for larger numbers of studies.
doi:10.1371/journal.pone.0106735.t001

Figure 10. CBMA results of the second contrast meta-analysis
experiment. Each group reports the same number of clusters (up-to
16, as shown), but with different frequencies. This experiment tests the
ability of contrast meta-analysis and the omnibus test to detect subtle
differences spread across the activation pattern.
doi:10.1371/journal.pone.0106735.g010
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method of specifying FWHM completely changes the original

meaning that the FWHM represented the spatial uncertainty in

the reported foci, for example due to registration error.

Using a typical (10 mm) FWHM, or the FWHM suggested by

Eickhoff et. al. [3], results in diminishing or vanishing clusters as

the number of studies is reduced, and expanding and merging

clusters as the number of studies is increased. This was

demonstrated using numerically generated experiments, and by

using small selections of studies from real CBMAs. It is clear from

the experiments that using a FWHM that is independent of the

number of studies could easily lead to the incorrect conclusion that

groups with different numbers of studies have different activation

patterns; consider the Stroop experiments (figure 4). Figure 7

demonstrates that for increasing study numbers, the cluster sizes

increase if the FWHM parameter is not adjusted. This is counter

intuitive, as the cluster size and location should be convergent as

the experiment size increases. Taking this to its limit of very large

numbers of studies, clusters will merge, and study specific foci

recruited to them, which is incorrect.

Our proposed method of estimating the FWHM aims to allow

overlapping of the high density foci that form clusters, but prevent

overlapping of the low density study-specific foci between the

clusters. We use an empirical estimate of FWHM based on that

which just starts to cause overlapping of foci between different

studies under the null hypothesis (figure 5). This is commensurate

with the DBSCAN analogy, since at that FWHM the densely

packed within-cluster foci overlap, while the between-cluster foci

do not. This leads to an estimate of the parameter a (a&30mm) in

equation (4).

The experiments depicted in figure 6 are of particular interest

because for these we know where the clusters are located, and their

approximate size, since this was predefined as part of the

experimental procedure [21]. Using FWHMEps gives results that

are reasonable given the original seed ROIs, independent of the

number of studies included. Using the FWHM specified in [3], on

the other hand, produces rather large clusters for the full dataset.

Using these experiments, another estimate of the parameter a is

obtained (a&29:5mm).

We have quantitatively analysed the true and false positive rates

associated with FWHM estimates using numerical simulation

(figures 7 and 8). Three clusters were defined and foci generated to

be either true or false cluster members. The results are in keeping

with the proposed idea that the FWHM must be adjusted for the

number of studies. For very few studies FWHM needs to be

increased to allow the foci to overlap and form clusters, albeit with

an associated increase in the false cluster rate. Failing to do this

could result in missed clusters, as shown by the Stroop experiment.

On the other hand, the FWHM must be reduced as the number of

studies increases to prevent recruitment of non-cluster foci into the

clusters. Indeed the striking observation from figure 8 is that

increasing the number of studies in the meta-analysis can be

detrimental if the FWHM is fixed due to increased false positives.

This is entirely contrary to the aim of meta-analysis, which

attempts to reduce uncertainty in estimates.

We have estimated the parameter a in equation (4) to be

&30mm, using multiple independent observations; giving the

typically used *10mm FWHM for an experiment including 30

studies. However, there is some variance on this estimate, and

some minor adjustment might be necessary if the clusters are

visually fragmented or merging.

Control of false positives in our contrast meta-analysis algorithm

is achieved using FCDR; a cluster-level control scheme. Cluster-

level schemes have been incorporated into CBMA algorithms

previously, and are preferred since they control at the level of

interest (clusters) rather than at the voxel-level, but not into

algorithms performing contrast of the ALE; indeed no method of

control, other than conservative p-value threshold, has previously

been described [12].

The contrast meta-analysis and omnibus test for differences

between two groups were demonstrated using numerically

generated experiments. The first experiment showed the ability

of contrast meta-analysis to find local differences, if those

differences were very significant. The omnibus test was also able

to detect such differences, and with greater sensitivity, but without

specifying where the differences are. A second experiment showed

that when there are multiple subtle differences between groups,

the omnibus test again had more power to detect it than contrast

Table 2. Results for the second group comparison experiment (see figure 10).

Number of
studies per
group

Number of
clusters in
experiment

Number of
foci per group

Number (%) of
studies reporting
at clusters in
group A

Number (%) of
studies reporting
at clusters in
group B

Number of clusters
found by contrast
meta-analysis with
FCDR#0.05

Omnibus test
using all foci
(p-value)

6 8 48 3 (50%) 1 (17%) 0 0.03

6 16 96 3 (50%) 1 (17%) 0 0.03

10 8 80 5 (50%) 2 (20%) 0 0.01

10 8 80 5 (50%) 1 (10%) 0–6 0.004

10 16 160 5 (50%) 2 (20%) 0–1 0.02

20 8 160 10 (50%) 4 (20%) 0 0.001

20 8 160 10 (50%) 2 (10%) 5–8 0.001

20 16 320 10 (50%) 4 (20%) 0–4 0.001

40 8 320 20 (50%) 8 (20%) 0 0.001

40 8 320 20 (50%) 4 (10%) 7–8 0.001

40 16 640 20 (50%) 8 (20%) 4–16 0.001

The omnibus test is able to find differences between the two activation patterns, even when the contrast meta-analysis test is unrevealing. The two tests are more
sensitive for larger numbers of studies, larger differences per cluster, or more clusters that are different.
doi:10.1371/journal.pone.0106735.t002
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meta-analysis; as expected. Both methods are more sensitive with

higher numbers of studies, more significant local differences, or

more widespread subtle differences.

Lack of spatial difference in contrast meta-analysis experiments

is not a good indicator that there is no difference between the

groups being compared because the test is not sensitive to diffuse

subtle differences. The omnibus test is more powerful, and should

be used where the contrast meta-analysis produces no results. If

the omnibus test is not significant, it is more likely that any real

difference between groups is small. If it is significant, it can

indicate widespread subtle differences between the groups that are

undetectable by contrast meta-analysis.

Conclusions

The FWHM parameter used in ALE coordinate based meta-

analysis algorithms is a source of heterogeneity between CBMA

results. The meaning of the parameter has been redefined here

from being the spatial uncertainty of the reported foci, to a

parameter similar to that employed in a density clustering

algorithm that works analogously to CBMA. This definition helps

reduce the observed heterogeneity. More importantly, fixing the

FWHM can paradoxically result in increased false positives as the

number of studies increases, while the proposed FWHMEps

estimate can reduce the false positive rates in the meta-analysis

with increasing study numbers.

The many tests used to compare the activation patterns between

two groups necessitate a correction for multiple comparisons. We

have detailed a contrast meta-analysis algorithm and correction for

multiple tests that controls for the proportion of clusters expected

under the null hypothesis, the false cluster discovery rate, and takes

explicit account of the correlated tests. However, the contrast

meta-analysis is not sensitive to diffuse differences between groups.

We have therefore detailed an omnibus test that can provide

evidence of differences in activation pattern between two groups

even when contrast meta-analysis is unrevealing.
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