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Abstract

Listeria monocytogenes is a human pathogen. It is the causative agent of lister-

iosis, the leading cause of bacterial‐linked foodborne mortality in Europe and

elsewhere. Outbreaks of listeriosis have been associated with the consumption

of fresh produce including vegetables and fruits. In this review we summarize

current data providing direct or indirect evidence that plants can serve as

habitat for L. monocytogenes, enabling this human pathogen to survive and

grow. The current knowledge of the mechanisms involved in the interaction of

this bacterium with plants is addressed, and whether this foodborne pathogen

elicits an immune response in plants is discussed.
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1 | INTRODUCTION

Understanding the ecology of pathogenic microorganisms

requires a thorough knowledge of their habitats and their routes

of transmission. Listeria monocytogenes (Lm) is a foodborne

pathogen that is the causative agent of listeriosis, a serious

foodborne disease that affects primarily at‐risk people (pregnant

women, elderly, immunocompromised individuals) after con-

sumption of contaminated food. High intraspecific diversity is

observed and the species is structured in well‐defined genetic

lineages and clonal complexes. Plants interact with microorgan-

isms in their close vicinity and can offer habitats for commensal

and human pathogens. Indeed, listeriosis outbreaks have been

traced back to preharvest contamination of fresh produce due to

the presence of Lm in the farm environment. In that sense, plants

must be considered as habitats that are potentially colonized by

the human pathogen, and as possible vectors of contamination.

To colonize plants bacteria must be able: (i) to utilize available

nutrients, (ii) to sense the plant and develop a chemotactic

response; (iii) to outcompete other microorganisms and occupy

available microniches. In addition, for successful colonization of

the rhizoplane or root tissue, microbes must be able to attach to

the surface and/or enter root tissue while evading immune

responses.

In this review, we discuss the current reports on the occurrence

of Lm on plants and the experimental evidence that demonstrates the

ability of Lm to colonize plants. We then address the current un-

derstanding of the intrinsic and extrinsic factors that underlie plant

colonization. Finally, we discuss the current understanding of the

contribution of plant biology in providing habitats for Lm and on the

interplay between the plant and the human pathogen in light of plant

immunity.
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2 | PLANTS OFFER SUITABLE HABITATS
FOR THE PERSISTENCE OF LISTERIA
MONOCYTOGENES

2.1 | Preharvest contamination and prevalence in
market vegetables and fresh produce

Plants offer an environment in which a wide variety of microorgan-

isms can develop including bacteria, fungi, archaea, viruses, and algae.

These microorganisms dwell either in the soil close to plants (in the

rhizosphere), as epiphytes at the surface of plant organs, or as en-

dophytes within the plants (Fitzpatrick et al., 2020; Leveau, 2019;

Pascale et al., 2020). The phyllosphere is composed of the aerial parts

of the plant while the rhizosphere is composed of the roots and the

surrounding zone of soil under their influence.

Leaves are generally described as oligotrophic and are a hostile

environment because of direct solar radiation, large temperature, and

humidity fluctuations (Hirano & Upper, 2000; Kadivar &

Stapleton, 2003; Leveau, 2019; Redford & Fierer, 2009). Though

leaves globally offer harsh environmental conditions, water and nu-

trients can accumulate locally in epidermal grooves, at the vicinity of

glandular trichomes (Schlechter et al., 2019). Natural openings (sto-

mata, hydathodes, etc.) or cracks and wounds at the plant surface are

zones where microorganisms can potentially gain access to plants

(Chaudhry et al., 2021).

In contrast to the highly fluctuating environment of leaves, soil

offers somewhat constant environmental conditions. This complex

matrix is composed of a mineral fraction, organic matter, a liquid

phase, and a gas phase. Soil is the habitat of complex networks of

living organisms from bacteria, Archaea, fungi, viruses, protozoa,

nematodes, microarthropods, earthworms, insects, and insect larvae

(Briones, 2018; Bunemann et al., 2018; Rabot et al., 2018). Field

studies show that Lm can be found in soil but detection is generally

uneven according to complex combinations of edaphic, landscape,

and meteorological factors (Chapin et al., 2014; Strawn, Fortes,

et al., 2013; Strawn, Grohn, et al., 2013; Weller et al., 2015). The

overall conclusion of these studies is the multifactorial dimension of

the prevalence and fate of Lm in soil. For example, soil pH, cation

exchange capacity, water holding capacity, mineral composition, and

temperature are important abiotic factors (Locatelli et al., 2013;

Mclaughlin et al., 2011; Sidorenko et al., 2006). Moreover, soil mi-

crobial diversity and community structure are key factors controlling

the fate of Lm in soil (Spor et al., 2020; Vivant et al., 2013). As a

consequence, preharvest contamination also depends on environ-

mental biotic and abiotic factors as well as agronomic practices

(Miceli & Settanni, 2019). Within the soil, roots can harbor Lm. In-

deed, exudation of up to 20% of the carbon fixed by plants and 15%

of their nitrogen at the root/soil interface makes the rhizosphere a

nutrient‐rich habitat (Haichar et al., 2016; Venturi & Keel, 2016).

Root tips, root hairs, cracks at the emergence of lateral roots, and

wounds are zones vulnerable to microbial entry (Mercado‐Blanco &

Prieto, 2012). These plant habitats are shaped by intrinsic factors of

the plant (i.e., plant phenotype, genotype, age, physiology), abiotic

factors (climate, soil properties, nutrient availability, etc.), and biotic

factors (commensal/beneficial microorganisms and pathogen pres-

sure) (Figure 1).

Direct and indirect evidence confirm that plants are suitable

habitats for Lm. Listeria spp. and Lm can be isolated from fresh

produce farms (Bilung et al., 2018; Chapin et al., 2014; Prazak

et al., 2002; Szymczak et al., 2014; Weller et al., 2015). Preharvest

contamination by Lm has been reported for several kinds of fresh

produce including strawberries (prevalence 10%), potatoes (pre-

valence 15%), and parsley (prevalence 5%) but the contamination

depended on the fertilization strategy (organic or chemical fertilizers)

(Szymczak et al., 2014). This suggested that Lm presence in fruit or

vegetables could in part be due to contamination from the organic

fertilizer derived from animal feces. Others reported contamination

of cabbages (Prazak et al., 2002), carrots (Kljujev et al., 2018), spinach

(Weller et al., 2015), and other leafy greens (basil, dill, garden cress,

kales, lettuce, mint, parsley, purslane, rockets) (Aytac et al., 2010).

These reports confirm the preharvest transfer of Lm to growing

plants.

Furthermore, the occurrence of contaminated raw vegetables

and fresh produce at retail has been reported from several countries

(Table 1). Lm prevalence on vegetables, herbs, and mushrooms is

variable among countries. Although contamination may occur any-

where along the food chain and depends on many factors (Alegbeleye

et al., 2018; K. Honjoh et al., 2018; Miceli & Settanni, 2019; Smith

et al., 2018), these data give indications on the type of fresh produce

and vegetables potentially contaminated in the field.

Overall, contamination is generally low. Indeed, based on pre-

valence data available in the literature, mathematical modeling sug-

gested that the probability of contamination of unprocessed fresh

vegetables with more than 10 Lm/g was 1.44% and it dropped

to 0.17% for rates of contamination over 1000 Lm/g (Crepet

et al., 2007).

2.2 | Experimental data on in vitro plant
colonization

Many studies performed under laboratory conditions confirmed that

Lm can colonize and persist on plants. Table 2 presents a selection of

these studies. Because of food safety issues, many investigations

addressed the colonization of edible plants. Lm inoculation at the

surface of roots or leaves resulted in population increase and colo-

nization of parsley (Petroselinum crispum) (Bardsley et al., 2019;

Kljujev et al., 2018), lettuce (Lactuca sativa) (Chitarra, Decastelli,

et al., 2014; K. Honjoh et al., 2018; Jablasone et al., 2005; Kljujev

et al., 2018; Shenoy et al., 2017; Standing et al., 2013), corn salad

(Vallerianella locusta) (Chitarra, Decastelli, et al., 2014; Hofmann

et al., 2014), spinach (Spinacia oleracea) (Hofmann et al., 2014;

Jablasone et al., 2005; Kljujev et al., 2018), mustard spinach (Brassica

rapa) (Koseki, Mizuno, Yamamoto, 2011b), cultivated rocket (Eruca

sativa) (Chitarra, Decastelli, et al., 2014; Settanni et al., 2012), wild

rocket (Diplotaxis tenuifolia) (Chitarra, Decastelli, et al., 2014), cress

2 of 16 | TRUONG ET AL.



(Lepidium sativum) (Jablasone et al., 2005), carrot (Daucus carota)

(Kljujev et al., 2018), radish (Raphanus raphanistrum) (Jablasone

et al., 2005), sweet pepper (Capsicum annuum) (Füstös et al., 2017),

basil (Ocimum basilicum) (Bardsley et al., 2019; Chitarra, Decastelli,

et al., 2014; Settanni et al., 2012), cilantro (Coriandrum sativum), dill

(Anethum graveolens) (Bardsley et al., 2019), tomato (Solanum lyco-

persicum) (K.‐I. Honjoh et al., 2016), cantaloupe (Cucumis melo)

(Nyarko et al., 2016), peach (Prunus persica), plum (Prunus domestica)

(Collignon & Korsten, 2010), sweet corn (Zea mays) (Kljujev

et al., 2018), and alfalfa sprouts (Medicago sativa) (Adhikari

et al., 2019). Nonedible plants can be colonized by Lm. For example,

Arabidopsis thaliana (Milillo et al., 2008), Festuca arundinacea

(Marinho et al., 2020), Cajanus cajan (Sharma et al., 2020), and

Medicago truncatula (Figure 2a) can support Lm growth. Experiments

in our lab suggest Lm can reach populations of 106–107 CFU/plant

following root inoculation of F. arundinacea and C. cajan (Marinho

et al., 2020; Sharma et al., 2020) and confocal microscopy observa-

tions confirmed that Lm can establish as biofilms (L. Gal et al., per-

sonal communication).

As indicated in Table 2, the reports available involved different

plant species, experimental systems, and inoculation methods

(Table 2). One major limitation of most of them is the use of axenic

plants. Because of the absence of other microorganisms, these ex-

periments are best‐case scenarios that demonstrate that most plants

can act as a fundamental niche for Lm.

2.3 | Consumption of herbs, vegetables, or plants
may be responsible for foodborne outbreaks (FBO) of
listeriosis

In 2019, The European Food Safety Authority published the results

of a survey on the incidence of Lm in 2357 ready‐to‐eat (RTE) fruit

and vegetable products. The overall incidence was 1.7% (Boelaert

et al., 2021).

In recent years, several FBOs of listeriosis have been recorded in

Europe and traced back to the consumption of frozen corn (2018; 32

cases, six deaths), frozen vegetables (2018; 53 cases, nine deaths),

and Korean imported enoki mushrooms (2020; 36 cases, four deaths).

In the United States consumption of contaminated frozen vegetables

(2016; nine cases, three deaths), packaged salads (2016; 19 cases,

one death), and bean sprouts (2014; five cases, two deaths) resulted

in listeriosis cases.

Although contaminated herbs and vegetables can be vectors of

listeriosis, source tracking is very difficult. Very limited longitudinal

data are currently available (Kljujev et al., 2018; Smith et al., 2018; Q.

F. Sun et al., 2021) from preharvest environments to food processing

factories and eventually retail. Because of the increasing trend to-

ward minimally processed, healthy foods in industrialized countries,

filling this lack of data is critically important to mitigate health hazards

linked to the consumption of plants and vegetables contaminated

with Lm.

F IGURE 1 The complex interplay between plants and Listeria monocytogenes (Lm). The combination of plant intrinsic factors, extrinsic biotic
factors, and abiotic environmental factors draws the boundaries of habitat colonization by Lm

TRUONG ET AL. | 3 of 16



3 | MECHANISMS UNDERLYING Lm
GROWTH, PERSISTENCE, AND SURVIVAL
ON PLANTS

Independent of the habitat, colonization and persistence rely on

complex interplays between the local conditions of the environ-

ment surrounding Lm and its ability to sense and respond to

environmental cues in accordance with its intrinsic characteristics

(Figure 1). So far, several steps have been described in the course

of plant colonization but information on the mechanisms

triggered during plant colonization remains scarce. The stochas-

tic, nonspecific adhesion of bacterial cells to plant surfaces is

followed by their irreversible attachment, followed by active

production of exopolysaccharides, multiplication, colonization of

the plant surface, and persistence (Collignon & Korsten, 2010;

Kyere et al., 2019).

TABLE 1 Occurrence of contaminated raw vegetables and fresh produce at retail

Country Vegetable type
Level of
contamination (%) References

Estonia Fruits and vegetables Up to 3 Kramarenko et al. (2013)

Soudan Prevalence on cucumber, cabbage,
carrot, tomato, and lettuce

0.41–5 Ajayeoba et al. (2016)

South Africa Cabbage and spinach 7 Du Plessis et al. (2017)

India Tomatoes 11

Coriander leaves 50 Pingulkar et al. (2001)

Spinach 25

Cabbage 25

Brinjal, cauliflower, Chappan
Kaddu, chili

20 Soni et al. (2014)

Dolichos bean and tomato 10

Malaysia Carrots 24.2

Sweet potatoes 28.1

Indian pennyworts 25

Japanese parsley 39.4 Ponniah et al. (2010)

Winged beans 34.4

Yardlong beans 40.6

Tomatoes 21.9

cucumbers 43.8

Brazil Leafy greens and vegetables 1.2 De Oliveira et al. (2010)

South Korea Fresh fruits and vegetables 0–1.7 Seo et al. (2010), Tango
et al. (2018)

Japan Leaves, roots, bulbs, mushrooms,

and sprouts

0 Inoue et al. (2000)

Iceberg lettuce 0 Koseki, Mizuno, Kawasaki,
et al. (2011)

China Vegetables 1.7 Yu and Jiang (2014)

Vegetables and herbs 2.8 Chen et al. (2015)

Vegetables 5.7 Wu et al. (2015)

Vegetables 2 Wang et al. (2017)

Vegetables and herbs 7.8 Chen et al. (2019)

Mushrooms 21.2–31.5 Chen et al. (2015, 2018),
Wu et al. (2015)

Ireland Mushrooms 3.8 Pennone et al. (2018)

4 of 16 | TRUONG ET AL.



T
A
B
L
E

2
P
la
nt

co
lo
ni
za
ti
o
n
b
y
Li
st
er
ia

m
on

oc
yt
og

en
es

un
d
er

la
b
o
ra
to
ry

co
nd

it
io
ns

a

P
la
nt

sp
ec

ie
s

C
ul
tu
re

co
nd

it
io
n
in
o
cu

la
ti
o
n
d
o
se
s

D
et
ec

ti
o
n
m
et
ho

d
s

Lo
ca
liz
at
io
n
an

d
d
ev

el
o
p
m
en

t
R
ef
er
en

ce
s

Le
tt
uc

e
L.

sa
ti
va

•
A
xe

ni
c
sy
st
em

s,
1
0
6
–1

0
7
C
F
U
/m

l
•

E
nu

m
er
at
io
n
o
n
m
ic
ro
gr
ap

hs
at

2
1
d
p
i

•
In

th
e
su
rf
ac
e
la
ye

rs
an

d
in
si
d
e
o
f
ro
o
t

K
lju

je
v
et

al
.
(2
0
1
8
)

•
A
xe

ni
c
sy
st
em

s,
ir
ri
ga

te
d
w
it
h
1
0
7
C
F
U
/m

l
•

Su
rf
ac
e
d
is
in
fe
ct
io
n
fo
llo

w
ed

b
y

en
um

er
at
io
n
o
n
p
la
te
s

•
in
si
d
e
o
f
le
av

es
up

to
8
0
d
ay

s
C
hi
ta
rr
a,

D
ec

as
te
lli
,
et

al
.
(2
0
1
4
)

•
St
an

d
ar
d
o
r
au

to
cl
av

ed
p
o
tt
in
g
m
ix
,
to
p
so
il
o
r

in
vi
tr
o
,1

0
8
C
F
U
/m

l
•

Im
m
un

o
cy
to
ch

em
is
tr
y
w
it
h
Lm

ex
p
re
ss
in
g

G
F
P

E
nu

m
er
at
io
n
o
n
p
la
te
s,
up

to
2
1
d
p
i

•
In
te
rn
al
iz
es

in
al
l
m
aj
o
r
ti
ss
ue

ty
p
es

N
o
d
et
ec

ti
o
n
in

7
5
%

to
p
so
il
b
ut

d
et
ec

ti
o
n
in

vi
tr
o

Sh
en

o
y
et

al
.
(2
0
1
7
)

•
Se

ed
lin

gs
cu

lt
iv
at
ed

o
n
ve

rm
ic
ul
it
e
an

d
hy

d
ro
p
o
ni
ca
lly
,
1
0
5
C
F
U
/m

l
•

Su
rf
ac
e
d
is
in
fe
ct
io
n
fo
llo

w
ed

b
y

en
um

er
at
io
n
o
n
p
la
te
s,
lig
ht
,
an

d
T
E

m
ic
ro
sc
o
p
y

•
In
si
d
e
ro
o
ts

an
d
le
av

es
St
an

d
in
g
et

al
.
(2
0
1
3
)

•
A
ut
o
cl
av

ed
co

m
m
er
ci
al

so
il,

1
0
4
–1

0
8
C
F
U
/g

•
E
nu

m
er
at
io
n
o
n
p
la
te
s

•
D
et
ec

ti
o
n
at

lo
w

le
ve

l
N
o
in
te
rn
al
iz
at
io
n
in
to

le
af

d
et
ec

te
d

K
.
H
o
nj
o
h
et

al
.
(2
0
1
8
)

•
G
er
m
in
at
ed

o
n
d
am

p
en

ed
st
er
ile

fi
lt
er

p
ap

er
d
is
ks

an
d
so
lid

if
ie
d
hy

d
ro
p
o
ni
c
so
lu
ti
o
n,

se
ed

s
so
ak

ed
in

ce
lls

su
sp
en

si
o
n
(1
0
2
C
F
U
/m

l)

•
E
nu

m
er
at
io
n
o
n
p
la
te
s
at

9
an

d
4
9
d
p
i

•
G
ro
w
th

o
n
ge

rm
in
at
in
g
se
ed

s
o
b
se
rv
ed

D
et
ec

ti
o
n
o
n
su
rf
ac
e
up

to
4
9
d
ay

s

N
o
in
te
rn
al
iz
at
io
n
d
et
ec

te
d

Ja
b
la
so
ne

et
al
.
(2
0
0
5
)

Sp
in
ac
h

S.
ol
er
ac
ea

•
A
xe

ni
c
sy
st
em

s,
1
0
6
–1

0
7
C
F
U
/m

l
•

E
nu

m
er
at
io
n
o
n
3
D

m
ic
ro
gr
ap

hs
at

2
1
d
p
i

•
In

th
e
su
rf
ac
e
la
ye

rs
an

d
in
si
d
e
o
f
ro
o
t

K
lju

je
v
et

al
.
(2
0
1
8
)

•
A
xe

ni
c
sy
st
em

,
4
x
1
0
1
to

4
x
1
0
6
C
F
U
/m

l
So

il,
up

to
2
.4

x
1
0
7
C
F
U
/g

fo
r
sl
ur
ry

se
tu
p
s
an

d
1
.6

x
1
0
7
fo
r
m
an

ur
e
se
tu
p
s

•
P
C
R
d
et
ec

ti
o
n
at

2
1
d
p
i

•
In
si
d
e
ro
o
t
an

d
sh
o
o
t

F
ew

sa
m
p
le
s
in
d
ep

en
d
en

t
o
f
th
e
sp
ik
in
g

d
o
se
s
w
er
e
te
st
ed

p
o
si
ti
ve

H
o
fm

an
n
et

al
.
(2
0
1
4
)

•
G
er
m
in
at
ed

o
n
d
am

p
en

ed
st
er
ile

fi
lt
er

p
ap

er
d
is
ks

an
d
so
lid

if
ie
d
hy

d
ro
p
o
ni
c
so
lu
ti
o
n,

se
ed

s
so
ak

ed
in

ce
lls

su
sp
en

si
o
n
(1
0
2
C
F
U
/m

l)

•
E
nu

m
er
at
io
n
o
n
p
la
te
s
at

9
an

d
4
9
d
p
i

•
G
ro
w
th

o
n
ge

rm
in
at
in
g
se
ed

s
o
b
se
rv
ed

D
et
ec

ti
o
n
o
n
su
rf
ac
e
up

to
4
9
d
ay

s

N
o
in
te
rn
al
iz
at
io
n
d
et
ec

te
d

Ja
b
la
so
ne

et
al
.
(2
0
0
5
)

C
o
rn

sa
la
d

V
.
lo
cu
st
a

•
A
xe

ni
c
sy
st
em

,
4
x
1
0
1
to

4
x
1
0
6
C
F
U
/m

l
•

P
C
R
d
et
ec

ti
o
n
at

2
1
d
p
i

•
D
et
ec

te
d
at

in
o
cu

la
ti
o
n
d
o
se
s
o
f
le
ss

th
an

4
×
1
0
2
C
F
U
/m

l
in

ro
o
t,

4
×
1
0
3
C
F
U
/m

l
in

sh
o
o
t

H
o
fm

an
n
et

al
.
(2
0
1
4
)

•
So

il,
up

to
2
.4

×
1
0
7
C
F
U
/g

fo
r
sl
ur
ry

se
tu
p
s
an

d

1
.6

×
1
0
7
fo
r
m
an

ur
e
se
tu
p
s

•
P
C
R
d
et
ec

ti
o
n
at

2
1
d
p
i

•
F
ew

sa
m
p
le
s
in
d
ep

en
d
en

t
o
f
th
e
sp
ik
in
g

d
o
se
s
p
o
si
ti
ve

H
o
fm

an
n
et

al
.
(2
0
1
4
)

•
A
xe

ni
c
sy
st
em

s,
ir
ri
ga

te
d
w
it
h
1
0
7
C
F
U
/m

l
•

Su
rf
ac
e
d
is
in
fe
ct
io
n
fo
llo

w
ed

b
y

en
um

er
at
io
n
o
n
p
la
te
s

•
N
o
t
d
et
ec

te
d
in
si
d
e
o
f
le
av

es
C
hi
ta
rr
a,

D
ec

as
te
lli
,
et

al
.
(2
0
1
4
)

(C
o
nt
in
ue

s)

TRUONG ET AL. | 5 of 16



3.1 | Lm attachment to plants

The contribution of flagella to attachment and colonization of alfalfa,

radish, and broccoli sprouts has been investigated in three genotypes

of Lm (Gorski et al., 2009). Colonization was impaired in deletion

mutants affected in flagella synthesis but results depended on the

type of sprout and the genetic background of Lm strains (Gorski

et al., 2009). Thus, the absence of flagellum affects the colonization

of some plants but this is strain‐dependent. Among the genes re-

quired for the synthesis of the flagellar rotor, disruption of motAB had

a significant effect on surface attachment to radish tissues. However,

deletion of motAB did not impact root attachment on sprouts but the

fitness of the mutants was significantly lower than the parental

strains during co‐inoculation experiments. This suggests that motility

improves colonization fitness. Conversely, colonization of cut cab-

bage was not affected by motility (Palumbo et al., 2005).

The lectin‐mediated attachment mechanism is likely to be active

during bacteria–root interactions (Danhorn & Fuqua, 2007; Wheatley

& Poole, 2018). Indeed, agglutination assays showed that Lm reacts

to different plant lectins in a strain‐specific manner (Facinelli

et al., 1998; Slifkin & Doyle, 1990). However, lectins of Canavalia

ensiformis and Punica granatum have antibiofilm activities against Lm

and other bacteria (Jin et al., 2019; Silva et al., 2021). This suggests

that lectins of some plant species may limit adhesion to their surface.

Xyloglucan and pectins are plant cell wall components that affect

Lm attachment (Tan et al., 2015). Moreover, a cellulose‐binding

protein enables Lm attachment to lettuce (Bae et al., 2013). Alto-

gether, these reports highlight the importance of the structures and

components of plant cell walls in the attachment of Lm.

Information on transcriptome variations triggered by plant co-

lonization is limited, and genes whose expression is required during

plant colonization remain to be duly identified. In one study, a dif-

ferential display approach was undertaken to compare the Lm gene

expression profile under two conditions. In the first, Lm was in-

oculated on cut cabbage. In the second Lm was cultivated in standard

laboratory conditions (Palumbo et al., 2005). Although several genes

were transcribed differentially, including genes contributing to cell

surface characteristics, disruption of some of these genes did not

impede attachment and growth on cabbage.

3.2 | Nutrient utilization during colonization/
proliferation of Lm on plants

The growth of Lm on plants relies on its ability to utilize plant‐derived

nutrients (Palumbo et al., 2005). Indeed plants release to their en-

vironment a blend of compounds produced constitutively or in re-

sponse to environmental cues, including abiotic and biotic stressors

(Bais et al., 2006; Chaudhry et al., 2021; Jacoby et al., 2020; Sasse

et al., 2018). The composition of these nutrient‐rich exudates depends

on the plant species, age, nutrition, and physiology (Bais et al., 2006).

Exudates are mixtures of low molecular weight (organic acids, amino

acids, sugars, secondary metabolites) and high molecular weightT
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(mucilage, proteins) C‐rich molecules. Leakage of nutrients at root

junction sites, after tissue wounding or phytopathogen infection, can

be another source of nutrients available for the development of Lm

(Brandl, 2006). The increase in numbers of Lm on seeds germinating on

sterile dampened filter papers confirms that Lm can make use of the

plant compounds for growth, attaining levels of 5.5–6.9 log CFU/g

(Jablasone et al., 2005). Furthermore, when Lm was inoculated on

fresh‐cut cabbage, higher transcription of genes associated with

transport, carbohydrate metabolism, amino acid, vitamin, and nucleo-

tide biosynthesis suggests that Lm can transport and metabolize a

wide range of plant‐derived resources (Palumbo et al., 2005).

Though leaf surfaces are oligotrophic environments, limited

amounts of exudates can be released in the phyllosphere. The pre-

sence of nitrogen in leaf exudates was a critical factor promoting the

growth of human pathogens on lettuce leaves (Brandl &

Amundson, 2008), and bacterial multiplication on leaves is supported

locally by discrete zones providing higher concentrations of sugars

(Leveau & Lindow, 2001). Still, the leaf habitat displays harsher

conditions than roots (Koseki, Mizuno, Yamamoto, 2011). For ex-

ample, microscopic examination of germinated sprouts confirmed

that Lm was preferentially localized on root hairs rather than on

leaves (Gorski et al., 2004, 2009). However, these studies were

performed with axenic sprouts and the absence of other micro-

organisms is a major bias in comparison to field conditions.

3.3 | Stress response

Although plants provide habitats for microorganisms, the production

of specific molecules can induce stressful conditions for bacteria

(Foreman et al., 2003). Coping with harsh conditions is a prerequisite

for plant colonization. For example, intrinsic resistance to cumene

hydroperoxide in a collection of Lm strains was correlated with higher

colonization of sprouts, regardless of the type of sprout used in the

study, but the results were to some extent strain‐dependent (Gorski

et al., 2008). The authors proposed that resistance to oxidative stress

was one of the many factors contributing to the success of root

colonization. The general stress response plays indeed a key role in

the process of habitat colonization. Sigma B is the essential factor in

the response of Lm to stressors (low pH, oxidizing conditions, star-

vation, and osmotic variations); it coordinates the transcription of

approximately 10% of the genome (Ferreira et al., 2001, Fraser

et al., 2003). Deletion of the gene encoding Sigma B (sigB) did not

obliterate growth and survival in commercial potting soil nor on

radish but the mutant population was 1–2 orders of magnitude lower

than the parental strain (Gorski et al., 2011). These results were

confirmed in another genetic background during in vitro root colo-

nization of F. arundinacea and survival in agricultural soil microcosms

(Marinho et al., 2020). These data suggest that regulation of tran-

scription by Sigma B is required for optimal adaptation and survival in

F IGURE 2 Experimental evidence of the growth of Listeria monocytogenes (Lm) on roots of the model plants Arabidopsis thaliana and
Medicago truncatula (a) and absence of MAPK activation after inoculation of roots with Lm (b). (a) Roots were inoculated with Lm (104 CFU/root
for A. thaliana and 103 CFU/root for M. truncatula). (b) Roots were inoculated with Lm (108 CFU/root) and MAPK activation was assessed at
different time points by Western blot analysis using an antibody recognizing the activated form of MAPK (MAPK‐P). dpi, days postinoculation; E,
L. monocytogenes EGDe parental strain; Fla +/ F+, constitutive FlaA producer mutant derived from Lm EGDe; fla−/f, FlaA‐deficient mutant
derived from Lm EGDe; MAPPK, mitogen‐activated protein kinase; nd, <20 CFU/root; −, negative control; +, positive control (inoculation of
M. truncatula with the phytopathogen Aphanomyces euteiches [Ae])
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the rhizosphere but not in the initial steps of attachment to root

surfaces.

Further root colonization defects were observed with a strain

(ΔagrAΔsigB) with a double mutation that affected both the general

stress response and cell to cell communication (Marinho et al., 2020);

this suggests that both, cell to cell communication and general stress

response contribute to success during root colonization.

A variety of plant secondary metabolites act as defense com-

pounds. Several volatiles produced by plant leaves or roots display

antimicrobial properties against Lm (Kawacka et al., 2021). These

include benzenoids, phenylpropanoids, phenolics, and terpenoids

released by essential oils (Farré‐Armengol et al., 2016). Interference

with adherence ability, biofilm formation, and bacterial cell mem-

brane disruption appear to be the mechanisms of action of some of

these plant‐derived antimicrobial compounds (Kawacka et al., 2021).

As the experiments were generally performed with concentrated

extracts or purified compounds, how these data relate to plant/Lm

interaction in vivo remains to be assessed.

3.4 | Biotic interactions with plant microbiome

Whatever the habitat, one of the major extrinsic factors driving the

fate of Lm is the presence of other microorganisms. Plants are me-

taorganisms harboring complex communities of microorganisms col-

lectively referred to as the plant microbiome. The abundance and

composition of microbiomes are different on leaves (phyllosphere)

and roots (rhizosphere). The rhizospheric microbiome is composed of

various classes of microbes: fungi, bacteria and archaea, actinomy-

cetes, protozoa, nematodes (Mendes et al., 2013), and algae (Lee &

Ryu, 2021). Bacteria are a major component of the plant microbiome

contributing to plant growth, protection from environmental stres-

sors (Devarajan et al., 2021), protection from pathogens

(Ritpitakphong et al., 2016) and they are essential to carbon and

nitrogen cycles (Abadi et al., 2021; Reed et al., 2010). Phyllosphere

microorganisms are mainly bacteria (Alphaproteobacteria, Gamma-

proteobacteria, and the phyla Bacteroidetes and Actinobacteria).

Fungi are also detected in the phyllosphere and appear to be highly

diverse (Kembel et al., 2014; Vorholt, 2012). Recent studies suggest

that the soil contributes to phyllosphere microbes in addition to

parental material and the atmosphere (Grady et al., 2019; Zheng &

Lin, 2020; Zhou et al., 2021).

Experiments in unplanted soil microcosms clearly showed that

soil microbiomes can act as efficient barriers preventing invasion by

Lm (Dowe et al., 1997; Locatelli et al., 2013; Mclaughlin et al., 2011;

Moynihan et al., 2015). Although the overall diversity of soil micro-

biomes plays a key role in generating hostile conditions for Lm, the

phylogenetic composition has to be considered as well (Spor

et al., 2020; Vivant et al., 2013). Experiments carried out on soil

microcosms planted with the Poaceae F. arundinacea have demon-

strated that the presence of plants improved to some extent the

survival of the pathogen (L. Gal et al., personal communication).

However, unlike in vitro, no growth could be observed and the

population of Lm in the rhizosphere gradually declined. Therefore it is

likely that, compared to bare soil, the rhizosphere environment is

favorable for the survival and maintenance of Lm. The relationship

between the characteristics of plant microbiome and the settlement

of Lm in the rhizosphere or leaves has yet to be documented. Similar

trends are expected in the rhizosphere as in unplanted soil. For ex-

ample, specific strains of Azotobacter chroococcum, Bacillus mega-

terium, and Pseudomonas fluorescens can control Lm in the

rhizosphere possibly through a combination of competition and an-

tibiosis (Sharma et al., 2020). In conclusion, the plant microbiome is

the major factor limiting Lm niche breadth. In the future, im-

plementing farming practices favoring microbiome diversity is an

exciting field of investigation to limit preharvest contamination and

improve food safety.

3.5 | Conflicting information on Lm internalization
in plant tissues

Internalization of human pathogens in plant tissues raises further

food safety issues. Indeed, internalized bacteria, whether present in

the extracellular space or intracellular compartments are protected

from removal by washing and surface disinfection, and therefore may

threaten consumers' health when fresh produce is eaten raw

(Erickson, 2012). Whether or not Lm colonizes plants internally is still

a matter of debate and conflicting reports are available (Table 2,

Chitarra, Balestrini, et al., 2014; Koiv et al., 2019; Kutter et al., 2006;

Shenoy et al., 2017). Detection of Lm in major plant tissues including

vasculature supports its possible transport and dissemination within

the plant (Shenoy et al., 2017). Fluorescence in situ hybridization with

Lm‐specific oligonucleotides and confocal imaging coupled with im-

munocytochemistry of a Green Fluorescence Protein‐expressing Lm

strain provided evidence of the presence of Lm in plant organs or

intercellular spaces of A. thaliana leaves (Milillo et al., 2008), carrot,

parsley, and celery (Kljujev et al., 2018). The occurrence of Lm in both

extracellular and intracellular spaces of lettuce (Shenoy et al., 2017)

and sweet corn (Kljujev et al., 2018) was also reported. Surface dis-

infection followed by enumeration confirmed the endophytic locali-

zation of Lm in lettuce and other plants (Chitarra, Decastelli,

et al., 2014; Koseki, Mizuno, Yamamoto, 2011; Standing et al., 2013).

However, no internalization of Lm was evidenced in other plant

species such as barley and basil (Table 2, Chitarra, Decastelli,

et al., 2014; Jablasone et al., 2005; Kutter et al., 2006). These plant

species‐dependent differences in endophytic colonization by Lm

could be linked to the presence or absence of plant metabolites that

can either favor or prevent Lm growth. The production of anti-

microbial compounds such as essential oils was proposed to limit the

colonization of basil by human pathogens (Dorman & Deans, 2000).

In summary, conflicting data on Lm internalization requires further

comprehensive investigations taking into account factors such as the

concentration of inoculum, the method used to detect internalization,

the plant genotype/species, which are all known to affect interac-

tions with human pathogenic bacteria (Hirneisen et al., 2012).
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4 | WHY IS THERE SO LITTLE
INFORMATION ON PLANT/Lm
INTERACTIONS IN LIGHT OF IMMUNITY?

Evolution has shaped defense mechanisms enabling plants to limit

the growth of invading microorganisms. The plant immune system

relies on the recognition of specific patterns (called Microbe‐

Associated Molecular Patterns, MAMPs) on the surface of micro-

organisms (Jones & Dangl, 2006). Detection of these patterns by

pattern recognition receptors (PRRs) localized on the plasma mem-

brane triggers the onset of signaling cascades including a rapid efflux

of Ca2+, the activation of mitogen‐activated protein (MAP) kinases,

and the generation of ROS leading to Pattern Triggered Immunity

(PTI) (Pitzschke et al., 2009).

4.1 | MAMPs and plant immunity

The 22‐amino‐acid flagellin epitope flg22 is one of the most studied

MAMPs. It triggers plant responses such as hypersensitive cell death in

A. thaliana through the binding to the PRR FLAGELLIN SENSING2

(FLS2) (Gomez‐Gomez & Boller, 2000). The second epitope of flagellin,

flgII‐28, is sufficient to trigger immunity in Solanaceae (Clarke

et al., 2013). Flagellin proteins from different bacterial species,

pathovars, and strains can display variations in amino acid sequences,

and studies have suggested that some phytopathogens can modify

their MAMPs to avoid inducing PTI. For example, a single amino acid

change in flg22 is sufficient to attenuate or even to block its interac-

tion with FLS2 (W. Sun et al., 2006), and posttranslational modifica-

tions of flagellin, including glycosylation, can counteract elicitation

(Rossez et al., 2015). Interestingly, MAMPs from commensal, beneficial

microbes, and zoonotic human pathogens can be detected by PRRs. As

reviewed by Trdá et al., the flagellin and flg22 of the plant growth‐

promoting rhizobacteria P. fluorescens (WCS374 and WCS417) and the

endophytic Burkholderia phytofirmans induce an innate immune re-

sponse in plant cells (Trda et al., 2015). Strategies to evade or suppress

plant immunity such as MAMP divergence by sequence variation,

MAMP degradation, sequestration, or MAMP modification seem to be

similar among commensal, beneficial, and pathogenic microorganisms

(Teixeira et al., 2019). Additional MAMPs include elongation factor Tu

(EF‐Tu), cold shock proteins, peptidoglycans, and lipopolysaccharides

from bacteria, glucans, arachidonic acid, and ergosterol from oomy-

cetes, and chitin from fungi (Boller & Felix, 2009). Interestingly, EF‐Tu,

one of the most abundant proteins found in bacteria, triggers an im-

mune response in mammals as well as in plants where PRRs specific to

EF‐Tu have been characterized in monocots and dicots (Zipfel

et al., 2006). Interaction of PRRs with EF‐Tu involves specific amino

acid patterns and is plant‐dependent. The amino acid pattern EFa50

F IGURE 3 The amino acid sequence of (a) epitopes flg22 and Fl‐II‐28 of Fla and (b) elf18 and EFa50 of EF‐Tu in a selection of bacterial
species. Listeria sp. sequences of FlaA and EF‐Tu proteins were compared with plant and human bacteria. *Key amino acids of flg22‐eliciting
activity in tomato cells (Felix et al., 1999). **No significant homology with fl‐II‐28 of Rhizobium leguminosarum. D1 and D2 are sequence
divergences (%) calculated with respect to Pseudomonas syringae. Plant phytopathogenic bacteria are indicated in red and plant beneficial
bacteria in green. Nucleotides are numbered according to the P. syringae sequence. Sequence alignment and estimation of sequence divergence
(p distance) were performed using MegaX (Kumar et al., 2018)
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(position 175–225 of EF‐Tu) of Acidovorax avenae is recognized by rice

PRRs (Furukawa et al., 2014), whereas A. thaliana recognizes the

pattern composed of the first 18 aa (Kunze et al., 2004).

4.2 | A contribution of Lm flagellin and EF‐Tu to
plant immunity?

Perception of zoonotic human pathogens by plants is supported by

several studies on Salmonella enterica and Escherichia coli O157:H7

(Schikora et al., 2008; Teplitski et al., 2012). Indeed the flg22 epitope

of these bacteria appears to be perceived by plants and leads to

growth restriction of these human pathogens. For example, flg22St of

S. enterica was found to be an effective MAMP triggering PTI (Garcia

et al., 2014), and higher colonization of A. thaliana was observed with

the flagellum‐defective mutants of S. enterica and E. coli O157:H7

than with their isogenic parental strain (Melotto et al., 2014). In the

case of Lm, however, experimental evidence of a plant immune re-

sponse triggered by this bacterium is lacking. Therefore we analyzed

in silico the available sequences of flaA and tuf, the Listeria genes

encoding respectively flagellin and EF‐Tu. The two plant im-

munogenic epitopes flg22 and fl‐II‐28 are present in the flagellin of

Lm and Listeria sp. (Figure 3a). No amino‐acid sequence divergence of

FlaA was found between Listeria species and isolates. At the nu-

cleotide level, the limited divergence between Lm lineages is ob-

served in the sequence of flaA (2.3% in total; 1.4% if only the flg22

epitope is considered).

The 3D structure of the flagellin was reconstructed in silico to

compare flagellins of Lm, Bacillus subtilis (accession number:

AOR99902.1), Pseudomonas syringae pv. tomato str. DC3000 (ac-

cession number AAO55467.1) and Azotobacter vinelandii DJ (acces-

sion number ACO78942.1). The predicted protein structure shows

stable secondary and tertiary structures and suggests conserved

conformations in all species (Figure 4). Significant differences were

F IGURE 4 3D model (in red) of flagellin of (a) Listeria monocytogenes, (b) Pseudomonas syringae, (c) Bacillus subtilis, (d) Azotobacter vinelandii.
The protein structure was predicted by structure homology using the Swiss‐Model utility on the ExPasy server [1] (available online at https://
swissmodel.expasy.org/). The four models were built on the top‐ranking template predicted by the software. For comparison, the structures
were aligned on a reference (PDB accession: 6PWB.2, in blue) using the TM‐align online tool [2] (available at https://zhanglab.ccmb.med.umich.
edu/TM-align/). The model presented a Global Model Quality Estimate (GMQE) of 0.72 for L. monocytogenes, 0.91 for B. subtilis, 0.74 for
P. syringae, and 0.53 for A. vinelandii
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observed within the variable region spanning Gln‐130 to Asn‐185, as

expected (Nempont et al., 2008). Interestingly the location of flg22

within a conserved domain at 30–51 aa is common to the four

models but variations are observed in the regions surrounding this

MAMP. Further biochemical characterization of the flagellin of Lm is

required to properly assess protein/protein interactions with the

plant receptor FLS2 and the subsequent induction of PTI.

The two plant immunogenic epitopes elf18 and EFa50 of EF‐tu

are also conserved in Lm (Figure 3b). They display 83% and 58%

identity with the respective sequences from P. syringae. At the DNA

level, tuf nucleotide divergence between Lm lineages is 2.9% (0% and

0.1% for the two EF‐Tu epitopes, respectively). Although this in silico

analysis suggests that Lm could trigger PTI after the interaction of

these MAMPs with their cognate plant receptors, this has yet to be

demonstrated experimentally.

Preliminary experiments in our laboratory failed to evidence

plant response to Lm flagellin. Growth of Lm EGDe on seedlings of

the Col0 genotype of A. thaliana was not modified either in a flaA

deletion mutant or in a mutant constitutively expressing flagellin

(Figure 2a), in contrast to what was reported with other human pa-

thogens such as S. enterica or E. coli O157:H7 (Melotto et al., 2014).

Likewise, impairment of FLS2 did not improve Lm proliferation on A.

thaliana roots (H.‐N. Truong et al., personal communication). Induc-

tion of defense genes or activation of components of the plant's

immune response such as MAP kinases could not be evidenced even

when very high concentrations of bacteria (108 CFU/plant) were in-

oculated on roots of A. thaliana or M. truncatula (Figure 2b). The

failure to detect a clear response of plants to Lm could explain the

lack of relevant literature addressing the effect of Lm on plant im-

mune response. Further experiments must be designed in which

plant/Lm interactions will be investigated in a Systems Biology ap-

proach to assess the impact of Lm on plant immunity.

5 | CONCLUSIONS

Lm is found in a wide range of outdoor habitats though in general at

low numbers. In these habitats, including plants, it is usually assumed

that Lm can persist as a saprophyte. Plants can indeed provide nu-

trients readily metabolized by Lm. Reports on preharvest contamina-

tion of a variety of crops and vegetables as well as experimental data

from plant inoculation with Lm clearly show that plants offer suitable

niches for Lm. They can therefore be considered as possible reservoirs

of Lm and more generally as reservoirs of human pathogens. From an

epidemiological point of view, largescale surveys of preharvest con-

tamination are required to study the intraspecific diversity of Lm iso-

lated from plants. This could help assess whether plant isolates cluster

with other environmental and/or clinical isolates or whether specific

genomic signatures can be found. It will further document plants as

reservoirs of foodborne pathogens potentially leading to contamina-

tion of vegetables and fresh produce at retail.

Surprisingly, while reports on intrinsic and extrinsic factors that

shape the extent of niches associated with plants are abundant, very

few studies focus on their impact on the development of human

pathogens, even more strikingly in the case of Listeria. Information on

the fundamental niche can be retrieved from studies relying on

simplified setups of plants grown aseptically, but abiotic and biotic

environmental factors narrow down the width of the niches available

for Lm on plants. Similarly, the contribution of Lm intraspecific di-

versity has yet to be considered. Future work will have to address

these intrinsic and extrinsic factors to document the realized niche of

Lm on plants.

The extent of the interplay between Lm and plants has yet to be

clarified. Its intracellular location remains controversial, and whether

Lm merely colonizes plant surfaces externally or readily proliferates

inside plant cells needs to be fully addressed. No defense response

has been observed so far in plants inoculated with this human pa-

thogen although MAMPs (flg22 of flagellin and Ef‐tu) are highly

conserved within the species Lm. Further experiments must be de-

signed to determine whether the presence of Lm can trigger plant

immune response or conversely if the immune response could be

counteracted by the activation of specific bacterial mechanisms upon

arrival of Lm on the plant surface.

In conclusion, the data available so far on Lm interacting with

plants favor the hypothesis that it can utilize plant‐derived resources

to multiply and colonize plant surfaces as a commensal microorgan-

ism if competition and antibiosis interactions with the microbiome are

permissive enough. A comprehensive Systems Biology approach is

necessary to decipher the intertwined interactions between the

plant, the microbiome, the pathogen, and the abiotic environment.

Association of metabolomics with dual RNA‐Seq approaches and in

situ microscopic observations will open a promising avenue of

research aiming to characterize the Lm realized niche. Functional

genetics approaches could then confirm the role of candidate genes/

metabolic pathways in the interplay between the plant, its micro-

biome, and the pathogen. The triptych microbiome/plant/Lm

deserves to be studied as a focal point to keep on improving our

understanding of the natural history of this human pathogen.
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