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Fitting Proportional Odds Model 
to Case-Control data with 
Incorporating Hardy-Weinberg 
Equilibrium
Wei Zhang1, Zehui Zhang2, Xinmin Li3 & Qizhai Li1

Genetic association studies have been proved to be an efficient tool to reveal the aetiology of many 
human complex diseases and traits. When the phenotype is binary, the logistic regression model 
is commonly employed to evaluate the association strength of the genetic variants predispose to 
human diseases because the maximum likelihood estimator of the odds ratio based on case-control 
data is equivalent to that from the same model by taking the data as being arisen prospectively. 
This equivalence does not hold for the proportional odds model and using it to analyze the case-
control data directly often results in a substantial bias. Through putting a parameter of the minor 
allele frequency in the modified likelihood function under the condition that the Hardy-Weinberg 
equilibrium law holds within controls, a consistent estimator is obtained. On the basis of it, we 
construct a score test statistic to test whether the genetic variant is associated with the diseases. 
Simulation studies show that the proposed estimator has smaller mean squared error than the 
existing methods when the genetic effect size is away from zero and the proposed test statistic has 
a good control of type I error rate and is more powerful than the existing procedures. Application 
to 45 single nucleotide polymorphisms located in the region of TRAF1-C5 genes for the association 
with four-level anticyclic citrullinated protein antibody from Genetic Analysis Workshop 16 further 
demonstrates its performance.

A retrospective study is highly popular in genetic epidemiology study because of its economic cost and 
substantially reduced study duration compared with a prospective design. The data in a retrospective 
design are not drawn from the general population and they are randomly sampled from each subpopula-
tion and the numbers of subjects chosen from each individual subpopulation are usually matched. In the 
last decade, the retrospective case-control genetic association studies, especially genome-wide association 
studies, have been considered as a big success in searching for the deleterious genetic susceptibilities1–3. 
By now, more than ten thousand single nucleotide polymorphisms (SNPs) have been identified to be 
associated with human complex diseases (http://www.genome.gov/gwasstudies). There are two types of 
phenotypes: continuous and discrete. The majority of the discrete phenotypes are binary and ordinal. 
The logistic regression model is a major tool to analyze the binary phenotypes because the odds ratio 
estimator from the logistic regression model based on case-control data is equivalent to that from the 
same model by taking the data as being sampled from a prospective study4–6. Although there is a lack 
of identification of the intercept, it does not matter because the intercept is not concerned in practice. 
Compared with that using two statuses (case and control) to define the medical outcomes, an ordinal 
description with three or three more values might be more accurate to measure the quality of life for 
some human complex diseases. For example, there are three levels for depicting the degree of severity of 
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carcinoid heart disease (CHD): without CHD, mild CHD and severe CHD7, and four levels for those of 
live steatosis: normal liver, light steatosis, moderate steatosis, and severe steatosis8.

Several procedures were proposed to analyze the retrospective data with ordinal responses in the 
literatures. An ad hoc approach is to use the proportional odds model9 by taking the retrospective data 
as being enrolled prospectively. However, it is not appropriate because the proportional odds model does 
not belong to the multiplicative intercept risk model10,11 and the resulting maximum likelihood estimator 
(MLE) of the interested parameter is not consistent to its true value except for the scenario that the true 
value of the concerned parameter is 0. So, under a discrete choice probability model, Cosslett10 proposed 
to maximize a modified likelihood function to get the MLE; Wild11 considered fitting the proportional 
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Figure 1.  The empirical point estimates of proMLE, modMLE and hweMLE for β = In 1.2. 
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Figure 2.  The empirical point estimates of proMLE, modMLE and hweMLE for β = In 1.4. 
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odds model to case-control data from a finite population with known population totals in each response 
category and obtained the MLE. Based on the final optimization function, it revealed that Wild’s MLE 
is identical to that of Cosslett.

The Hardy-Weinberg equilibrium (HWE) law is a very important principal in population genetics. It 
is a routine to check whether the observed genotypes satisfy the HWE law in control population before 
conducting an association test, because deviations from HWE can indicate many problems such as pop-
ulation stratification, genotyping error and so on12–14. In a genome-wide association study, the threshold 
of p-value is 10−4 for the HWE test to ensure that there is no possible systematic genotyping error in the 
sampled individuals. On the other hand, checking whether the HWE law holds in case population has 
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Figure 3.  The empirical point estimates of proMLE, modMLE and hweMLE for β = In 1.6. 
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Figure 4.  The empirical point estimates of proMLE, modMLE and hweMLE for β = In 1.8. 
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been used as an association test for fine-mapping of the disease loci15,16. In a further way, the HWE law 
has also been advocated in many associated studies. For example, Wang and Shete17 derived a powerful 
test by incorporating the derivations of HWE in cases for single-marker analysis; Zheng and NG18 pro-
posed a powerful two-phase analysis by using the HWE test to classify the genetic models; Chen et al.19 
considered testing the gene-environment interaction by assuming that the HWE holds in the controls. 
Consider a biallelic SNP locus with two alleles A and a. Denote the allele frequency of A by p. Under the 
HWE principal, the genotype frequencies of AA, Aa and aa are p2, 2p(1 −  p) and (1 −  p)2, respectively.

To the best of our knowledge, most of the exiting methods in the literatures focused on the estima-
tion of the parameters. Although the test statistic such as the score test or the Wald test derived from 
the proportional odds model is still valid and has been used in practice, such as the CHD study7 and 
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Figure 5.  The empirical powers of proT and hweT for β = In 1.2, In 1.4, In 1.6 and In 1.8 under the 
significant level α = 0.05. 
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Figure 6.  The empirical powers of proT and hweT for β = In 1.2, In 1.4, In 1.6 and In 1.8 under the 
significant level α = 0.001. 
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the liver study8, we will show that it might lose power under the alternative, especially when the genetic 
effect size is large. In this work, by incorporating HWE principal in control population, we obtain a new 
estimator, which optimizes the newly modified likelihood function. Using this, we derive the score test 
statistic, which is shown to be more powerful than the exiting methods through extensive computer 
simulations. Finally, we apply it to 45 SNPs in the region of TRAF1-C5 for the association with four-level 
anticyclic citrullinated protein antibody from Genetic Analysis Workshop 16 and find that there are three 
SNPs significantly associated with anticyclic citrullinated protein antibody measure at the genome-wide 
significance level of 10−7.

Results
Simulation Settings.  We compare the performances of three estimators: proMLE (the MLE derived 
from the likelihood function by taking the data as being arisen prospectively), modMLE (the MLE 
derived from the modified likelihood function) and hweMLE (the proposed method). What needs illus-
tration is that the parameters used in this section are defined in the following “Notation” section. Since 
in the real application analyzed later, J =  4, we consider J =  4 in the simulations with Pr(Y =  1) =  0.98, 
Pr(Y =  2) =  0.01, Pr(Y =  3) =  0.006, and Pr(Y =  4) =  0.004, which results in θ1 =  3.89, θ2 =  4.59 and 
θ3 =  5.51 under β =  0. We choose β ∈  {ln1.2, ln1.4, ln1.6, ln1.8} and the minor allele frequency (MAF) 
p ∈  {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. Let n1 ∈  {1, 200, 500, 300, 200} and n2, n3 and n4 be 
drawn from a multinomial distribution Mul(n1, q), where n1 =  n2 +  n3 +  n4 and q =  (0.5, 0.3, 0.2)τ is the 
probability vector which is proportional to the corresponding prevalence rates of the case statuses with 
(P(Y =  2), P(Y =  3), P(Y =  4))τ. The reason why we choose several values of n1 is to make the power 
comparable for different genetic effect sizes. We consider two significance levels: 0.05 and 0.001. 1,000 
and 50,000 replicates are conducted to calculate the empirical type I error rates and powers for the sig-
nificance levels of 0.05 and 0.001, respectively.

Point Estimate.  Figures  1  to  4 show the boxplots of the above three estimators corresponding to 
β =  ln 1.2, β =  ln 1.4, β =  ln 1.6, and β =  ln 1.8, respectively, where we set the same value of n1 (=  500). 
1,000 replicates are conducted. As expected, the proMLE is biased and the proposed hweMLE are unbi-
ased. Interestingly, the proMLE underestimates β in most cases with the median values being smaller 
than the true values, while the modMLE overestimates β a little bit with the median values being greater 
than the true values. The absolute value of bias of the proMLE increases as β increases. For example, 
when MAF =  0.25, the bias of the proMLE for β =  ln 1.2, ln 1.4, ln1.6, and ln 1.8 are − 0.023, − 0.051, 
− 0.068, and − 0.091, respectively. From these boxplots, when β is away from zero, the proposed hweMLE 
performs the best, followed by modMLE, then proMLE based on the bias of the median value. For 
instance, when β =  ln1.2 (=  0.182) and MAF =  0.10, the median values of proMLE, modMLE and 
hweMLE are 0.163, 0.202 and 0.192, respectively, while for β =  ln 1.4 (=  0.336) and the same MAF, 
the median values of proMLE, modMLE and hweMLE are 0.276, 0.340 and 0.338, respectively. Table 
S1–S4 in the supplemental material summarize the results of the empirical bias and square root of mean 
squared error (srMSE). These tables indicate that the empirical bias of hweMLE is the smallest among 
the three estimators and the srMSE of hweMLE is the smallest under most of the considered scenarios, 
especially when β is relatively large.

Type I error rate.  As is shown in the “Methods” section, the observed Fisher information matrix of 
the modMLE is close to singular since there is an equality among Δ js, j =  2, 3,…, J based on the recip-
rocal of case-control design. So we compare two test statistics. One is the score test derived from the 
proportional odds model by taking the data as being arisen prospectively. For convenience, we denote 

MAF

α = 0.05 α = 0.001

proT hweT proT hweT

0.10 0.055 0.049 0.00102 0.00094

0.15 0.055 0.053 0.00086 0.00078

0.20 0.052 0.044 0.00120 0.00108

0.25 0.053 0.057 0.00112 0.00102

0.30 0.053 0.053 0.00110 0.00096

0.35 0.045 0.046 0.00128 0.00122

0.40 0.043 0.039 0.00098 0.00104

0.45 0.054 0.057 0.00118 0.00100

0.50 0.034 0.042 0.00116 0.00110

Table 1.   The empirical type I errors of proT and hweT.
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snpid location HWE test proT The proposed

p-value MAF proMLE p-value hweMLE p-value hweMLE p-value

rs3933326 120713502 0.116 0.296 − 0.190 0.0043 − 0.221 0.0020

rs1953126 120720054 0.587 0.303 − 0.349 9 ×  10−8 − 0.372 4 ×  10−8

rs10985073 120723409 0.777 0.389 − 0.304 1 ×  10−6 − 0.334 3 ×  10−7

rs881375 120732452 0.646 0.304 − 0.357 5 ×  10−8 − 0.376 3 ×  10−8

rs10985089 120753559 0.793 0.007 0.443 0.2729 0.440 0.2418

rs3761847 120769793 0.999 0.379 0.325 1 ×  10−7 0.358 4 ×  10−8

rs10985095 120778637 0.535 0.017 − 0.397 0.1170 − 0.392 0.1294

rs10760130 120781544 0.777 0.389 0.312 5 ×  10−7 0.346 1 ×  10−7

rs12338903 120783240 0.271 0.058 0.231 0.0598 0.283 0.0351

rs10985097 120783448 0.628 0.013 0.208 0.4618 0.202 0.4834

rs2900180 120785936 0.616 0.302 − 0.365 2 ×  10−8 − 0.390 1 ×  10−7

rs10760131 120789695 0.451 0.021 − 0.239 0.2747 − 0.246 0.2773

rs7035682 120807548 0.998 0.077 0.163 0.1543 0.198 0.2593

rs12235400 120810243 0.639 0.013 0.126 0.6735 0.115 0.6850

rs10985112 120810962 0.745 0.075 0.016 0.9043 − 0.007 0.9509

rs7026551 120812687 0.110 0.173 0.279 0.0004 0.306 0.0001

rs2269066 120816572 0.493 0.091 − 0.300 0.0030 − 0.300 0.0036

rs7037673 120820038 0.130 0.454 0.240 0.0001 0.261 5 ×  10−5

rs4837805 120825809 0.296 0.373 0.040 0.5302 0.043 0.5041

rs7040319 120838806 0.834 0.436 0.151 0.0153 0.152 0.0175

rs12685344 120844545 0.443 0.081 − 0.186 0.0791 − 0.249 0.0343

rs17611 120848754 0.329 0.477 0.206 0.0007 0.221 0.0004

rs2300932 120849990 0.709 0.387 − 0.019 0.7535 − 0.019 0.7649

rs7027797 120851353 0.258 0.097 0.123 0.2101 0.183 0.1067

rs10116271 120857702 0.590 0.462 0.077 0.2078 0.101 0.1332

rs2416810 120864754 0.133 0.158 − 0.282 0.0005 − 0.307 0.0002

rs993247 120864803 0.160 0.474 − 0.191 0.0015 − 0.206 0.0010

rs17220750 120867553 0.866 0.093 0.029 0.7791 0.025 0.8159

rs7031128 120871490 0.883 0.211 0.082 0.2678 0.108 0.1855

rs1468673 120889444 0.487 0.371 0.229 0.0002 0.262 7 ×  10−5

rs10818500 120890437 0.243 0.369 0.219 0.0004 0.252 0.0001

rs2300939 120891271 0.783 0.061 − 0.374 0.0027 − 0.355 0.0046

rs6478496 120900046 0.929 0.211 − 0.072 0.3345 − 0.099 0.2293

rs1179766 120903526 0.206 0.043 − 0.369 0.0067 − 0.409 0.0047

rs10985148 120928391 0.738 0.149 0.041 0.6410 0.031 0.7267

rs10818503 120930324 0.244 0.284 0.174 0.0088 0.189 0.0063

rs10818504 120940243 0.326 0.457 0.149 0.0145 0.164 0.0100

rs10156413 120947336 0.475 0.267 − 0.215 0.0014 − 0.230 0.0010

rs10985159 120952802 0.546 0.017 − 0.601 0.0218 − 0.581 0.0308

rs1951784 120956005 0.350 0.458 − 0.172 0.0056 − 0.189 0.0036

rs10818508 120962588 0.482 0.268 0.208 0.0019 0.222 0.0014

rs12552499 120977049 0.258 0.128 − 0.145 0.1307 − 0.156 0.1137

rs4836840 120994146 0.765 0.366 − 0.148 0.0187 − 0.160 0.0143

rs9408926 120994428 0.298 0.045 − 0.377 0.0042 − 0.408 0.0038

rs3736854 120996530 0.269 0.017 − 0.513 0.0464 − 0.512 0.0583

Table 2.   The point estimates of β and p-values for 45 SNPs in region of TRAF1- C5 for the association 
with 4-level anti-CCP measure.
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it by proT; Another is the proposed hweT. Table 1 shows the empirical type I error rates for the MAF 
ranging from 0.1 to 0.5 and the nominal significance levels of 0.05 and 0.001. We set n =  1,000. 1,000 
and 50,000 replicates are conducted to calculate the empirical type I error rates. The results indicate that 
both proT and hweT can control the type I error rates correctly with the empirical values being close 
to the nominal level. For example, when the MAF is 0.20 and the nominal level is 0.05, the empirical 
type I error rates of proT and hweT are 0.052 and 0.044, respectively, and when the MAF is 0.15 and the 
nominal level is 0.001, those of proT and hweT are, respectively, 0.00086 and 0.00078.

Power Comparison.  In this part, we explore the power performances of proT and hweT. For the 
convenience, we assume = ∑ =n nj j1 1

4 . In order to make the power comparable, we set the small sample 
size for large β. In details, we set n =  1,000, 500, 300, and 200 for β =  ln 1.2, ln 1.4, ln 1.6 and ln 1.8, 
respectively, under the nominal significance level of 0.05, and n =  2,400, 1,000, 600, and 400 for β =  ln 1.2, 
ln 1.4, ln 1.6 and ln 1.8, respectively, under the nominal significance level of 0.001. We conduct 1,000 and 
50,000 replicates for the significance level of 0.05 and 0.001. Figures 5 and 6 show the power results. Both 
figures indicate that the proposed hweT is more powerful than the proT. In some cases, there is 6% power 
increase. For example, when n =  1,000, MAF =  0.35, and β =  ln 1.4, the power of hweT is 0.582, which is 
much larger than that 0.522 of proT under the significance level of 0.001.

Application to Four-level Anticyclic Citrullinated Protein Antibody data.  The region of 
TRAF1-C5 in human genome has been shown to be associated with rheumatoid arthritis (RA) based on 
both genome-wide association study20,21 and candidate gene approach22. The anticyclic citrullinated pro-
tein (anti-CCP) antibodies have been frequently found in the blood of the individuals with RA23. It is 
reasonable to assume that there are associations between the anti-CCP measure and the SNPs in the 
region of TRAF1-C5. To test this hypothesis, we apply the hweT and the proposed hweMLE procedures 
to the data from the Genetic Analysis Workshop 16 (GAW16)24. This data consists of 2,062 subjects. 
Based on the anti-CCP measure, the subjects can be divided into four categories: without RA, below 20; 
low or weak, 20–39; moderate, 40–59; high or strong, >  60. The number of subjects are 1,195, 103, 66, 
and 698 corresponding to the above four categories, respectively. There are 45 SNPs in the region of 
TRAF1-C5 on Chromosome 9. The snpids (SNP ID), positions, the point estimators, and the p-values of 
the existing and the proposed procedures are summarized in Table 2. Before conducting the association 
analysis, we use the HWD coefficient25, denoted as D, to test whether the HWE law holds in the controls. 

When the HWE law holds in the controls, D =  0. The HWE test is given by =
( )

( )

− + /

− /

ˆ ˆ ˆ

ˆ ˆ
T

p p p

p p n
HWE

2

1

c c c

c c c

2 2 1
2

2 2
 , 

where = / , = /ˆ ˆp n n p n nc c c c c c1 1 2 2 , nc0, nc1 and nc2 are the counts of the subjects possessing the genotype 
0, 1 and 2, respectively, and nc =  nc0 +  nc1 +  nc2. Under that D =  0, the HWE test follows the standard 
normal distribution. The results in Table  2 show that the HWE law holds in the controls for these 45 
SNPs under the significance level of 0.05. Then we apply the proposed hweT and proT to test for the 
associations between these 45 SNPs and the anti-CCP measure. We find that the significance of the 
association between these SNPs and the anti-CCP measure using the proposed hweT is always stronger 
than those using the proT. For example, we can identify three SNPs, rs1953126, rs881375 and rs3761847 
with p-values less than 10−7 using the proT or the hweT. However, we can identify another five SNPs 
including rs10760130, rs10985073, rs2900180, rs7037673, and rs1468673 with p-values being less than 
0.0001 using the hweT, while only three SNPs rs1953126, rs881375 and rs2900180 can be identified using 
the proT. In addition, we use the Fisher-combined method to combine the p-values over these 45 SNPs 
as = − ∑ =T p2 i icom 1

45 . The combined values of Tcom for the proT and hweT are 408.9 and 512.2. Based 
on 1,000 bootstrap replicates, we calculate the p-values of Tcom for the proT and hweT. Both are less than 
0.001. This indicates that the gene TRAF1-C5 is associated with the anti-CCP measure and that the hweT 
can detect association signals easily than the proT.

Discussion
When using the logistic regression to handle the binary response outcome in genetic association studies, 
it has been shown that the odds ratio estimate based on the MLE is equivalent to that from the same 
model by taking the data as being arisen prospectively4–6. However, this equivalence does not hold for 
the proportional odds model. Cosslett10 and Wild11 proposed to obtain a consistent estimator through 
optimizing a modified likelihood function. In this work, by incorporating HWE principal in the retro-
spective likelihood function, we extend Cosslett’s procedure and obtain a consistent and asymptotically 
unbiased estimator. Based on this estimator, we construct the score test statistic. Numerical results show 
that the MLE from the prospective proportional odds model is substantially biased and the proposed 
estimator is consistent and the proposed score test statistic is powerful than that constructed from a 
prospective likelihood function.

HWE principal is very important in genetic association studies. It is often considered to be a cor-
nerstone for further statistical inference. Departure from HWE often result from inbreeding, population 
migration and genotyping errors. Researchers have suggested that the deviation of HWE among cases 
can provide additional evidence for the associations between genetic variants and human diseases17,19. 
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As shown in the results, incorporating HWE into the proportional odds model can also improve the 
efficiency of the estimate of genetic effect and also improve the power to identify the deleterious genetic 
variants. We also explore the performance of the proposed procedure when the HWE is violated. The 
simulation results are available in the supplementary material, which indicate that the proposed proce-
dures work well when the HWE is violated slightly. Actually, if the HWE law is violated, we can estimate 
the parameters of interest through assuming that the genotype frequencies in the control group satisfy 
Pr(G =  0|Y =  1) =  p0, Pr(G =  1|Y =  1) =  p1, Pr(G =  2|Y =  1) =  p2. Thus there is one additional parameter 
that needs to be estimated in the proposed modified likelihood function. At this point, the number of 
parameters is larger than that under the assumption of HWE. Hence, the biases of the estimators tend 
to bigger than those under the assumption that the HWE law holds.

The sandwich variance estimate is a common tool used to estimate the variance of quasi-likelihood 
estimates from generalized estimating equations (GEE)26. However, Kauermann and Carroll27 proved 
that the sandwich variance estimator has the downward bias with O(n−1) order for the quasi-likelihood 
estimates from GEE, where n is the total sample size, because it is derived based on the first-order 
approximation of the Taylor expansion about the estimating equation. Thus in our case, if we use the 
sandwich variance estimator to construct the test statistic, this may result in inflated type I error rate. 
Hence, we use the summation of the first derivatives of the likelihood function on the individual obser-
vation to estimate the variance of the MLE. It should be noted that the used variance estimate is a con-
sistent estimate based on the law of large numbers.

Methods
Notations.  Consider a biallelic SNP and the genotype at a marker locus is coded as 0, 1 or 2, with 
the value corresponding to the copy number of a certain candidate allele. Let Y be a J ordered status 
response variable and G be a random variable taking the genotype values of the subjects at a SNP locus. 
Without loss of generality, let Y =  1 denote the status of a healthy individual, and Y =  j denote the status 
of a diseased subject, j =  2, 3,…, J. Then the standard proportional odds model9 is

( )θ β θ θ θ
( ≤ = )

( > = )
= − , = , , , − , ≤ ≤ ≤ , = , , , ( )− 

Y j G g
Y j G g

g j J g
Pr
Pr

exp 1 2 1 0 1 2 1j J1 2 1

where β is the parameter of interest, which is called log-odds ratio when J =  2, and θj, j =  1, 2,…, J −  1 
are the intercepts. Denote φ(x) =  1/(1 +  exp(− x)) for x ∈  . Using (1), we have

β θ
φ θ β

β θ β θ
φ θ β φ θ β

β θ
φ θ β

( = | = ) =
+ ( − )

= ( − )

( = | = ) =
+ ( − )

−
+ ( − )

= ( − ) − ( − )

( = = ) = −
+ ( − )

= − ( − ).
( )−

−



Y G g
g

g

Y G g
g g

g g

Y J G g
g

g

Pr 1 1
1 exp

Pr 2 1
1 exp

1
1 exp

Pr 1 1
1 exp

1
2J

J

1
1

2 1

2 1

1
1

Let , , ,g g gj j n j1 2 j
 be the genotypes of the nj subjects who are randomly sampled from the jth sub-

population for j =  1, 2,…, J. Denote = ∑ =n nj
J

j1  as the total sample size.

Consistent Estimate.  If we take the data as being collected from a prospective study, the prospective 
likelihood function is

∏ ∏β θ φ θ β φ θ β( , ) = 

( − ) − ( − )


( )

= =
−L g g 3p

j

J

i

n

j ij j ij
1 1

1

j

where θ =  (θ1, θ2,…,θJ−1)τ and τ denotes the transpose of a vector or a matrix. The corresponding 
log-likelihood function is

∑∑β θ φ θ β φ θ β( , ) = 

( − ) − ( − )
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. ( )

= =
−l g gln 4p

j

J

i

n

j ij j ij
1 1

1

j

As shown in Cosslett10, using the above model to analyze the retrospective data directly often leads 
to a biased estimate of β when β ≠ 0 and the bias increases as β increases. So, Cosslett10 proposed to 
optimize the following modified log-likelihood function to get the estimate of β:
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∑∑β θ( , , ∆) =








∆ ( = | = )

∑ ∆ ( = | = )








, ( )

= = =

l
Y j G g

Y k G g
ln

Pr

Pr
5m

j

J

i

n j ij

k
J

k ij1 1 1

j

where Δ  =  (Δ 2, Δ 3,…, Δ J)τ and Δ 1 =  n1/n.
Based on the reciprocal of case-control design where all case groups are randomly sampled from the 

case population, the structure among different case groups in the sample is the same as that in the general 
case population. So each case group should have the same degree of importance which yields 
Δ 2 =  Δ 3 =  … =  Δ J. Taking this equality into consideration, the score test statistic cannot be constructed 
using lm(β, θ, Δ ) because the observed Fisher information matrix of (β, θτ, Δ τ)τ is close to be singular. So, 
in the following part, we will derive a MLE through incorporating this equality and the HWE law. 
Suppose that the HWE principle holds in the control population with the minor allele frequency p. Thus 
Pr(G =  0|Y =  1) =  (1 −  p)2, Pr(G =  1|Y =  1) =  2p(1 −  p), Pr(G =  2|Y =  1) =  p2. From the Supplemental Material, 
we set ∆ = −

∆ ∆
n n

w1
1 1 , ∆ = ∆ = = ∆ = −

∆
 J

n n
w2 3

1 , where ∆ = +
( − ) −n n J n J

w1
1 1 , w =  [(1 −  p)2/ 

φ(θ1) +  2p(1 −  p)/φ(θ1 −  β) +  p2/φ(θ1 −  2β)]. Then, the modified likelihood function is rewritten as
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and the log-likelihood function is

∑∑β θ φ θ β φ θ β
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where m0, m1 and m2 are the numbers of the subjects with genotypes 0, 1 and 2, respectively, in the 
sample. We adopt two steps to estimate the parameters. We first estimate the parameter p using the 
observations in controls and denote the estimator by p̂. Based on the law of large numbers, we know that 
p̂ converges to p almost surely. Then we optimize lh(β, θ, p) according to β and θ under = ˆp p to obtain 
the estimate of β and θ through. Denote the estimator of (β, θτ)τ by β θ( , )

τ τˆ ˆ . Then from the theorem in 
the Supplemental Material, β̂ is consistent to the true value of β and β β

σ β θ
( − )
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ˆ ˆ
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standard normal distribution, where σ β θ σ β θ( , ) = ( , )|ββ ββ β β θ θ= , =
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and lh,ij =  ln(Δ j) +  ln[φ(θj −  gijβ) −  φ(θj−1 −  gijβ)] −  ln{Δ 1φ(θ1 −  gijβ) +  Δ 2[1 −  φ(θ1 −  gijβ)]} for i =  1, 
2,…, nj and j =  1, 2,…, J.

Test Statistic.  In genetic association studies, the most concern of investigators is whether the genetic 
variant is associated with the disease. One can construct the Wald test statistic based on the asymptotic 
normality of β̂. Another commonly employed test statistic is the score test statistic. Denote Aβ =  n1Aβ1/Aβ2, 

where = +β
φ θ β

φ θ β
φ θ β
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, and the 

MLE of θ under β =  0 by θ. Then, the score function is
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and the score test statistic (denote it by hweT) is

β θ
β

σ β θ
β θ
β

=
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where σ β θ( , )ββ
2  is defined as above. Under the null hypothesis, hweT asymptotically follows the standard 

normal distribution.
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