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ABSTRACT
Non-covalent interactions pervade all matter and play a fundamental role in layered materials, biological systems, and large
molecular complexes. Despite this, our accumulated understanding of non-covalent interactions to date has been mainly devel-
oped in the tens-of-atoms molecular regime. This falls considerably short of the scales at which we would like to understand
energy trends, structural properties, and temperature dependencies in materials where non-covalent interactions have an appre-
ciable role. However, as more reference information is obtained beyond moderately sized molecular systems, our understanding
is improving and we stand to gain pertinent insights by tackling more complex systems, such as supramolecular complexes,
molecular crystals, and other soft materials. In addition, accurate reference information is needed to provide the drive for extend-
ing the predictive power of more efficient workhorse methods, such as density functional approximations that also approximate
van der Waals dispersion interactions. In this perspective, we discuss the first-principles approaches that have been used to
obtain reference interaction energies for beyond modestly sized molecular complexes. The methods include quantum Monte
Carlo, symmetry-adapted perturbation theory, non-canonical coupled cluster theory, and approaches based on the random-
phase approximation. By considering the approximations that underpin each method, the most accurate theoretical references
for supramolecular complexes and molecular crystals to date are ascertained. With these, we also assess a handful of widely
used exchange-correlation functionals in density functional theory. The discussion culminates in a framework for putting into
perspective the accuracy of high-level wavefunction-based methods and identifying future challenges.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5075487

I. INTRODUCTION
Across the natural sciences, intermolecular non-covalent

interactions manifest in the properties and functions of
all matter, from solid state materials to biological systems.
Notably among the non-covalent interactions, van der Waals
(vdW) dispersion is ubiquitous and its accurate prediction
remains one of the more challenging aspects of theoreti-
cal modeling. It is the force that enables geckos to stick to
walls1 and has been proposed as an important force behind
the formation of rings around Saturn.2 On a smaller scale,
non-covalent interactions such as hydrogen bonds shape pro-
teins and their function in biology. The number of atoms in
proteins is ordinarily in the thousands, and despite this, the

largeness of a system can be a matter of perspective. From
the ab initio calculation perspective, we consider systems
with 20-50 atoms to be modestly sized, whilst molecular sys-
tems exceeding 100 atoms are considered large and especially
challenging.

Our understanding of non-covalent interactions has been
gained from decades of experimental observations supple-
mented by theoretical predictions, predominantly within the
tens-of-atoms regime. This has enabled us to make reasonable
hypotheses for the interactions in small systems based only
on the knowledge of the molecular geometries. For example,
given a pair of molecules like ammonia and water, it is fairly
straightforward to guess what configurations will be most
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energetically favored, based on an understanding of electro-
statics and dispersion in small polar molecules. The more
ambiguous case of a phenol dimer, for example, is more dif-
ficult to predict: we might expect that π orbitals may inter-
act via dispersion, whilst the hydroxyl groups will favor a
hydrogen bonding orientation. The most stable configura-
tion reflects a combination of these effects, as shown in
Fig. 1.

There is a long-standing impetus to exploit the informa-
tion in the small molecular regime to further our atomistic-
level understanding in far more complex systems, such as
proteins, for example. In part, this is driven by the con-
centration of experimental information in the small molec-
ular regime and the greater challenges of studying large
and extensive systems under clean ultrahigh vacuum condi-
tions. However, experimental reference information in exten-
sive systems can yield results which are not expected based
on our understanding of small molecules only. An exam-
ple of unprecedented complexity is exhibited by benzene
adsorption on coinage metals. It was shown using tempera-
ture programmed desorption experiments6–9 that the inter-
action energy of benzene on gold, copper, and silver is very
similar—despite the considerable differences in the surface
properties.3,4,10,11

Another notable example is offered by the experimen-
tally synthesized buckyball-in-a-ring systems of C70 hosted

FIG. 1. Cartoon illustration of our goal to develop a metric for comparing non-
covalent interactions throughout chemical compound space, based on our accu-
mulated knowledge of small molecular systems. Depicted at the bottom is the
phenol dimer on the left and the ammonia-water dimer on the right. Top right: the
benzene molecule adsorption energy to Cu, Ag, and Au surfaces has been shown
to be the same, despite the differences in the materials.3,4 Top left: two evidently
distinct buckyball-in-a-ring systems have been shown to have the same stability
by Hermann et al.5

by cycloparaphenylenes.5 The two configurations shown
schematically in Fig. 1 involve π − π stacking interactions along
the length of the ring with the guest buckyball, and it might
be guessed that interaction energies will be different and that
the structure with the greatest π − π overlap is the most
favorable. Interestingly, the two configurations have almost
degenerate interaction energies. Hermann et al. demonstrated
that a simple dispersion method fails to capture this degener-
acy, whereas a many-body formulation can correctly predict
the relative energies of these host-guest structures.5 More-
over, our understanding of interactions in small molecular
systems is not enough to allow us to rationalize such findings
a priori.

Unfortunately, finite temperature and any deviation from
pristine experimental conditions have to also be approxi-
mated theoretically in order to provide comparable infor-
mation for computational method development. Unsurpris-
ingly therefore, widely used quantum mechanical methods
based on density functional theory (DFT) have been developed
predominantly using small molecule benchmarks—where we
have the most accurate reference information. For example,
Gottschalk et al.12 recently conducted a double-blind chal-
lenge for experiment and theoretical prediction, to determine
gas phase furan dimerization preferences at low tempera-
tures. However, simple descriptions of intermolecular inter-
actions in DFT methods, which are useful in predicting small
molecules, can fail to comprehensively describe larger sys-
tems with more complex interactions. For example, the inter-
action energy of a water monomer with layered materials, e.g.,
a semi-conducting carbon nanotube, semi-metallic graphene,
and insulating hexagonal boron nitride, is typically overes-
timated by dispersion inclusive DFT methods.13–18 Impor-
tantly, shortfalls in DFT approximations are established using
higher-accuracy wavefunction based computational methods
that have become more practicable in recent years, provid-
ing reference information on systems that are particularly
challenging to ascertain experimentally. Thus, as more ref-
erence information is becoming available for larger systems
of 50-200 atoms, we are beginning to gain more understand-
ing of complex long-range intermolecular interactions as well
as the theoretical challenges in predicting them. Figure 2
provides a conceptual overview of the physical complexity
that accompanies largeness in finite and periodic systems,
separately. In general, as the number of symmetry reduced
degrees of freedom increases in non-covalently interacting
systems, the physical complexity also evolves. Taking Fig. 2 as a
road-map, beyond modestly sized systems, such as
supramolecular complexes and molecular crystals, lie at the
intersection between well-established small molecular sys-
tems and macromolecular structures such as proteins. It is
therefore timely to assess our capabilities of computing the
interaction energies of supramolecular complexes and molec-
ular crystals19–22 from high-accuracy wavefunction based
methods especially.

In Secs. II–VIII, we discuss the following: we begin
with a short account of non-covalent interactions in beyond
modestly sized molecular systems in Sec. II. The key aspects of
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FIG. 2. Conceptual overview of the system size and physical complexity of molecu-
lar systems. The green and blue dashed lines indicate the computational challenge
corresponding to computing periodic and finite molecular systems, respectively.
The region enclosed in red dashed line indicates the extent of systems that DMC,
localized CCSD(T), and wavefunction based methods in general are being applied
to. The smallest systems are well established by now using CCSD(T) and DMC.

benchmark computational methods are presented in Sec. III.
We pay particular attention to the approximations and lim-
itations, which impact on the reliability of predicting inter-
molecular interaction energies. With those in mind, we report
on the most reliable computational predictions to date in
supramolecular systems in Sec. IV and molecular crystals in
Sec. V. Given the prevalent use of DFT exchange-correlation
(xc) functionals in first-principles modeling, we also discuss
the efforts from DFT studies to match the benchmarks in

Sec. VI. Finally, we outline some of the most pertinent chal-
lenges that the electronic structure community should tackle
in order to make accurate predictions of non-covalent inter-
actions, as well as making suggestions for bridging experiment
and computational predictions in Sec. VII.

II. INTERMOLECULAR INTERACTIONS IN LARGER
MOLECULAR SYSTEMS

Supramolecular complexes are examples of intricate
molecular engineering—forming large finite complexes from a
few hundred atoms. The buckyball catcher complex (i.e., the
host-guest complex shown in Fig. 2 and structure 4a shown in
Fig. 3) is a prototypical example of a supramolecular complex,
held together with dispersion interactions—predominantly
π − π stacking. In the experiment, such non-covalently bound
systems are usually solvated,23–28 thus exhibiting similar inter-
molecular interactions as those present in much larger pro-
tein molecules and biological complexes. The challenges of
predicting biological ligand systems from quantum mechan-
ics can be read in the review of Ryde and Söderhjelm.29

Non-covalent intermolecular interactions can also be impor-
tant for the application of materials with a long-range struc-
ture.30,31 In particular, molecular crystals are widespread
in pharmaceuticals, explosives, plastics, and organic semi-
conductors.32–37 In all of these applications, the binding
strength or cohesion plays a vital role in the corresponding
function.

A number of practical challenges have hindered the
prediction of beyond modestly sized molecular systems
and therefore limited our understanding of them also. For
example, non-covalently bound molecular complexes can
have many accessible meta-stable energy minima, separated
by less than a few kJ/mol.38,39 This rich energy landscape
requires very accurate predictions or precise measurements
to be made experimentally. In addition, computed interac-
tion energies are rarely directly comparable to experimental
measurements, necessitating further approximations in order
to estimate the effects that separate them. In experiment,

FIG. 3. The S12L dataset with groupings made based on the characteristic binding interactions.
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sublimation enthalpies are typically measured for molecu-
lar crystals at finite temperatures with an estimated accu-
racy of ∼5 kJ/mol40—although the error varies according to
the material and typically scales with the magnitude of the
sublimation enthalpy. Naturally, zero-point energy contribu-
tions and anharmonic effects are included in the experimen-
tal observations. Moreover, supramolecular complexes form
in solution as opposed to in a vacuum.23 Thus, experimen-
tal studies for supramolecular structures report association
constants which, in addition to the aforementioned thermal
effects, incorporate considerable solvent effects. Therefore,
non-covalent interactions in systems under the experimental
study cannot be easily deduced, whereas theoretical methods
complement experiment by providing atomic-level insight.
With the combination of experiment and theory over decades,
a great deal of understanding has been gained on non-covalent
interactions.

The intermolecular interactions that bind molecular com-
plexes extend beyond textbook covalent, ionic, and metal-
lic bonding interactions. There are a number of ways to
describe non-covalent interactions,41 and a useful classifi-
cation is based on intermolecular second-order perturba-
tion theory.42 That is, electrostatics, induction, dispersion,
and exchange-repulsion encompass the four fundamental
types of interactions that closed-shell systems exhibit. Note
that formally, dispersion is a type of vdW interaction, orig-
inally explained by London.41 There are other vdW inter-
actions, namely, Keesom and Debye, but in this discus-
sion, vdW is invariably used to refer to dispersion unless
otherwise stated. Thanks to the widespread importance of
non-covalent interactions, other terminology can often be
found in biology, chemistry, and physics, but these can
be explained in terms of the aforementioned four interac-
tions. For example, hydrogen bonds, π − π stacking, and
ion-ligand interactions are commonly used concepts and
each may be comprised of different fundamental types of
interactions. The overlap in the terminology also demon-
strates that such interactions are intertwined and thus require
a balanced self-consistent treatment.21 In other words, accu-
rately computing non-covalent interactions require their
interdependency to be taken into account. As a result, molec-
ular crystals and supramolecular complexes pose a formidable
challenge for theory and experiment,43 and predicting inter-
molecular interactions from first principles has been a long-
standing goal of theorists.

For theoretical methods, part of the challenge in pre-
dicting non-covalent interactions lies in the expense of
computing the correlation energy of electrons, which is
inherently a many-body problem. For instance, induction
arises from the response of a system to a permanent mul-
tipole and requires accurate molecular polarizabilities. The
dispersion interaction is also non-trivial to compute, stem-
ming from the Coulomb interaction between the instanta-
neous correlated fluctuations of electrons, which is present
in all electronic systems. The self-consistent nature of
intermolecular interactions and the consequent need to go
beyond second-order perturbation theory for their reliable

description is steadily realised. Here, we mention a few recent
studies that highlight the coupling between different types
of intermolecular interactions. Furthermore, notable exam-
ples can be found in the recent literature.44–53 First, using
the Drude oscillator model for valence electron fluctua-
tions, it has been shown that the symmetry breaking of the
Coulomb potential induced by the confinement of molecules
(e.g., within low-dimensional materials) leads to leading-order
repulsive molecule-pairwise vdW interactions.54,55 Given that
the confinement of molecules is prevalent, this long-range
repulsive term could be relevant to host-guest complexes
where the guest molecule is confined in some way by the host.
Second, an inhomogeneous electric field induced by a point
charge located a few Ångstrom away from the center of mass
of a molecular dimer can be used to tailor the vdW disper-
sion interaction between the molecules, i.e., to enhance or
diminish the dispersion interaction depending on the sign of
the external charge.50 Such findings, taken together, provide
strong evidence for the importance of higher-order (beyond
second-order) interaction terms for the reliable and predictive
description of intermolecular interactions in larger molecules
in isolation and embedded in complex polarizable environ-
ments. To this end, workhorse methods should be developed
on the more complex testing ground of molecular crystals
and supramolecular structures, which involve higher-order
effects.

Reference information from high-level quantum methods
has only become feasible to compute for systems as exten-
sive as molecular crystals and supramolecular complexes in
recent years.5,13,15,16,56,57 Primarily, this is because methods
that can fully treat the correlated nature of electrons are often
prohibitively expensive43,58 and employ approximations to be
practicable for large systems, which increase the uncertainty.
Therefore, it is important to assess the status of wavefunction
based methods in beyond-modestly sized molecular systems
and to consider the accuracy of predicted interaction ener-
gies. In Sec. III, we consider the key features of reference
methods that have been used to compute larger molecular
complexes.

III. BACKGROUND ON BENCHMARKING WITH FIRST
PRINCIPLES METHODS

A reliable modeling of electron correlation necessitates
an accurate description of the dynamic response properties
of electronic charge density. This is a complex task even for
most sophisticated quantum chemistry methods. Most prac-
tical electronic-structure approaches either neglect or only
partially treat dynamic charge density fluctuations. Bench-
mark methods typically treat electron correlation explicitly,
whereas the workhorse in first principles modeling is DFT,
which is an effective mean-field approach. To contextual-
ize the role of more expensive wavefunction based meth-
ods, it is helpful to briefly discuss DFT methods. It is well
known that whilst DFT is exact, in practice, approxima-
tions have to be made due to the unknown xc functional.
Countless approximate xc functionals have been developed
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over the years, but the crucial sources of error in predict-
ing non-covalent interactions remain the delocalization error
and the description of long-range correlation.59,60 Correla-
tion energy is often conceptually divided into long-range (∼>7
Å), medium-range (3-7 Å), and short-range (<3 Å), referring
to the inter-system separation distances. However, any such
division has a certain degree of arbitrariness by construction.
In mean-field electronic structure methods, well-established
approximations have been implemented for the short-range
correlation energy. A greater difficulty lies in approximat-
ing the long-range correlation energy, which arises from
the Coulomb interaction between well-separated fluctuat-
ing charge distributions, also broadly referred to as vdW
dispersion.19,61

Several xc functionals have been developed to treat
vdW dispersion interactions to some extent.62–68 Such
methods are generally referred to as non-local correla-
tion functionals or vdW inclusive functionals. Typically these
functionals have been either directly parameterized or later
revised to reproduce the reference interaction energies of
the S22 and S66 datasets. However, extensive benchmark-
ing across a broad range of systems over the years has
demonstrated that vdW inclusive functionals produce a large
spread of results,13,15,65,69–77 pointing to the need for rigor-
ous benchmarks of overall transferability and accuracy of such
approaches.

High-level electronic structure methods can provide
important reference information, such as interaction energies
and binding configurations, that guide the development of xc
functionals and classical force-field models and also comple-
ment experiments. Such methods include coupled cluster with
single, double, and perturbative triple [CCSD(T)] excitations,
the random phase approximation (RPA), quantum Monte Carlo
(QMC), and symmetry adapted perturbation theory (SAPT).
Each of the aforementioned methods accounts for vdW inter-
actions explicitly, albeit approximately. As one might expect,
high-level methods can suffer from large memory require-
ments, poor scaling with system size, and typically large com-
putational prefactors. In addition, each high-level approach
comes with its own theoretical limitations. These can mani-
fest in more significant outcomes for molecular crystals and
supramolecular systems than for small molecular dimers or
solid state systems. An extensive review of the approxima-
tions in these methods can be found in the review of Řezáč
and Hobza.78 For the purposes of this perspective, we con-
sider the relevant approximations, developments, and limi-
tations of these methods more concisely, in the context of
molecular crystals and supramolecular complexes. Table I
provides an overview of the key attributes of CCSD(T), RPA,
SAPT-DFT, and diffusion Monte Carlo (DMC). We also report
second-order Møller-Plesset (MP2) theory in Table I since it
is a widely used quantum chemical method. However, MP2
lacks screening in its description of long-range correlation
and is known to considerably overestimate correlation in dis-
persion dominated systems. As such, we do not consider
it a benchmark method and we do not provide a detailed
background aside from including it in Table I. It should be

noted that a method known as MP2C has been developed,79

which accounts for some screening such that the overestima-
tion of correlation energy is alleviated, improving the general
accuracy.80

A. Coupled cluster theory based methods
for large systems

Coupled cluster theory has typically been the method
of choice for quantum chemists for attaining the chemical
accuracy of 1 kcal/mol in interaction energies. More specifi-
cally, CCSD(T) has been dubbed the “gold standard” and widely
used to compute reference interaction energies for molec-
ular systems.82,83 The winning feature of CCSD(T) is that it
effectively recovers dynamic correlation84 in a size-consistent
manner to the extent that it reproduces experimental ref-
erence interaction energies. However, CCSD(T) scales as N7,
with N being a measure of the system size, and it is not triv-
ially parallelizable. As such, it is computationally prohibitive
to obtain canonical CCSD(T) references for molecular crys-
tals and supramolecular systems. A number of approxima-
tions and developments in algorithms have extended the use
of coupled cluster theory over the years.85–101 An approach
that has made it feasible to compute supramolecular com-
plexes is the approximation of the CCSD(T) correlation energy
via the real space localization of molecular orbitals. This
localization enables the number of determinants evaluated
in the coupled cluster method to be considerably reduced.
Such methods are generally referred to as local CCSD(T).
Among these, the domain-based local pair natural orbital
(DLPNO) approach has been implemented in conjunction with
CCSD(T) and is increasingly used as an alternative to canonical
CCSD(T).

Local CCSD(T) methods are typically near-linearly scaling
with a relatively large prefactor and can be used to compute
interaction energies for systems that are an order of mag-
nitude larger than those typically computed with CCSD(T).87

Hence, supramolecular complexes can be computed with local
CCSD(T), but such efficiency comes at the cost of reducing
the range of correlation energy that is captured. In DLPNO-
CCSD(T), weakly interacting electronic states are assumed to
contribute insignificantly to the correlation energy and are
excluded from the calculation by using a threshold. Discard-
ing a subset of the calculations that collectively yield the
correlation energy results in a considerable computational
saving. However, weak interactions culminate from states
which may be cut off by the threshold, and as such, non-
covalently interacting complexes are particularly affected. The
threshold for computing the DLPNO-CCSD(T) correlation
energy is not based on a real space cutoff, but instead on the
overlap amplitudes of natural orbital states. A pre-screening
routine is used at the tails of states to indicate their signifi-
cance. The threshold can be chosen to be as tight as neces-
sary, and in this way, the method can be systematically con-
verged. However, it is important to note that the threshold is
system dependent and non-covalently interacting complexes
typically require tight thresholds in order to accurately
account for dispersion interactions.
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Calbo et al.102 demonstrated in a recent study that
supramolecular complexes require tight PNO settings, in
order to obtain converged results with DLPNO-CCSD(T).
It was shown that normal PNO settings result in DLPNO-
CCSD(T) overestimating π − π and CH-π dispersion interac-
tions.102 In some cases, however, an ad hoc scaling factor is
applied to normal PNO obtained results, in order to estimate

the converged result. The scaling factor is obtained from
small model systems where tight PNO is feasible. This strat-
egy introduces an uncontrolled source of error and relies on
extrapolation. Ideally, larger basis sets should be used instead
of scaling factors, but due to slow basis set convergence
as well as numerical linear dependency problems that arise
particularly in π systems, it is not always feasible to do so.

TABLE I. Overview of wavefunction based methods that can be used to compute fully ab initio predictions.

Method Interactions Basis set convergence Scaling with system size (N) Comments

CCSD(T)

• effectively recovers dy-
namic correlation and,
therefore, dispersion

• slow and memory scales as
N4

• difficult to apply to peri-
odic systems

• non-additivity included
from screening in disper-
sion

• results are often estimates
in the form of ∆CCSD(T),
which is based on a
CCSD(T) correction to
MP2 energies extrapolated
to CBS and is not the same
as canonical CCSD(T)81

• N7 in the canonical case • systems with more than
50 atoms and a converged
basis set are not feasible
for canonical CCSD(T)

• typically based on the HF
determinant and therefore
lacking static correlation

• can be improved using
explicit correlation factors
which give better descrip-
tion of electronic cusps

• localization and partial
correlation, as well as the
density-fitting approxima-
tion reduce the scaling to
near-linear with a large
prefactor

• diffuse functions in the
basis set are important
to accurately predict non-
covalent interactions

MP2

• some dynamic correlation
from uncoupled double
excitations derived from
2nd-order perturbation
theory yields effectively
atom-pairwise dispersion

• slow and typically requires
extrapolation to the CBS
limit—similar to CCSD(T)

• N5 in the canonical case

• strongly overestimates π
− π stacking interactions
and not applicable to
small-gap systems

• no screening at 2nd-order
and, thus, cannot account
for non-additivity in dis-
persion

• basis set convergence can
be improved using explicit
correlation factors

• linear scaling can be
reached using localization
(partial computation of
MP2 correlation energy)

• relies on a cancellation of
errors from truncation at
2nd-order and neglect of
higher-order terms

• plane-wave implementa-
tions are available

• prefactor can be reduced
using density-fitting
approximation

• a more costly version,
namely, MP2C, uses the
difference between un
coupled HF dispersion and
coupled KS dispersion to
correct MP2 overbinding

RPA

• Coulomb coupling of
direct double excitations
up to infinite-order yields
dispersion with screening
(non-additivity)

• slow due to the large num-
ber of virtually occupied
orbitals that are needed

• N4 in most implementa-
tions

• suitable for metals and
small-gap systems

• standard RPA is missing
single excitations (SEs) and
second-order screened
exchange (SOSEX) terms

• memory scales as N4
• prefactor can be reduced

using density-fitting
approximation

• standard RPA underesti-
mates dispersion dom-
inated interactions, but
SE and SOSEX terms can
alleviate this

• short-range correlation
not very accurate in
standard RPA

• results are sensitive to the
reference state, but the
range-separated xc kernel
improves short-range cor-
relation

SAPT-DFT

• dispersion interaction be-
tween two molecules
computed from 2nd-order
coupled Kohn-Sham (KS)
perturbation theory

• slow and typically requires
extrapolation to the CBS
limit • N6 but can be reduced

to N5 using density-fitting
(which also reduces the
prefactor)

• restricted to computing
dimers (although it is theo-
retically possible to imple-
ment for trimers and
more)

• some screening included
in dispersion

• ad hoc scaling factors have
been suggested to circum-
vent the use of large basis
sets, which are particu-
larly important for disper-
sion terms

• higher-order terms in per-
turbation theory typically
prohibitive to compute
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TABLE I. (Continued.)

Method Interactions Basis set convergence Scaling with system size (N) Comments

DMC

• correlation from stochas-
tic sampling of electron
configurations yields fully
interacting dispersion
energy (e.g., screening
and non-additivity are
accounted for)

• fast since starting trial
wavefunction is used as a
guide in importance sam-
pling

• N4 with a large prefactor

• user intensive method,
requiring a careful setup
of the trial wavefunction

• yields many-electron
ground-state solu-
tion to imaginary-time
Schrödinger equation

• Jastrow factor (explicit
correlation factor) is also
used to incorporate cusp
conditions

• computational cost also
affected by the size of the
target stochastic error,
which scales quadratically
with the DMC simula-
tion time (e.g., halving
the stochastic error in
the total energy requires
running the calculation for
four times longer)

• fixed-node approximation
is a pervasive error

• improvements in the basis
set should reduce the vari-
ance and therefore make
the DMC calculation more
efficient

• forces are not typically
computed

Another aspect to consider is the applicability of CCSD(T)
methods to periodic systems such as molecular crystals.
To date, a few studies have shown that CCSD(T) energies
can be computed in a fully periodic system consisting of a
few atoms in the unit cell.103–107 However, molecular crystals
often require tens of atoms in the unit cell in combination
with large basis sets, and this has remained impracticable with
coupled cluster theory based methods. Alternative approaches
to computing energies for periodic systems have been used
with coupled cluster methods, and they include fragment
based approaches and embedding. The latter can also be used
for molecules adsorbed on a surface,107,108 whilst the former
has mostly been employed for molecular crystals.109,110

Fragment approaches take into account different orienta-
tions of dimers, trimers, tetramers, and so on within a crystal
and a sum over their contributions to the total energy, to yield
a lattice energy for the crystal. Note that in taking into account
dimers only, the screening from the surrounding molecu-
lar environment for any given dimer is not accounted for by
such a summation.111 In reality, the interaction between the
molecules in the crystal is affected by the screening from the
molecules (electrons) in the rest of the crystal. This missing
component of the energy is sometimes referred to as beyond
two-body interactions, and in this particular context, a body
refers to a molecule. The fragment approach can be made
more accurate by taking into account trimers, tetramers, pen-
tamers, and so on. However, the basis set superposition error
(BSSE) in a fragment based approach is non-trivial,112–115 and
in addition, going to larger fragments quickly becomes unfea-
sible. Moreover this method is based on the nearsightedness of
interacting molecules,116–118 and as such, it is less suitable for
ionic molecular crystals, for example, where the interactions
are longer-ranged.

Ongoing studies are aimed at addressing slow conver-
gences with respect to basis sets, setting physically motivated
thresholds, and making periodic calculations feasible. Such
developments could eventually enable local CCSD(T) methods
to be used in the extensive hundred-atom regime.

B. SAPT based methods of different flavors

SAPT is a particularly useful method for decompos-
ing the non-covalent interactions into physically meaning-
ful components and, thus, providing physical insight as well
as yielding two-molecule interaction energies from a rig-
orous perturbation theory framework.41,42 Since its original
formulation using Hartree-Fock (HF) theory, more compre-
hensive SAPT-DFT has been developed, using coupled KS
wavefunctions. In the literature, SAPT-DFT may be referred
to as SAPT(DFT)119 and DFT-SAPT120 owing to development
by different groups, but generally both refer to the same
method. Using perturbation theory, coupled second-order
terms, i.e., dispersion and induction, could in principle be
computed exactly with SAPT-DFT. Its exactness relies on
knowing the exact xc potential in DFT.121 In practice, the
induction energy tends to be overestimated due to the wrong
asymptotic behavior of the approximate xc potential. In addi-
tion, incorporating asymptotic corrections do not necessar-
ily improve predictions of interaction energies consistently.
As it stands, SAPT-DFT scales as N6 with system size N, but
delivers a significant improvement over vdW-exclusive DFAs
for accuracy.

A recent adaptation of the method, XSAPT (short for
XPol+SAPT), has been introduced by Lao and Herbert.122–124

The authors developed different flavors of XSAPT, all of which
share the main feature of using many-body polarized wave-
functions. In this way, the underlying monomer wavefunctions
on which SAPT is performed include screening effects from
other molecules such that an arbitrary number of molecules
can be computed with XSAPT. This is particularly useful for
computing supramolecular complexes consisting of more than
two molecules, but until a periodic implementation can be
developed, molecular crystals remain outside the scope of the
method unless a fragment based approach is employed.

SAPT-DFT can also be made more efficient, reducing
the scaling to N5, by invoking a density-fitting approxima-
tion in what is known as DF-DFT-SAPT. The density-fitting
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approximation has been shown to introduce relatively small
sub-kilocalorie errors in the interaction energies of com-
plexes.120,125,126 As such, supramolecular complexes can be
computed with DF-DFT-SAPT. On the other hand, SAPT-
DFT methods are generally strongly basis set dependent,
with cubic scaling with respect to the number of basis set
functions in the case of DF-DFT-SAPT.126 This basis set
dependence makes the computation of intermolecular inter-
actions particularly challenging for large systems. Some previ-
ous studies102,127 have used scaling factors to circumvent the
use of a sufficiently large basis set. Applying a basis set scaling
factor for larger systems introduces an uncontrolled level of
uncertainty in the final result. Nonetheless, unlike other high-
level methods, SAPT provides a physically intuitive breakdown
of the interactions in supramolecular dimers.

C. The RPA methods: Building solidly
on DFT approximations

The RPA can be derived from many-body perturbation
theory or equally from the adiabatic-connection fluctuation-
dissipation theorem. An in-depth review of a number of RPA
approaches and their derivations is given by Ren et al.128 In
short, the RPA yields the correlation energy, by coupling a
system of non-interacting particles to the fully interacting
system through adiabatic integration, keeping the density of
the two systems equal. Thus, for a given DFT KS density, the
RPA correlation energy can be computed and combined with
the exact exchange for the system, arriving at a well-founded
and more accurate prediction of the energy. In the con-
text of quantum chemistry approaches, the RPA includes the
MP2 direct double-excitation correlation energy, but unlike
MP2, the RPA also seamlessly accounts for screening since
it includes all double-excitation terms up to infinite-order.
Screening is considerable in large supramolecular complexes
and molecular crystals, and therefore in contrast to MP2, the
standard RPA does not overestimate the binding of these sys-
tems. Indeed, standard RPA has been shown to underestimate
the interaction of dispersion bound materials.129 It is known
however that two important contributions are not included
in the standard formulation of the RPA, namely, the single
excitations and the second-order screened exchange (SOSEX)
terms. Singles excitations, in particular, have been shown to
alleviate the underbinding of the standard RPA13,129 and are
likely to be important in predicting large molecular complexes
also.

Practical factors in the RPA have also been steadily
improved over the years.130,131 First, the method scales as N4

with the system size, which is relatively good compared to the
N7 scaling of canonical CCSD(T). On the other hand, the RPA
methods converge slowly with respect to the number of unoc-
cupied states (which should be rather high) and require large
computing memory. In practice, this can necessitate exhaus-
tive convergence tests and extrapolations, amounting to addi-
tional computational cost. Nonetheless, a worthy advantage
of the RPA method is that it can be readily used to predict
all forms of materials, such as finite supramolecular systems

and extensive molecular crystals. Moreover, within the robust
framework of the adiabatic connection fluctuation-dissipation
theorem, we can systematically improve upon RPA.

D. Quantum Monte Carlo: A stochastic approach
to tackling a many-body wavefunction

Quantum Monte Carlo (QMC) is altogether a differ-
ent approach to quantum chemical methods for solving
the Schrödinger equation for a many-electron system. QMC
comes in different flavors also, but in the context of
weakly interacting realistic systems, it is invariably diffusion
Monte Carlo (DMC) that is employed.132 DMC is a projec-
tor based QMC method that is able to propagate towards the
ground-state wavefunction for a system using the imaginary-
time Schrödinger equation, given a starting wavefunction
with an exact nodal surface. The correlation energy, which
includes long-range dispersion, is accounted for in DMC by
the stochastic sampling of various electronic configurations
around fixed nuclei. A salient feature of QMC methods is their
straightforward scaling with the number of computing pro-
cessors since random walkers in these Monte Carlo based
methods can be distributed across thousands of processors. As
such, QMC can be performed efficiently on high-performance
computers with the possibility of using graphics processing
unit (GPU) accelerators.

There are two particularly important approximations that
need to be considered in DMC calculations. First, the nodes
of the starting wavefunction are fixed in DMC to maintain
the Pauli principle of antisymmetry for fermionic wavefunc-
tions. This prevents the DMC solution collapsing to a lower
energy bosonic wavefunction. In practice, an approximate
nodal surface is used from quantum mechanical calculations,
and hence, the fixed node approximation is an important
source of error.133,134 In the case of non-covalently interact-
ing systems, it has been shown that the nodal surface of the
interacting complex is hardly changed from that of the iso-
lated monomers, and therefore, the fixed node error is negli-
gible in the interaction energy.135 This has been demonstrated
for the S22 dataset, with DMC establishing sub-chemical
(<0.01 kcal/mol) accuracy.135 As such, it is expected that
non-covalently bound molecular crystals and supramolecular
structures will also benefit from systematic error cancellation
and therefore be less sensitive to the fixed node approxima-
tion. In practice, the impact of the fixed node approximation
is assessed by computing interaction energies from different
trial wavefunctions (i.e., different nodal surfaces) for a given
system. Establishing the same interaction energy within the
stochastic errors from different trial wavefunctions indicates
that the computed property is insensitive to the fixed node
approximation.

Second, due to numerical discretization in the DMC algo-
rithm (used for propagating the imaginary-time Schrödinger
equation), a time step or lattice spacing136 is needed. The
method is only exact in the limit of the imaginary time
step (or lattice spacing) tending to zero (notwithstanding
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the fixed node approximation). As such, time step conver-
gence is paramount in DMC calculations to establish the error
from the discretization for different systems. Considering the
size of large molecular systems, this can be computationally
expensive. However, in the recent work of Zen et al., a perva-
sive size-inconsistency problem stemming from the expres-
sion of the branching term in DMC, i.e., the growth/decay
term used in propagating random walkers, was explained and
addressed.137 Size-inconsistency was shown to disappear only
for extremely small time steps using the original method,
and the error from this is particularly noticeable in interac-
tion energies where the energy is computed with respect to
the isolated monomers. The authors introduced a different
expression for the branching term, which accounts for the
number of electrons in the system as a normalizing constant.
In doing so, Zen et al. demonstrated that size-consistent total
energies can be achieved with an order of magnitude larger
time steps.137

There are a number of other commonly invoked approx-
imations, such as the use of non-local pseudopotentials in
DMC that can affect the accuracy of the electronic structure
methods described.138,139 In the case of molecular crystals,
it is particularly important to consider finite size effects in
QMC.18,140–142 Overall, DMC requires careful consideration
and testing of its biases, especially when computing molecu-
lar crystals and supramolecular complexes for which there are
few studies to date.

E. The role of datasets in benchmarking
Datasets are invaluable for developing theoretical frame-

works towards benchmark accuracy. Useful datasets for non-
covalent interactions include the S22,143 S66,126,144 BioFrag-
ment Database (BFDb),145 3B-69,146 C21,147 X23,148 S12L,23

and L7.58 Each dataset has a general theme. For example,
the S22 and S66 contain modestly sized molecular dimers
with less than 50 atoms. BFDb contains biologically relevant
complexes with up to 40 atoms, computed at the CCSD(T)
level. Dispersion and induction effects at relatively short dis-
tances play an important role in these sets. However, the
roles of screening and non-additivity in long-range disper-
sion are not well represented. Given that beyond molecule-
pairwise dispersion can play an important role, the 3B-69
dataset reports trimers computed at the CCSD(T) level also.
The S12L and L7 datasets present more challenging systems, in
which the non-covalent interactions are not well understood,
but certainly feature a complex combination of induction, dis-
persion, and electrostatic interactions. The complexes within
L7 and S12L are supramolecular since they contain 50-200
atoms. Predicting these systems with benchmark accuracy is
a considerable challenge—as reflected by the scarcity of the
reported benchmark values. For the L7 dataset, in particular,
the reference interaction energies are given from an estimated
form of quadratic configuration interaction with singles, dou-
bles, and perturbative triples [i.e., ∆QCISD(T)], using relatively
small basis sets. The ∆QCISD(T) interaction energy for the
coronene dimer per atom is −0.7 kcal/mol. For comparison,

consider that the interaction energies per atom for the
parallel-displaced benzene dimer and graphene bilayer are
−0.2 and −0.4 kcal/mol, respectively. Whilst it is a possibil-
ity that the interaction energy from benzene to graphene is
not monotonic, it seems more likely that the coronene dimer
interaction energy is overestimated. This could be caused
by the underlying use of MP2 in ∆QCISD(T) since MP2 is
known to drastically overestimate π − π dispersion interac-
tions.149,150 In the absence of experimental information, such
uncertainties in benchmark datasets can only be overcome
by the use of more theoretically comprehensive methods.
Indeed, more recent DLPNO-CCSD(T) computations of the L7
dataset predict a coronene dimer interaction energy of ∼−19
to −20 kcal/mol or −0.5 kcal/mol per atom.123,151 The lat-
ter predictions of the coronene dimer interaction energy use
explicitly correlated CCSD(T)-F12 and DLPNO-CCSD(T)/CBS
and therefore involve less BSSE and reliance on MP2. An
advantage of the S12L dataset composed by Grimme23 is
that back-corrected experimental association constants are
available for the complexes. These provide a guide for com-
putational methods, and thus, the S12L dataset has been more
widely computed than the L7 dataset.19,56,72,102,127,146,152

The S12L dataset, shown in Fig. 3, consists of 12 systems,
excluding the small benzene dimer in the original set. Each
system exhibits at least one of the following: π − π interac-
tions, hydrogen bonding, and static polarizable interactions
with cations. We consider the most accurate data available for
the supramolecular S12L dataset in Sec. IV.

IV. PREDICTING SUPRAMOLECULAR SYSTEMS
Supramolecular systems consist of hundreds of atoms in

a finite, non-periodic arrangement with strong intramolecular
interactions, whereas non-covalent interactions are responsi-
ble for the formation of the complexes. Due to the sheer size
of these systems, these so-called weak interactions amount
to large absolute interaction energies in the range of −80 to
−550 kJ/mol. In addition, beyond atom-pairwise dispersion
has been shown to contribute significantly to the interaction
energies, alongside induction and other effects. This poses
a phenomenal challenge for computational methods: to pre-
dict intricate and finely balanced anisotropic interactions on
a large supramolecular scale without having reduced degrees
of freedom from periodicity. To date, several methods have
been shown to attain sub-chemical accuracy (<0.4 kJ/mol)
for small non-covalently bonded systems such as those of the
S22 and S66 datasets. However, methods such as CCSD(T),
DFT-SAPT, and the RPA require particularly large basis sets
to be converged. DMC also may require a significant increase
in computer resources since the cost of calculations increases
as N4, with N being a measure of the system size. Nonethe-
less, several groups have computed the supramolecular S12L
dataset, and to date, this has been done using DMC, ∆DLPNO-
CCSD(T), DF-DFT-SAPT, and MP2C. Note that MP2C is essen-
tially MP2 with screening applied to the correlation energy,
intended to reduce the overestimation of correlation energy
in MP2 theory.153
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The numerous studies trying to accurately capture non-
covalent interactions for systems as fundamental as the water
dimer154 highlight the formidable challenge the S12L poses.
Here, we discuss the most accurate reference calculations
undertaken to establish the interaction energies for the S12L
dataset. Given the scarcity of reference information for these
systems experimentally or theoretically, the reference infor-
mation is sought from first principles calculations with min-
imal empiricism or none at all. Three such endeavors have
been undertaken for the S12L, and we will review these here,
but first, we proceed with some comments on the available
back-corrected experimental data.

A. Binding energies from back-corrected
experimental association constants of S12L
complexes

Experiments by a number of research groups provide
association constants for the supramolecular complexes in
the S12L set. Association constants (or binding constants) are
straightforwardly related to the Gibbs free energy, bringing
the experimentally measurable information closer to com-
putationally predictable quantities. Grimme bridged the gap
between the experimental information and theory by using
theoretical back-corrections.23 More specifically, the rigid
rotor harmonic approximation (RRHA) was used to compute
the enthalpy at the matching temperature to experiment. In
addition, an implicit solvation method, the Conductor-like
Screening Model for Realistic Solvents (COSMO-RS) contin-
uum solvation model, is used to approximate the contribu-
tion to the association constant from the solvent environment.
First, the RRHA neglects any anharmonic contributions which

can be expected to be non-trivial for supramolecular systems.
Moreover, such systems are not typically rigid and contain low
frequency vibrations. The role of low frequency modes has
been implicated in anharmonic effects at room temperature,
for example, in the binding free energy of DNA base pairs.155

Larger and more flexible molecules can be expected to have
more low frequency modes, and therefore, it is not clear what
impact harmonic approximations have on the binding of such
molecules.

Second, the solvation model is expected to have 5%-
10% errors23 and is less reliable when point charges are
present. The latter issue is especially relevant for the cation
containing structures 6a, 6b, and 7a of the S12L dataset.
The back-corrected interaction energies (Emp-v1), shown in
Table II, have been computed at the classical level by tak-
ing into account the enthalpic and entropic contributions to
the experimental association constants. The original work by
Grimme acknowledges the potential sources of error from
such methods and reports an estimate of the errors for
the experimental association constants as well as the com-
puted back-corrections.23 Later Sure and Grimme156 made
a concerted effort to compare the impact of different sol-
vation models and RRHA results on the computed associa-
tion constants. In doing so, the back-corrected values were
revised to provide the best agreement with the experimen-
tal association constants,156 referred to as Emp-v2 here.
The mean absolute deviation with respect to the experi-
ments for the best-performing empirical method in the study
is 2.1 kcal/mol. However, the estimated errors amount to
as much as 6 kcal/mol in the interaction energy of some
complexes in the S12L. Therefore, Emp-v1 and Emp-v2 serve

TABLE II. Interaction energies and mean absolute errors (MAEs) for the S12L supramolecule dataset, and units are in kcal/mol. Emp-v1 and Emp-v2 refer to the two versions
of empirically back-corrected experimental interaction energies.23,156 The estimated errors for Emp-v2 from the work of Grimme23 are shown in parentheses; the errors are
10% of the corresponding solvation energy that was computed. The stochastic error in the DMC predictions56 is also shown in parentheses. Complexes that have not been
computed are noted by n.c. The MAEs are shown with respect to Emp-v1 and Emp-v2. The last rows show MAE and the maximum absolute error (MAX) with respect to Emp-v2
with the estimated errors taken into account. Note that the MAE reported for DMC takes into account the stochastic errors in the DMC results.

S12L Complex Emp-v123 Emp-v2156 DMC56 ∆DLPNO-CCSD(T)127 DF-DFT-SAPT157 MP2C157

2a −29.9 −29.0 (0.9) −27.2 (0.3) −30.7 −32.0 −33.5
2b −20.5 −20.8 (0.4) −17.2 (1.0) −23.0 −21.1 −23.0
3a −24.3 −23.5 (0.5) n.c. −23.7 −18.7 −22.9
3b −20.4 −20.3 (0.3) n.c. −23.1 −15.9 −17.2
4a −27.5 −28.4 (0.6) −25.8 (1.5)a Unconverged −36.0 −41.0
4b −28.7 −29.8 (0.7) n.c. Unconverged −37.1 −41.8
5a −34.8 −33.4 (0.8) −33.4 (1.0) −33.4 −33.8 −37.3
5b −21.3 −23.3 (0.4) n.c. −23.0 −23.1 −25.2
6a −77.4 −82.2 (6.0) −81.0 (1.6) −79.8 −82.6 −84.7
6b −77.0 −80.1 (6.0) n.c. −77.8 −79.1 −81.0
7a −131.5 n.c. n.c. −123.9 −135.0 −139.4
7b −22.6 −24.2 (0.6) −24.1 (1.8) −22.7 −27.0 −28.1

MAE [Emp-v1] 1.5 1.2 2.1 4.0 5.7
MAE [Emp-v2] 1.6 0.9 1.5 2.9 4.4
MAE [Emp-v2 with errors] 0.3 0.6 0.7 2.4 3.6
MAX [Emp-v2 with errors] 1.6 2.2 2.5 7.0 12.0

aA more accurate, revised DMC value is −30.4 kcal/mol, computed by Zen et al.137

J. Chem. Phys. 150, 010901 (2019); doi: 10.1063/1.5075487 150, 010901-10

© Author(s) 2019

https://scitation.org/journal/jcp


The Journal of
Chemical Physics PERSPECTIVE scitation.org/journal/jcp

predominantly as a guideline when comparing predictions of
interaction energies.

B. High-level wavefunction based methods
for supramolecular complexes

Hesselmann and Korona computed DF-DFT-SAPT inter-
action energies for the S12L set.157 Dimer centered basis sets
with basis set extrapolation and a scaling factor were used
to account for the absence of diffuse functions. This proce-
dure is based on the convergence tests of the S22 dataset.
However, dispersion terms were found to be overestimated
by using a scaling factor for simple dispersion dominated sys-
tems like methane and ethane dimers. In a similar manner to
Hesselmann and Korona, a scaling factor was used by Sharapa
et al. to compute the C60 dimer interaction energy.158 A basis
set without diffuse functions leads to an underestimated DFT-
SAPT C60 dimer interaction energy curve.158 However, the use
of such scaling factors for supramolecular systems is scarcely
validated. We can see from Fig. 4 that DF-DFT-SAPT predicts
contrasting trends for π − π stacked complexes: underbind-
ing the 3a and 3b complexes by 4 kcal/mol and overbinding
the 4a and 4b complexes by 7 kcal/mol. These discrepancies
are larger than the estimated error from the back-corrections.
It is not clear to what extent these discrepancies arise from
basis set incompleteness or the amount of screening in dis-
persion that DF-DFT-SAPT is able to capture. The recent work
of Lao and Herbert123 shows that XSAPT-DFT, a method that
utilizes many-body polarized wavefunctions, also overbinds
the 4a buckyball-catcher complex by ∼7 kcal/mol. By con-
trast, structures 5a to 6b, which are hydrogen bonded and
cation-dipole complexes, are predicted within 1 kcal/mol by
DF-DFT-SAPT.157

Calbo et al.127 used a more well-established method of
obtaining basis set completeness: ∆DLPNO-CCSD(T) energies

FIG. 4. Differences in the interaction energy between a number of high-level
wavefunction based methods and the back-corrected experimental values (Emp-
v2).156 Emp-v1 refers to the original back-corrected data provided by Grimme.23

The gray bars indicate the estimated error from empiricism in Emp-v2. There is
no revised Emp-v2 data for complex 7a. Data are adapted from studies in the
literature.56,127,157

were corrected for basis set incompleteness by computing the
CBS limit at the MP2 level.159 However, it has been shown that
for systems containing long-range dispersion interactions, a
tighter threshold is needed to capture long-range electronic
correlation accurately. The ∆DLPNO-CCSD(T) approach was
shown to yield a mean absolute error (MAE) of 1.1 kcal/mol,
with respect to Emp-v1 for S12L and ∆QCISD(T) energies for
L7. The calculations could not be converged for the bucky-
ball catchers, 4a and 4b in the S12L, highlighting the numer-
ical instabilities that are encountered for relatively modest
basis set sizes when molecules contain a high degree of
spatial orbital overlap. The ∆DLPNO-CCSD(T) error can be
as much as 7.6 kcal/mol, for the cation-containing complex
7a. However, the back-correction itself is difficult to ascer-
tain for this complex given that the implicit solvation model
is particularly problematic for charged systems.160 Interest-
ingly, the ∆DLPNO-CCSD(T) and MP2C methods disagree by
∼15 kcal/mol for complex 7a, which is the largest discrep-
ancy between these two methods within the S12L dataset. All
other differences between ∆DLPNO-CCSD(T) and MP2C sur-
mount to less than 6 kcal/mol per complex. This indicates
that even without back-corrected experimental data, there
is a large inconsistency in the relative performance of these
methods. There are a number of physical interactions that
have to be accurately accounted for in order to attain chem-
ical accuracy. For instance, the presence of the iron cation in
7a indicates that there may be a degree of degeneracy lead-
ing to static correlation. This form of correlation generally
requires a multi-determinant wavefunction, which is not given
by either ∆DLPNO-CCSD(T) or MP2C since both are based on a
HF single determinant. Second, the dispersion interactions are
long-range and it is not known to what extent dynamic corre-
lation is accounted for in this system within the DLPNO for-
malism. Given that both Emp-v1 and DF-DFT-SAPT interaction
energies for 7a are significantly larger than ∆DLPNO-CCSD(T),
it is likely that the latter is underestimating the interaction
energy.

Notably, many of the studies discussed compare their
results to the DMC reported values from the work of
Ambrosetti et al.56 The DMC interaction energies were com-
puted for half of the S12L set, and a considerable amount
of computational effort was conceded in obtaining stochas-
tic error bars of less than 2 kcal/mol. Taking into consider-
ation the stochastic error in the DMC results and the esti-
mated error in the back-corrected experimental values, the
DMC predictions agree within 2.2 kcal/mol for the struc-
tures computed, as can be seen from Table II. To estab-
lish if this remaining error stems from the empirical back-
correction or the DMC prediction, the approximation for the
DMC calculations should be considered. First, the effect of
the fixed node approximation was tested by computing the
interaction energy for the 2a complex with different trial
wavefunctions. In this way, different nodal surfaces are used
and any impact on the interaction energy should be notice-
able. The interaction energies using two different trial wave-
functions were found to agree within statistical errors of
1.2 kcal/mol.
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Second, the time step used in the calculation (0.002 in
atomic units) was compared against a time step twice smaller.
The resulting DMC interaction energy for the 2a complex was
not affected (within the stochastic errors of 1.2 kcal/mol).
However, the buckyball-catcher (4a) complex of S12L was
recomputed with the improved DMC algorithm by Zen et al.137

The original DMC interaction energy from Ambrosetti et al.56

was found to be 4.6 kcal/mol underbinding. The improved
algorithm brings the DMC interaction energy of the 4a com-
plex into good agreement with Emp-v2. This indicates the
presence of time step errors potentially in prior studies where
system specific time step convergence was not undertaken
and time steps were considered to be transferable between
complexes of a dataset. The agreement between DMC (using
the old algorithm) and Emp-v2 for non-dispersion bound com-
plexes (see Fig. 4) suggests that the size-consistency error
mostly affects complexes with a large contribution from dis-
persion interactions.

In the case of the cationic complex 6a from S12L, the
DMC result is in excellent agreement with the back-corrected
experimental values. Note that the first estimate of the
back-corrected interaction energy for the 6a complex from
Grimme23 is 5 kcal/mol less binding than the revised value
by Sure and Grimme.156 The estimated error is 6 kcal/mol in
Emp-v2, showing that the implicit solvation models used in
estimating the interaction energies from experimental asso-
ciation constants are less reliable for charged systems. As
such, DMC can be considered more robust for the interac-
tion energy for the supramolecular complexes than the back-
corrected values. Importantly, this statement can only be
made due to the thorough convergence of the DMC calcula-
tions. Indeed, DMC is not considered a black-box method, but
by executing careful convergence protocols, it has been shown
to yield excellent results for large complexes.

On the whole, there is still a lot of scope for improving
our ab initio predictions of supramolecular systems. We have
seen that the high degree of anisotropy in the S12L dataset is
difficult to establish with typical benchmark methods. Inter-
actions consisting mostly of electrostatics can be predicted
with greater accuracy than dispersion bound systems, and
π − π stacking structures can be particularly challenging.
However, major discrepancies can also be seen for the iron
cation containing complex (7a). In the following class of
systems, molecular crystals, we will consider systems with
generally fewer symmetry reduced degrees of freedom, but
extensive periodic arrangements.

V. MOLECULAR CRYSTALS: A RICH LANDSCAPE
WHERE EVERYTHING COUNTS

Small differences in interaction energies are known to
affect various macroscopic properties, and this is critically
the case in pharmaceuticals. Polymorphism, more specifically,
is common in molecular crystals and refers to the existence
of numerous meta-stable crystals for a given chemical com-
pound. Polymorphs of the same molecule can have lattice

energies within a few kJ/mol of each other, necessitating pre-
cise predictions and measurements. The lattice structure and
energy of polymorphs impact on their solubility and, there-
fore, on their activity as drugs. Due to the important role that
kinetics play alongside thermodynamics, experiments may
produce a particular polymorph, only for another more stable
polymorph to be discovered later.

There have been notable examples of pharmaceutical
polymorphs being found later with costly outcomes. A well-
known example is ritonavir which was initially distributed in
oral capsules, containing form I polymorph of the molecule.161

Two years after, it entered the market in this form, and a more
stable form II polymorph was discovered. Due to higher stabil-
ity of form II ritonavir, it was much less effective in the capsule
form and production had to be halted as a result.37 It is there-
fore imperative for experimentalists to be aware of the most
stable polymorphs and the relative stabilities amongst them.

Experiments can determine the absolute sublimation
enthalpy of molecular crystals to within 5 kJ/mol and pro-
vide the geometry of crystals from x-ray diffraction. However,
it can be difficult to experimentally find different polymorphs
without knowing a priori the lattice structures a molecule can
crystallize into. To this end, force-field models or DFT meth-
ods can be used to predict possible polymorphs and their
relative stabilities.38,153,162,163 Due to the scarcity of refer-
ence information for molecular crystals, the predictive power
of xc functionals and force fields is not well established for
organic crystals. Indeed, Brémond et al. assessed 59 func-
tionals for the prediction of structural parameters in rela-
tively small organic molecules and found a large spread of
results.163

Two particular obstacles to computing reference lattice
energies exist for molecular crystals. First is the use of peri-
odic boundary conditions in high-level wavefunction based
methods and second is the large size of the unit cells needed
to model such systems accurately. The extensiveness of crys-
tals requires periodic boundary conditions to be implemented,
as is routinely done in DFT codes. However, fully periodic
systems have been tackled with CCSD(T) for small unit cells
consisting of a few atoms.103,131,164–166 Although this area
is actively being developed,164 organic crystals are still too
expensive to compute with periodic coupled cluster theory.
As discussed in Sec. III, embedding and fragment approaches
have been used with quantum-chemical methods for molec-
ular crystals previously. On the other hand, the RPA and
QMC are both readily used with periodic boundary conditions
and lend themselves to predicting the energies of molecular
crystals.

The predictive power of the high-level wavefunction
based methods that we consider here is determined by com-
parison with the experiment. However, the non-zero finite
temperatures at which experiments are conducted means that
thermal effects and zero-point energies separate the experi-
mental data from the theoretically obtained absolute energies.
This gap is filled by back-correcting experimental sublimation
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enthalpies, yielding comparable lattice energies. It is impor-
tant to note that the back-correction itself is computed from
DFT or classical models and can therefore introduce uncer-
tainty on top of the experimental values. Given that very small
energy windows dictate the properties of molecular crystals,
errors in the back-correction need to be minimized. This is
non-trivial, and therefore, an alternative indicator of accuracy
is cross-validation between several high-level wavefunction
based methods.

In the following, we report on the most accurate com-
putations of molecular crystals from high-level wavefunction-
based methods. First we address the efforts made for the more
widely computed benzene crystal and compare the variety of
methods applied to it. Second, we focus on the wider applica-
bility of wavefunction based approaches, using a diverse set of
molecular crystals shown in Fig. 5.

A. The benzene crystal test
The benzene molecular crystal is one of the most studied

systems and is a desirable test case; as benzene is a struc-
turally rigid non-polar molecule with a polarizable charge
density, its structure and stability are highly susceptible to
dispersion interactions. In addition, its anisotropic polarizabil-
ity can result in non-additive dispersion interactions,5 which
requires going beyond the molecule-pairwise additive formal-
ism. The experimental lattice energy of the benzene crystal
is −50.6 kJ/mol, after back correcting for thermal effects and
zero-point energy contributions.57,167 It should be noted that
an uncertainty of a few kJ/mol can be expected in this value
as a result of the extrapolation and back-correction used to
obtain it. Approaches based on SAPT-DFT, CCSD(T), the RPA,
and DMC have all been applied to the benzene crystal with
varying success, as we presently discuss (Table III).

Podeszwa et al. used SAPT-DFT with the fragment
method to compute the lattice energy of the benzene crys-
tal at 0 K.171 The fragment approach that was employed
computes the energy of dimers within the crystal and sums
over 50 symmetrically distinct benzene dimer pairs, cover-
ing interaction distances up to 11 Å. The remaining energy of

TABLE III. Lattice energy, Elatt , in kJ/mol for the benzene crystal as reported in pre-
vious studies and the corresponding error with respect to the lattice energy from the
back corrected experimental57 sublimation enthalpy, ∆Hexp

sub .

Methods Elatt Elatt − BC[∆Hexp
sub]

DMC57 −52.1 (0.4) 1.1
Emb. ∆CCSD(T)109 −51.2 −0.6
OSV-LCCSD(T)168 −54.6 −4
RPA169 −45.2 5.4
RPA+GWSE169 −51.5 −0.9
MP2109 −61.6 −11
Frag. ∆CCSD(T)+3B170 −51.5 −0.9
Frag. ∆CCSD(T)110 −56.4 −5.8
Frag. SAPT-DFT+3B171 −50.3 0.3
Frag. SAPT-DFT172 −58.4 −7.8

BC[∆Hexp
sub] −50.6

the crystal was computed by an asymptotic expansion using
just under 9000 pairs. Based only on dimers, the SAPT-DFT
predicted lattice energy of benzene is −57.2 kJ/mol. It was
recognized that many-molecule effects or screening (e.g., the
interaction of a dimer in the presence of other molecules)
can contribute well beyond 1 kJ/mol to the lattice energy.
As such, an attempt was made to recover three-molecule
interactions by using MP2 to calculate the interaction energy
of symmetrically distinct trimers within a 9 Å separation dis-
tance. The MP2 three-molecule energy contribution to the
lattice energy was found to be 6.9 kJ/mol. The resulting lat-
tice energy reported by Podeszwa et al., using SAPT-DFT for
dimers and MP2 for trimers, is −50.3 kJ/mol.171 This trimer
corrected result is within 0.3 kJ/mol of the experimental ben-
zene lattice energy. However, MP2 is known to overestimate π
− π dispersion interactions. Therefore, the improvement in the
MP2 corrected SAPT-DFT predicted lattice energy probably
involves some compensation between the underestimation of
dispersion from the dimer-only SAPT-DFT approach and the
overestimation of π − π interactions from MP2. It follows that
the use of MP2 to compute energy contributions to the lattice
energy for molecules with π − π interactions, such as benzene,

FIG. 5. Molecular crystals from the work
of Zen et al.57 The molecular solids
include three ice structures (ice-Ih, ice-
II, and ice-VIII), three π − π stacking
structures (benzene, naphthalene, and
anthracene), and ammonia and carbon
dioxide crystals.
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introduces further uncertainty and should be regarded with
caution.

A fragment approach was also used by Ringer and Sherrill
using ∆CCSD(T) to compute dimer energies.110 Trimer ener-
gies were neglected in that study under the assumption that
they do not contribute significantly to the lattice energy. The
fragment ∆CCSD(T) approach predicted a benzene crystal lat-
tice energy of −56.4 kJ/mol. Note that this is within 0.8 kJ/mol
agreement with the dimer-only SAPT-DFT prediction, indicat-
ing that SAPT-DFT is accurate for considering the interaction
of benzene dimers. Nonetheless, it is evident that beyond two-
molecule interaction energies are required for the accurate
prediction of the benzene crystal—preferably from a theory
that does not overestimate dispersion interactions. It is also
important to emphasize that a lattice energy difference of a
few kJ/mol is large enough to have drastic effects on macro-
scopic properties. Later, Sherrill and co-workers computed
the ∆CCSD(T) interaction energy for trimers in the benzene
crystal and showed that it contributes 3.7 kJ/mol (about 7%)
to the lattice energy.170 The trimer corrected ∆CCSD(T) lattice
energy for benzene is −51.5 kJ/mol.

The successive improvement of the results from fragment
based quantum chemistry approaches demonstrates a sim-
ple drawback: without an already known reference energy, it
is difficult to know how many clusters to include. One can
compute many-molecule contributions (e.g., trimers,
tetramers, pentamers, etc.) more straightforwardly with
methods such as localized CCSD(T) approaches. Reference
results for larger clusters can be used to establish the con-
vergence behavior of the fragment approach. Ultimately,
however, a fully periodic framework is the ideal method for
computing lattice energies.

To efficiently account for periodicity whilst retaining
a degree of accuracy from high-level methods, an embed-
ding or quantum mechanics/molecular mechanics (QM/MM)
approach can be applied. QM/MM encompasses a number
of methods that couple high-level wavefunction-based meth-
ods with less costly mean-field or classical models. High-level
theory is applied to treat the more complex or strongly inter-
acting part of the system, whilst a mean field approach such as
DFT can be used to compute the remaining components of the
system. Wen and Beran used ∆CCSD(T) and a carefully param-
eterized force field to compute the periodic lattice energy of
benzene, along with a few other molecular crystals.109 They
obtained a benzene lattice energy of −51.2 kJ/mol, which is
in the same range as the lattice energies predicted by the
∆CCSD(T) and SAPT-DFT fragment approaches. Interestingly,
the partitioning between ∆CCSD(T) and the force field was
based on the components of the energy as opposed to a purely
spatial partitioning. The reliability of this method is coupled
to the accuracy of the force field which contributes a sig-
nificant proportion of the benzene lattice energy. However,
the incomplete quantum mechanical treatment results in the
neglect of long-range and higher-order dispersion interac-
tions. To alleviate this somewhat, a semi-empirically deter-
mined Axilrod-Teller-Muto (ATM) term was included in the

force-field, in order to approximate the contribution from
three-body interactions. Although the ATM term accounts for
some portion of the missing interactions in the force field, its
accuracy is also not guaranteed.

Recall that there is a strong motivation for computing
accurate lattice energies with enough resolution to distin-
guish polymorphs. With that in mind, the goal is to com-
pute long-range interactions with quantum mechanical accu-
racy. To this end, the random phase approximation (RPA)
was used by Lu et al. RPA benzene lattice energies, −44 and
−47 kJ/mol, were computed for Kohn-Sham (KS) orbitals using
the local density approximation (LDA) and a generalized gra-
dient approximation (GGA), respectively.173 Note the impact
of the approximate KS orbitals on the RPA lattice energy
is already a few kJ/mol. Del Ben et al.166 similarly found
a difference of ∼8 kJ/mol in the predicted lattice energy
of the benzene crystal, between RPA based on HF and PBE
orbitals. In addition, in comparison to previously discussed
quantum chemical results, the RPA estimates a weaker inter-
action in the lattice. This is typically seen for RPA predictions
of dispersion dominated interactions and stems from the lack
of single excitations, although higher-order exchange terms
are also missing. In short, RPA lends itself very well to the
computation of periodic systems with dispersion, but it is
essential to include further terms for completion. The need
for further terms has been demonstrated in a number of stud-
ies, and promisingly, their inclusion is becoming more routine.
A more recent RPA+GWSE prediction of the benzene crystal
lattice energy by Klimeš is −51.5 kJ/mol.169 Clearly, the GW
singles excitations (GWSE) contribution is significant and the
final result is within 1.3 kJ/mol of the back-corrected experi-
mental lattice energy of −50.2 kJ/mol. The RPA+GWSE method
requires careful convergence of calculation parameters (e.g.,
basis set size and finite size effects), and the effect of SOSEX
could be considered further. However, one can be satisfied
that correlation is treated seamlessly for a molecular crystal
within the RPA+GWSE method.

In addition to the RPA+GWSE method, Zen et al. demon-
strated the power of QMC for establishing the lattice energy
of crystals.57 In the case of the benzene crystal, DMC pre-
dicts −52.1 ± 0.4 kJ/mol for the lattice energy. The DMC lat-
tice energy is well within the predicted lattice energies of
the RPA+GWSE and quantum chemistry methods. The con-
sensus of several high-level methods provides confidence in
the benzene lattice energy—even more than on the computed
back-correction that is applied to the experimental measure-
ment. In Sec. V B, we consider a wider set of molecular
crystals: ice-Ih, ice-II, ice-VIII, CO2, NH3, naphthalene, and
anthracene.

B. Molecular crystals of all shapes and sizes
Whilst benzene is the de facto test case for molecular

crystals, a more representative dataset of molecular crystals
is needed to thoroughly test the application of methods. For
this purpose, the C21147 and the later refined X23148 datasets
are particularly well suited. These datasets include a variety of
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FIG. 6. Differences in the interaction energy between a number of high-
level wavefunction based methods and the revised back-corrected experimen-
tal sublimation enthalpies (BC∆Hsub). The chemical accuracy of ∼4.2 kJ/mol
is indicated by the yellow shaded bar. Data are adapted from previous stud-
ies.47,57,108,109,168,169,177

molecules that are found in nature and are common in chem-
ical synthesis. Zen et al. established QMC lattice energies for a
subset of the C21 molecular crystal dataset and three ice poly-
morphs additionally.57 The two methods of DMC, DMC(lc) and
DMC(sc), shown in Fig. 6 and Table IV, refer to DMC computed
in large cells (lc) and small cells (sc). In other words, finite
size effects are either prevented in the brute force approach
by DMC(lc) or, at an order of magnitude smaller computa-
tional cost, in DMC(sc) using smaller cells and a correction
to finite size effects (i.e., model periodic Coulomb interac-
tion).57,174–176 The computed crystals comprise a reasonably
diverse range of molecules with lattice energies ranging from
28 to 105 kJ/mol, accompanied by DMC stochastic errors
from 0.1 to 1.7 kJ/mol. In addition to obtaining lattice energies
in close agreement with back-corrected experiments consis-
tently across hydrogen-bonded, dispersion dominated, and

mixed bonded crystals as can be seen in Fig. 6, the relative sta-
bilities of ice polymorphs were also correctly predicted. This
is a significant feat since the energy difference between the
ice polymorphs considered in the study is less than 2 kJ/mol
and well under the typically targeted chemical accuracy of
∼4.2 kJ/mol.

In light of the scarcity of reference information, demon-
strating full agreement between high-level methods originat-
ing from different theories and frameworks is compelling and
it is a necessary step towards establishing the reliability of
different methods. Such a study requires a concerted effort
from researchers, as has been demonstrated for the interac-
tion of water on h-BN13 and LiH surfaces.107 Zen et al. show
that such an agreement can be achieved within 2 kJ/mol using
DMC, the RPA+GWSE, and carefully embedded ∆CCSD(T). This
comparison also highlights which methods are more suitable
to predicting molecular crystal lattice energies, namely, DMC
and the RPA+GWSE. Both of these methods can be applied
seamlessly to periodic systems, and provided that theoret-
ically motivated steps (as opposed to empirical fitting) are
taken to ensure fully converged results, excellent accuracy
can be achieved. Although the same can be said for embedded
∆CCSD(T) approaches, due to the different theoretical bases
of the composite methods, the non-covalent interactions are
not treated on the same balanced footing.

By making cross-comparisons between methods and
understanding the level of approximations made in each case,
it is clear that two main factors should be satisfied to achieve
the best accuracy. First, a many-body approach to correlation
(or dispersion) is needed in order to compute molecular crys-
tals with sufficient accuracy to distinguish polymorphs. This
implies that periodic or embedded QM/MM approaches are
preferred to fragment based approaches. Second, the non-
covalent interactions should be treated on a balanced footing,
which favors the use of a single method such as DMC or the
RPA+GWSE as opposed to the composite QM/MM methods.
However, when it is known that the long-range interactions in
a system are not important, a QM/MM method is likely to be
useful.

TABLE IV. Lattice energies, Elatt , and mean absolute errors (MAEs) in kJ/mol for a small variety of molecular crystals, predicted in previous studies. The last column reports
the lattice energies from back corrected (BC) experimental sublimation enthalpies (∆Hexp

sub ). The stochastic errors for the DMC results are reported in parentheses. DMC(lc) and
DMC(sc) refer to DMC calculations performed in large and small supercells, respectively. The MAEs for DMC take into account the stochastic errors, but for comparison, the
parentheses show the MAE without this.

Molecular crystal DMC(lc)57 DMC(sc)57 Emb. ∆CCSD(T) RPA169 RPA+GWSE169 MP2 BC[∆Hsub]

Ice Ih −59.3 (0.5) −59.2 (0.2) −5847 −52 −60.2 −58.747 −58.8
Ice II −59.1 (0.6) −59.0 (0.3) −5847 −51.7 −60.1 −58.447 −58.8
Ice VIII −57.3 (0.6) −57.4 (0.1) −55.447 −49.5 −57.9 −56.347 −57.4
Carbon dioxide −28.2 (1.3) −28.5 (0.4) −29.5,109 –28.1108 −24.1 −27.3 −29.1,109 –27.2108 −28.4
Ammonia −37.1 (0.4) −37.5 (0.1) −40.2109 −31.5 −37.6 −39.3109 −37.2
Benzene −52.1 (0.4) −51.2 (0.2) −51.2109 −45.2 −51.5 −61.6109 −50.6
Naphthalene −78.8 (0.8) −78.0 (0.6) n.c. −68.4 −77.6 −91.5177 −79.2
Anthracene −105.5 (1.7) −103.9 (1.0) n.c. −92.6 −103.5 −127177 −105.8

MAE 0.2 (0.4) 0.3 (0.6) 1.4 7.7 1.2 6.1
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VI. THE DFT WORKHORSE ON A COMPLEX
MOLECULAR TRACK

Amongst first principles methods, DFT-based predictions
are overwhelmingly relied upon for quantum-mechanical pre-
dictions of organic crystals as well as other materials. Indeed,
in the organic crystal blind tests organized by the Cam-
bridge Crystallographic Data Centre, the leading approaches
for the prediction of polymorph stabilities employ vdW-
inclusive DFT methods.162 In general, however, DFT-based
approximations suffer from the lack of a systematic route to
improved accuracy due to the unknown form of the exact
xc functional. Countless approximations for the xc func-
tional of different flavors have been developed in light of
this, some of which include approximations for vdW inter-
actions. Several studies have shown that such vdW inclu-
sive functionals predict a wide spread of interaction ener-
gies for beyond modestly sized non-covalently interacting
systems.14,15,47,69,123,147,178–180

A number of vdW-inclusive functionals account for
pairwise interactions between charge densities (e.g., atoms
and molecules) and therefore neglect higher-order interac-
tions,62,63 which are particularly important for non-additive
dispersion interactions. In addition, several such vdW-
inclusive xc functionals treat short and long-range correla-
tion separately since the former is well approximated with
the underlying GGA formalism. Thus, further approxima-
tions are needed to interface short and long-range cor-
relation. The method of interfacing the short and long-
range correlation in an xc functional can particularly impact
on interactions at 3-7 Å separation distances.181,182 Indeed,
recent studies have shown that the incorrect behavior in
the medium-range distance of electron correlation can lead
to an overestimation of the adsorption energy of molecules
in low-dimensional materials, such as a carbon nanotube.13

This is likely to be particularly noticeable in systems such
as molecular crystals and supramolecular systems, where
a considerable amount of dispersion is expected to fall in this
medium-range of interaction. Given the continued usefulness
of DFT, let us briefly comment on recent advances in the use of
DFT based methods for supramolecular complexes in Sec. VI
A, followed by molecular crystals in Sec. VI B.

A. Supramolecular systems with vdW inclusive DFT
The availability of high-level reference information for

the S12L dataset, particularly from back-corrected exper-
iments23,156 and later DMC,56 spurred several studies to
provide performance tests for vdW inclusive xc function-
als.72,73,127,152,156 Interestingly, the series of studies under-
taken by different groups resulted in the refinement or clar-
ification of the parameters related to some of the dispersion
approximations used in DFT, which we will recount here. Such
discussions and findings are crucial for the standardized and
reliable use of DFT approaches and exemplify the usefulness
of accurate reference information.

Let us begin with the work of Risthaus and Grimme
that undertook important benchmarking,72 comparing the

interaction energies from D2, D3, dDsC, VV10, vdW-TS, and
exchange-hole dipole moment (XDM) based DFT approaches
and also the highly parameterized M06-L functional. Grimme’s
D2 in combination with PBE was found to produce the
smallest mean absolute error (MAE) for the S12L dataset
(1.5 kcal/mol) in that study, but as the authors also remark,
the good performance of PBE+D2 can be attributed to
error cancellations. This is indicated by their finding that
the D3 approach which approximates three-atom disper-
sion appeared to be less accurate than PBE+D2, with an
MAE of more than 2 kcal/mol. The absolute difference in
the MAE does not appear significant, but when employ-
ing first principles methods, a desirable feature is to see
increased accuracy as more physics is accounted for. Indeed,
the PBE+vdW-TS functional, based on a pairwise atom-atom
description, was found to consistently overbind the host-
guest complexes of the S12L dataset, resulting in a larger
MAE of 5.3 kcal/mol. In comparison to the D2 method,
the overestimation of interaction energies by the vdW-TS
method is physically expected due to the neglect of beyond
atom-pairwise dispersion in its parameterization. Further
evidence for error cancellation in the D2 method was
demonstrated by Ambrosetti et al. in their decomposition of
the many-body dispersion (MBD) energy.56 The MBD frame-
work provides an approximation to the RPA correlation energy
via atom centered quantum harmonic oscillators, and in this
way, it accounts for beyond atom-pairwise dispersion. In the
MBD decomposition of the interaction energy for a subset of
the S12L dataset, truncation at the atom-pairwise level was
found to result in an overestimation of 7%-13% in the dis-
persion component of the interaction energies. In fact, the
PBE+MBD functional was found to yield a competitive MAE of
1.6 kcal/mol for S12L.

In addition to confirming the importance of beyond
atom-pairwise interactions in large supramolecular com-
plexes, benchmarking also revealed the need for the careful
use of parameters for dispersion models that supplement xc
functionals. For example, Risthaus and Grimme reported an
MAE of more than 5 kcal/mol72 for the XDM model of John-
son, but as Otero-de-la-Roza and Johnson later showed,152

this large MAE was caused by shortfalls in the convergence
of the basis set as well as the wrong parameters being
used in combination with PBE. Otero-de-la-Roza and John-
son investigated the effect of using different parameters in
their damping function and remarked that with a reduced
basis set error and optimized damping function parame-
ters, the PBE+XDM MAE for the S12L dataset is in fact
1.2 kcal/mol152 when compared with the DMC results of
Ambrosetti et al.56

Benchmarking efforts were also undertaken by Calbo et al.
for double-hybrid density functionals combined with the VV10
long-range correlation of Vydrov and Van Voorhis.127 In their
study, ∆DLPNO-CCSD(T) references were used for both the
S12L and L7 datasets, and with this, they found MAEs of at
least 2.5 kcal/mol. It would be interesting to see whether
the MAE would be lower if DMC values are taken as refer-
ence. In addition, the study indicated that the L7 dataset is
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more difficult to predict accurately from DFT based methods.
In particular, the increase in the number of hydrogen bonds
in the L7 dataset could be challenging for DFT approxima-
tions.154 This is demonstrated in the recent work of Claudot
et al.69 where the L7 dataset was benchmarked with sev-
eral vdW inclusive xc functionals and significant discrepancies
were found for hydrogen-bonded complexes. It has previ-
ously been shown, for example, that predicting the electro-
static interactions can require a more accurate description of
Pauli exchange-repulsion,70,154 and therefore in the realm of
DFT xc functionals, more expensive hybrid functionals might
be needed to accurately compute the L7 dataset. However,
the L7 reference data should be further revised in future,123

especially using a better converged basis set and more com-
plete theory. This would be helpful, for example, towards set-
tling the performance of the DFT xc functionals in large finite
molecular systems.

B. DFT for molecular crystals

The C21 and X23 datasets have been profoundly useful
for comparing vdW approximations in DFT methods and high-
lighting the benefits and shortfalls of different approaches.
Compared to supramolecular systems, these molecular crys-
tals have smaller theoretical back-corrections due to the
molecules being more rigid, and the geometries are better
established, thanks to low-temperature diffraction data. As
such, C21 and X23 can be used by force field methods alike,
helping further development in classical as well as quantum-
mechanical approaches.183,184

Dispersion inclusive xc functionals have been bench-
marked in previous studies and some reviews elaborate
in more detail on the performances.62,169 Generally, vdW-
inclusive methods have MAEs up to a few kcal/mol of the
back-corrected experimental lattice energies. However, as
already discussed, the lattice energy of molecular polymorphs
can be less than that energy window. Therefore, predicting the
correct ranking of polymorphs requires accuracy in a small
energy window as well as the inclusion of entropic effects
(which we discuss later). Interestingly, it has been found
that invoking beyond two-body interactions, as in the MBD
model, lowers the MAE to 2 kcal/mol and improves the accu-
racy of polymorph ranking.22 Indeed, the MAEs of PBE0+MBD
(0.9 kcal/mol), PBE+MBD (1.4 kcal/mol), and PBE+D3 with
the three-atom ATM term included (1.1 kcal/mol) for the X23
organic crystal dataset demonstrate the remarkable accuracy
that can be achieved for the lattice energies.22,72,185 Moreover,
comparisons between the TS-vdW and MBD methods can pro-
vide useful physical insight on the dispersion interactions of
a dataset. For example, many-atom interactions in the MBD
improve the MAEs of molecular datasets, such as the X23, by 2-
3 times, when coupled with the same underlying xc function-
als.22 The impact of three-atom dispersion terms can also be
seen with the D3 method with and without the ATM term for
the X23 dataset.185 Evidently, non-additive dispersion plays
an important role in the long-range interaction of molecular
crystals.186

Of the dispersion inclusive xc functionals that are effec-
tively atom-pairwise only, the generally named vdW-DFs
overestimate the lattice energies of the X23 dataset by ∼10%.75

Meanwhile, the XDM model has an MAE of 1 kcal/mol when
combined with the B86b functional.75 The XDM model con-
tains higher-order terms in the dispersion expansion of the
atom-pairwise regime, accounting for interactions that decay
as R−8 and R−10, for inter-atomic separation R. Although
the XDM model does not account for beyond atom-pairwise
non-additive dispersion interactions, the inclusion of higher-
order terms within the atom-pairwise formalism in the XDM
approach reduces the overbinding that otherwise results from
using only the R−6 term in this approach. Overall, some of
the physically motivated and less empirical DFT+vdW meth-
ods can be considered rather promising models for molecu-
lar crystals, which can be further developed towards better
accuracy.

VII. DISCUSSION
To date, predictions of small molecular systems and

molecular materials have seen significant improvements.
State-of-the-art computational methods, such as CCSD(T)
and DMC, are able to predict interaction energies for symmet-
ric systems with remarkable accuracy. Yet at the intersection
of these systems, molecular crystals and supramolecular com-
plexes are challenging target systems, which exhibit a complex
interplay of non-covalent interactions. Here, we first present
a succinct general framework in Sec. VII A for assessing the
quality of the reference information computed from ab initio
methods. Second, we briefly discuss the role of non-
equilibrium effects on the context of beyond modestly sized
molecular systems in Sec. VII B.

A. Criteria for benchmark accuracy predictions
We have seen that wavefunction-based methods are not

consistently in agreement due to the different levels of treat-
ment for physical interactions such as dispersion. The neglect
of higher-order terms in perturbation theories or practical
approximations, for example, in the basis set, strongly delin-
eates the findings. When navigating the literature for refer-
ence information, it is important to keep in mind the pitfalls
of the various so-called benchmark methods. Table I in Sec. III
gave an overview of the typical wavefunction based methods
that are used to compute benchmarks. Here, we suggest the
following criteria as a checklist for obtaining a sense of the
quality of the reference:

• Reproducibility: this not only concerning experiments
but computational methods also. As DFT studies
demonstrate,187 it is not given that different codes,
implementations, and basis set approximations yield
the same result for a particular theory.

• Systematic convergence: computational methods rely
on numerical approximations in practice, but it is
important that such approximations can be systemati-
cally tested and converged. For example, basis set size
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and finite size errors should be thoroughly tested. To
this end, the use of ad hoc scaling factors should be
avoided.

• Theoretical completeness: this is what currently sep-
arates most DFT based methods178 from the so-called
high-level wavefunction based methods. More specif-
ically, the understanding of the interaction terms that
are included in a theoretical framework underpins to
what extent a method can provide insight and reliabil-
ity.

• Consensus: a compelling trait of accuracy is the
agreement between methods of different theoret-
ical bases, for example, where possible CCSD(T),
DMC, and the RPA+GWSE should be shown to pre-
dict the same interaction energies. Such efforts are
being made more recently13,57 and continue to pro-
vide the necessary grounding for these reference
methods.

Following our prescribed framework above, the most
accurate computational work for non-covalently bonded large
systems is given by Zen et al.57 for moleular crystals. Over-
all, DMC can provide excellent reference information for
molecular crystals and large supramolecular complexes. As
DMC is not considered a black-box method, it requires a
great deal of effort to ensure that all numerical approxima-
tions in the calculation are not creating a bias in the result.
In addition, the computational cost of DMC depends largely
on the size of the target stochastic error, but as shown by
Zen et al., developments in the algorithm have resulted in
significant savings. Second, the RPA+GWSE method has been
shown to predict interaction energies in agreement with DMC,
and as an analytic approach, it does not involve statistical
errors. As such, reliable results can be expected from the
RPA+GWSE for non-covalently interacting systems. One bot-
tleneck for the RPA+GWSE appears to be the memory require-
ments that increase substantially with the basis set and sys-
tem size. However, it is not entirely prohibitive since accurate
RPA+GWSE computations for unit cells with over 300 elec-
trons have been done, for example, in the water adsorption
study of Al-Hamdani et al.188

Quantum-chemical methods, such as DLPNO-CCSD(T),
are useful approximations to canonical CCSD(T), but draw-
backs include slow basis set convergence and the difficulty
of applying it to periodic systems. It would also be benefi-
cial to study the effectiveness of DLPNO-CCSD(T) for highly
delocalized systems, where the dispersion interactions are
particularly long-ranged. Finally, SAPT-DFT methods continue
to provide useful physical insight for interacting dimers and
potentially more reliable results than vdW inclusive of DFT
approximations.150 Dimer systems remain the main scope of
SAPT, thus limiting its application to molecular materials. As
larger dimer complexes are increasingly studied, it remains
to be seen whether the level of perturbation theory within
DFT-SAPT is sufficient to describe the necessary interaction
terms needed to describe the dispersion interactions in such
systems.

B. Non-equilibrium effects in beyond modestly
sized molecular systems

In this perspective, we have focused on the currently
available information from high-level methods for non-
covalently bonded systems, but beyond 0 K interaction ener-
gies, non-equilibrium effects are fundamental in the prop-
erties and application of such systems. In particular, ther-
mal and anharmonic effects feed into the back-correction
from experiments and therefore comprise the effects that
separate high-level theoretical predictions from experimen-
tal measurements. Furthermore, the vibrational and zero-
point effects play a major role in the free energy stabil-
ities of polymorphs in organic crystals, as well as in the
mechanical and elastic properties of molecular complexes.
Well-established examples include aspirin, which in form I
is entropically favored to form II. This has been rationalized
by the non-additive many-atom interactions softening the
low-frequency vibrational modes and stabilizing form I.22 It
would be a significant step forward to be able to routinely
predict these effects accurately.189 Particularly for anhar-
monicity, several methods are being actively developed to
increase our understanding and knowledge. However, the
main limitation is the cost of such calculations. Moreover,
present implementations of stochastic methods like DMC do
not lend themselves well to the calculation of dynamic con-
tributions due to the additional computational cost required
to compute gradients stochastically, as opposed to computing
analytical gradients.

More practicable methods, i.e., DFT based formalisms, are
needed to provide sufficient information to bridge theoret-
ical computations with experimental measurements. Further
benchmarking is needed to establish the reliability of DFT
approximations for thermal effects. To this end, significantly
more reference information is needed on non-equilibrium
structures of large molecular complexes. The S66 × 8 dataset
is an example of efforts to move towards describing small non-
equilibrium dimers. Indeed, the accurate prediction of the
interaction energy curve for water on hexagonal boron nitride
resulted in a concerted effort in the electronic structure com-
munity to cement the agreement amongst high-level wave-
function based methods13 and provided useful information for
force field development. In general, reference methods can be
applied to organic crystals to compute the equation of state, as
demonstrated by Zen et al.57 In addition, low-cost molecular
dynamics simulations can be used to provide non-equilibrium
configurations of complex systems, for which the interaction
energies can be computed at the reference level. Producing
reliable benchmark energies for non-equilibrium structures is
a promising step forward in improving the accuracy of xc func-
tionals and force field methods. This will be particularly useful,
and as such, workhorse methods are likely to remain as the
most efficient computing approaches.

VIII. CONCLUDING REMARKS

Considering that experimental interaction energies are
mostly available within the small-molecules regime (see Fig. 1),
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the current challenge is to apply computational methods in
systems where there are scarce experimental data to guide us.
If this can be achieved, we can consider accurately predict-
ing macroscopic systems in future from first principles and,
in doing so, gaining the ability to potentially explain highly
complex phenomena. This involves clearly defined theoretical
frameworks, which enable us to model physical interactions
and to know which interactions are not accounted for. In other
words, we can only obtain accurate predictions in unfamil-
iar systems by understanding the theoretical models that we
apply, as well as their limitations. Indeed, significant strides
have been made in the modeling of non-covalent interactions,
particularly the application of wavefunction-based methods
to periodic molecular crystals and large supramolecular com-
plexes involving significant anisotropic and long-range disper-
sion energy contributions.

Molecular crystals and supramolecular complexes have
typically been set aside in the development of computa-
tional methods. This is partly due to the lack of reference
information in the past and the enormous complexity of
these systems. However, establishing the reliability of various
computational methods, such as xc functionals and force
fields, means that such systems cannot be neglected. Whilst
much progress has been made from the understanding of
small dimers and solid-state matter, the greater challenge now
lies in accurately predicting the molecular complexes that
embody complex non-covalent interactions over particularly
long distances.

A great deal of progress has been made, thanks to the
developments by several theoretical groups, resulting in a
steadily increasing pool of benchmarks for interaction ener-
gies of increasingly larger and complex molecules. Methods
such as DMC, the RPA+GWSE, and DLPNO-CCSD(T) have
reached the stage where they can be applied to systems con-
sisting of up to hundreds of atoms. An issue that affects the
performance of these methods is sometimes in the execu-
tion since it is tempting to take methodological short-cuts
in the hope of providing much needed references. As out-
lined, there is scope for removing the uncertainties related
to these methods, possibly by undertaking exhaustive proto-
cols to ensure the reliability of the results. Upon consideration
of the most pertinent reference studies for molecular crys-
tals and supramolecular complexes, DMC can be expected to
provide excellent benchmarks especially for systems where
dispersion interactions in particular and correlation energy in
general are not well understood. Still, it is important to keep
in mind the effect of the fixed-node approximation in DMC
interaction energies.

The RPA+GWSE method provides another consistent
approach to establishing reference information, but missing
terms such as the SOSEX could affect the results. In DMC
and the RPA methods, the convergence of the energies is a
formidable task with respect to unit cell sizes. In this case,
various developments are being undertaken to introduce cor-
rections for finite-size errors. For the approximate CCSD(T)
type methods, a great deal of computational savings has been

achieved at the cost of rigorous accuracy. Thus it is impor-
tant to thoroughly test the limits of methods such as the
DLPNO-CCSD(T).

An important concern within all of the aforementioned
methods is the inclusion of static correlation. Whilst this is
thought to be less important in the case of non-covalent inter-
actions considered in this perspective, there can be systems
where electronic near-degeneracies play a role in the inter-
action. At this time, the DMC framework provides a straight-
forward path to including this, as multiple determinants can
be used in the trial wavefunction. However, it remains theo-
retically challenging to account for these effects via the RPA
or CCSD(T) type methods. Another method, full configura-
tion interaction QMC or FCIQMC for short, is therefore likely
to provide an increasingly useful route to attaining highly
accurate predictions. Unfortunately, in the case of molecu-
lar crystals and supramolecular systems, this method remains
infeasible.

Finally, it is reassuring that high-level reference methods
are capable of tackling challenging non-covalent complexes.
To gain agreement with experiment however, non-equilibrium
effects form an important challenge to overcome. Further
developments to build on the ground state frameworks and
extend them by accounting for thermal and anharmonic
effects will cement the use of computational methods in
making reliable predictions.
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