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Abstract

Background: Relative quantification is a commonly used method for assessing gene expression, however its accuracy and
reliability is dependent upon the choice of an optimal endogenous control gene, and such choice cannot be made a priori.
There is limited information available on suitable reference genes to be used for studies involving human epicardial adipose
tissue. The objective of the current study was to evaluate and identify optimal reference genes for use in the relative
quantification of gene expression in human epicardial fat depots of lean, overweight and obese subjects.

Methodology/Principal Findings: Some of the commonly used reference genes including 18S, ACTB, RPL27, HPRT, CYCA,
GAPDH, RPLPO, POLR2A and B2M were quantified using real-time PCR analysis. The expression stability of these genes was
evaluated using Genorm, Normfinder and Bestkeeper algorithms. In addition, the effect of sample size on the validation
process was studied by randomly categorizing subjects in two cohorts of n = 2 and n = 33.

Conclusions/Significance: CYCA, GAPDH and RPL27 were identified as the most stable genes common to all three
algorithms and both sample sizes. Their use as reference gene pairs might contribute to the enhanced robustness of relative
quantification in the studies involving the human epicardial adipose tissue.
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Introduction

Human epicardial adipose tissue (EAT) is a visceral fat depot

that has gained significant attention in the recent times. Numerous

studies have reported significant positive correlations between

EAT mass and coronary artery disease (CAD) in humans [1,2,3].

In addition, significant correlation is reported between visceral

obesity and EAT mass [4,5]. The current paradigm thus remains

that increased EAT mass due to obesity increases the risk of

developing CAD. However, the underlying mechanisms explain-

ing this association remain unknown. EAT is a metabolically

active depot capable of secreting various adipokines and cytokines.

Moreover, it is located between myocardium and the inner layer

of visceral pericardium, thereby sharing close proximity and a

common blood supply with the underlying myocardium [6]. It is

likely that EAT affects the cardiac-function and -metabolism in a

paracrine manner. A number of recent studies have, thus,

investigated the association between EAT expression of various

adipokines, cytokines, oxidative stress- and inflammatory- markers

with CAD [7,8,9,10]. For these studies, relative quantification of

gene expression remains the method of choice. In addition, our

benign understanding of human EAT function would largely

depend upon future studies assessing gene expression in this fat

depot.

Relative quantification is an easy, quick and effective way of

assessing gene expression, however its level of accuracy is

dependent upon various experimental steps including handling

of tissues, RNA extraction, storage of isolated RNA, efficiency of

reverse transcription and amplification [11,12]. Thus, it is a

common practice to normalize the data against an endogenous

reference gene or housekeeping gene (HKG) in order to correct

for the potential experimental inaccuracies [13]. An ideal internal

reference gene or HKG would be universally valid exhibiting

stable expression across most sample types and experimental

conditions, such that any differences in its expression could reflect

upon the experimental variation leading to data correction.

However, the literature suggests that no such gene exists, infact,

the expression of the most commonly used HKGs can vary based

on the experimental conditions and chosen set up [14,15,16]. The

impact of using an unstable HKG can lead to erroneous results as

demonstrated previously by Dhehda et al. and others [17,18,19].

Thus, it is crucial to identify and validate the HKGs prior to their

use for normalization during specific experimental set ups.

To date, none of the studies dealing with human EAT has

reported on the evaluation of HKGs prior to their use.

Considering that differences in the expression of HKGs have

been reported between omental and subcutaneous tissues [20], it
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becomes essential to validate the HKG to be used for the studies

involving human EAT since various regional fat depots differ in

their gene expression. In the current study, we have compared the

expression of 9 commonly used HKGs in the EAT of lean,

overweight and obese patients undergoing coronary artery bypass

grafting (CABG). We employed the commonly used approaches of

Genorm, Normfinder and Bestkeeper to identify the most stable

HKGs. In addition, we randomly categorized our subjects in two

cohorts of n = 12 and n = 33 in order to assess the impact of

sample size on the validation approaches. We report that CYCA,

GAPDH and RPL27 are among the most stably expressed HKGs

common to all 3 algorithms and both sample sizes in human EAT.

Results

All the subjects (n = 33) included in the study underwent CABG.

All of them were dyslipidemic, 54.5% had hypertension, 30.3% had

diabetes, 24.2% had metabolic syndrome, 24.2% had peripheral

vascular disease (PVD) and 30.3% smoked. All of the subjects were

kept on statins and anticoagulants, 78.8% on beta-blockers, 51.5%

on angiotensin converting enzyme-inhibitors, 9.0% on angiotensin-

receptor blockers and 24.2% on oral hypoglycemic medication.

Based on their body mass index (BMI), the subjects were divided into

three categories of lean, overweight and obese. BMI and waist

circumference of the obese group was significantly higher than the

lean and overweight groups (P#0.05) (Table 1). However, other

clinical parameters including systolic- and diastolic- blood pressure,

mean arterial pressure, age, fasting plasma glucose, triglycerides,

total-, LDL- and HDL-cholesterol were not different among various

groups (Table 1).

In order to determine the expression stability of selected HKGs

across these patient groups, we begun with calculating their

respective PCR amplification efficiencies as the first step. The

cDNA from randomly chosen lean, overweight and obese subjects

were pooled, serially diluted and amplified for the preparation of a

standard curve. The slope of the standard curve was then used for

calculating PCR amplification efficiency according to the

expression: E = 21+10(21/slope). Table 2 lists the amplification

efficiency for each of the candidate HKG that ranged from 90–

100%. Next, Genorm, Normfinder and Bestkeeper algorithms

were employed to establish the expression stability of candidate

genes for the sample sizes of n = 12 and n = 33. Genorm algorithm

operates on the assumption that the ratio of two ideal reference

genes should be constant under different experimental conditions.

In contrast, Normfinder algorithm uses a model-based approach

for identifying the most stable genes based on least inter- and intra-

group expression variations. Bestkeeper identifies the most stable

genes based on the coefficient of correlation to the bestkeeper

index, which is generated by the geometric mean of the Ct values

of best candidate genes under study.

Genorm Analysis
Comparison of the raw non-normalized quantitative data using

genorm revealed that most candidate HKGs exhibited expression

stability (M) values below 0.5 for both sample sizes, suggesting that

all of the 9 genes under study had stable expression. However,

successive elimination of the least stable genes based on highest M-

values led to the identification of CYCA and RPL27 as the most

stable genes for n = 12 (Figure 1A). In contrast, GAPDH and CYCA

turned out to be the most stable genes when n = 33 was considered

(Figure 1B), suggesting that Genorm analysis is sensitive to sample

size. Indeed, the ranking of genes was different when either n = 12

or n = 33 was used for analysis (Figure 1A, Figure 1B), although for

both sample sizes RPL27, CYCA, ACTB and GAPDH exhibited

lowest M-values and hence the best expression stability.

In addition, Genorm calculated the number of optimal

reference genes to be used for the derivation of a normalization

factor (NF). With the pairwise variation calculated between two

sequential NFs (NFn and NFn+1), V2/3 exhibited the highest V-

value below the cut-off value of 0.15 for both sample sizes

(V = 0.084 for n = 12 and V = 0.097 for n = 33), indicating that use

of 2 genes for normalization is necessary, whereas addition of a

third gene is optional (Figure 1C, Figure 1D).

Normfinder Analysis
In contrast to Genorm, Normfinder identified CYCA and ACTB as

the genes with lowest S-values and hence the least variation index for

n = 12, whereas RPL27 and GAPDH had the lowest S-values for

n = 33 (Table 3). However, comparison of the inter- and intra-group

variation among lean, overweight and obese subjects revealed

RPL27, CYCA and GAPDH to be the genes exhibiting lowest

variation and hence highest stability for both sample sizes of n = 12

(Figure 2A) and n = 33 (Figure 2B). Since Genorm and Normfinder

utilize different approaches for identifying stable genes, the observed

differences in rankings between these two algorithms would be

expected. However, considering that both assumptions are valid, a

correlation analysis between M-values (Genorm) and S-values

(Normfinder) for each candidate HKG was conducted such that

most stable genes common to both algorithms could be identified.

Indeed, CYCA, RPL27, ACTB and GAPDH clustered very closely on

the correlation graph for both sample sizes of n = 12 (Figure 3A) and

n = 33 (Figure 3B), thereby representing the most stable genes

common to both Genorm and Normfinder.

Bestkeeper Analysis
In order to qualify the observations common to Genorm and

Normfinder, an independent approach used by the Bestkeeper

algorithm was employed. Interestingly, for both sample sizes,

CYCA, GAPDH, RPL27 and ACTB exhibited higher coefficient of

correlation (r) to the bestkeeper index, lower coefficient of variance

(CV) and standard deviation (SD), pointing towards their

expression stability (Table 4). Although POLR2A and B2M

Table 1. Clinical characteristics of the subjects in the cohort.

Clinical
characteristics Lean (n = 9)

Overweight
(n = 18) Obese (n = 8)

Body mass
index (kg/m2)

23.8 6 0.5c 26.6 6 0.2b 32.5 6 0.6a

Waist circumference
(cm)

93.0 61.6b 100.0 61.6b 114.3 6 2.7a

Age (years) 62 6 3.8 60 6 2.7 59.4 6 3.5

SBP (mmHg) 131.8 6 9.03 125.8 6 3.2 125.1 6 3.06

DBP (mmHg) 68 6 2.9 72.3 6 2.1 72.4 6 2.0

MAP (mmHg) 89.3 6 2.8 90.1 6 2.4 90.0 6 1.6

FPG (mM) 6.4 6 0.8 6.3 6 0.5 5.8 6 0.33

Total-cholesterol (mM) 4.1 6 0.36 3.8 6 0.18 3.7 6 0.4

LDL-cholesterol (mM) 2.3 6 0.3 2.1 6 0.16 1.8 6 0.17

HDL-cholestreol (mM) 1.3 6 0.2 1.1 6 0.06 1.1 6 0.09

Triglycerides (mM) 1.4 6 0.16 1.5 6 0.17 1.9 6 0.20

Superscripts represent statistically significant differences (P#0.05) determined
using one-way ANOVA and Tukey’s post-hoc analysis. SBP = systolic blood
pressure, DBP = diastolic blood pressure, MAP = mean arterial pressure, FPG =
fasting plasma glucose.
doi:10.1371/journal.pone.0032265.t001
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exhibited higher r-values, they were not considered stable due to

their higher CV- and SD-values (Table 4).

Impactofclinicalcharacteristicsofthepatients. Outof the

3 algorithms, only Normfinder is capable of determining the stability

of candidate reference genes based on the sample type. Thus, we re-

assessed the stability of the candidate genes using Normfinder after

dividing thesubjects intovariouscategoriesbasedontheirdiseaseand

medication status using n = 33. As shown in Table 5, CYCA, GAPDH

and RPL27 were invariably identified as the most stable genes in our

cohortbasedontheir smoking,PVD,diabetes,hypertension,MSand

medication status. Indeed, these data support our conclusion that a

combination of 2 genes out of CYCA, GAPDH and RPL27 would

represent themoststablereferencegenesacrossavarietyofconditions

for studies involving human EAT.

Table 2. Candidate reference genes with respective symbol, accession number, name, primer sequences and efficiency of
amplification (E).

Gene Symbol (Accession
Number) Gene Name Primer Sequence (59-39) E (%)

RPLPO (NM_001002) Ribosomal protein large P0
F: GGATTACACCTTCCCACTTGCT
R: GCCACAAAGGCAGATGGATCA

92

RPL27 (NM_000988) Ribosomal protein L27
F: GTGAAAGTGTATAACTACAATCACC
R: TCAAACTTGACCTTGGCCT

91

HPRT (NM_000194)
Hypoxanthine phosphoribosyl-
transferase 1

F: ACCCCACGAAGTGTTGGATA
R: AAGCAGATGGCCACAGAACT

91

B2M (NM_004048) Beta-2 microglobulin
F: GCTATCCAGCGTACTCCAAAG
R: CACACGGCAGGCATACTC

99

ACTB (NM_001101) Beta-actin
F: CATCCACGAAACTACCTTCAACTC
R: GCAATGATCTTGATCTTCATTGTG

95

18S (NR_003286) 18S ribosomal RNA
F: CAGCCACCCGAGATTGAGCA
R: TAGTAGCGACGGGCGGTGTG

99

POLR2A (NM_000937) RNA polymerase 2A
F: CTTCACGGTGCTGGGCATT
R: GTGCGGCTGCTTCCATAA

95

CYCA/PPIA (NM_021130) Peptidylprolyl isomerase A
F: ATCCTAGAGGTGGCGGATTT
R: CACTCAGGTCTGAGCCACAA

90

GAPDH (NM_002046)
Glycerladehyde 3-phosphate
dehydrogenase

F: ATGTTCGTCATGGGTGTGAA
R: GGTGCTAAGCAGTTGGTGGT

97

doi:10.1371/journal.pone.0032265.t002

Figure 1. Validation of candidate genes using Genorm. Genorm M-values of the candidate genes for (A) n = 12 and (B) n = 33. Pairwise
variation (V-values) of the candidate genes for (C) n = 12 and (D) n = 33. *represents the optimal number of reference genes required for the
calculation of normalization factor.
doi:10.1371/journal.pone.0032265.g001
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Discussion

Relative quantification of gene expression remains the method of

choice, however its accuracy and reliability is critically dependent

upon the choice of endogenous control or HKG [21]. While the use

of an endogenous control is required for the correction of non-

biological and experimental variation, a non-optimal endogenous

control can either introduce pseudo-variation or mask the real

biological variation leading to misinterpretation of data. Thus, it is

essential to use an optimal reference gene for relative quantification.

However, there is no ‘‘ideal reference gene’’ that could qualify the

‘‘one fits all’’ scenario, since most of the commonly used reference

genes have been reported to be sensitive towards the experimental

conditions and system under investigation [14,15,16]. Thus, it is

advised to systematically validate the reference genes prior to their

use for new experimental systems. In view of this, several algorithms

designed to identify the most stable genes were developed [22]. We

have used 3 of these very popular approaches, namely: Genorm,

Normfinder and Bestkeeper to compare and validate a set of chosen

HKGs, such that optimal reference gene/s could be identified to be

used in the relative quantification studies involving human EAT. An

ideal approach would be to perform a genome-wide survey of the

human EAT, in order to identify the potentially stable HKGs, prior

to implementing the validation process. However, due to the

complexity and expensive nature of this approach, we restricted

ourselves to the validation of a set of HKGs that are commonly used

for studies involving EAT depots. In addition, considering the

practicality of the validation process for each new experimental set

up, we sought to identify the effect of sample size on the validation of

HKGs. We randomly selected n = 4 from each of the lean,

overweight and obese group of subjects from our cohort and created

two sample sizes of n = 12 and n = 33 that were followed separately

during the validation process.

Genorm algorithm uses a multiple pairwise comparison ap-

proach, where the expression stability (M) of a given gene is

calculated as the mean standard deviation of the log-transformed

expression ratios across samples relative to other reference genes

remaining in the gene panel. This is followed by stepwise exclusion of

Figure 2. Validation of candidate genes using Normfinder algorithm. Inter- and intra-group variation of each candidate gene for (A) n = 12
and (B) n = 33. Columns represent the inter-group variation, whereas the error bars represent the intra-group variation for each candidate gene.
doi:10.1371/journal.pone.0032265.g002

Table 3. Gene stability (S) values calculated by Normfinder.

Candidate Genes S-values (n = 12) S-values (n = 33)

CYCA 0.053 0.044

ACTB 0.061 0.044

RPL27 0.063 0.037

GAPDH 0.066 0.037

HPRT 0.102 0.071

POLR2A 0.108 0.087

B2M 0.109 0.055

18S 0.129 0.092

RPLPO 0.147 0.075

doi:10.1371/journal.pone.0032265.t003
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individual gene with the highest M-value (i.e. the least stable gene)

from the panel until reaching the last two genes with the smallest M-

values (i.e. the most stable genes) [23]. Hellemens et al recommend

using M#0.5 for identifying most stable genes [24]. In addition,

Vandesompele et al. recognized the error that is introduced when

using a single HKG for normalization. Thus, in their landmark

paper they introduced a mathematical approach to determine the

optimal number of genes required for the calculation of a reliable NF

[23]. Genorm uses this approach to calculate pairwise variation (V)

between two sequential NFs i.e. NFn and NFn+1, until the variation

drops below the recommended threshold of 0.15. Below this

threshold, a larger v-value would indicate that the added gene has a

significant effect and should be included for the calculation of a

reliable NF. Using these parameters, Genorm identified that 2 most

stable HKGs would be required for the calculation of a NF for both

sample sizes. CYCA and RPL27 were recognized as the most stable

genes for a smaller sample size (n = 12), whereas GAPDH and CYCA

were identified as the most stable genes for the larger sample size

(n = 33). It is interesting to note that in each case, CYCA, RPL27,

GAPDH and ACTB were identified as the top 4 stable genes. Ling et

al. have previously reported altered expression stability/rankings of

candidate genes (with Genorm analysis) in different sample subsets

of Drosophila brains modeling aging related neurodegeneration,

even when the samples had similar tissue composition [25]. Ling et

al. thus concluded that expression stability of candidate HKGs is

sample- and analysis-specific. Since Genorm computes its M-values

based on expression ratio of candidate genes (multiple pair-wise

comparisons), it is independent of variation in the amount of starting

material as well as of the normal distribution of data. However, it

does not correct for inter-group variation that is introduced when

working with heterogeneous populations. As mentioned before, we

begun with randomly selected (n = 4) subjects for each category of

lean, overweight and obese subjects for n = 12 analysis. Whereas

additional lean (n = 5), overweight (n = 12) and obese (n = 4) subjects

were used for subsequent analysis of n = 33. It is likely that

expression variation within each group of subjects could have led to

different gene rankings for each sample size in our study.

The issue of intra- and inter-group variation and its impact on

reference gene expression was addressed by Anderson et al [26].

They developed a model-based approach known as Normfinder to

identify candidate reference genes with least inter- and intra-

group variation. Thus, a stable reference gene according to

Normfinder would have an inter-group variation close to zero with

least intra-group variation. Interestingly, CYCA, GAPDH and

Table 5. Identification of most stable genes based on the
disease and medication status of the subjects using
Normfinder.

Condition Best gene S-values

Disease status

Smoking CYCA 0.029

Peripheral vascular disease GAPDH 0.042

Hypertension GAPDH 0.041

Diabetes RPL27 0.048

Metabolic syndrome* RPL27 0.032

Medication status

Beta-blockers RPL27 0.022

Angiotensin converting enzyme- inhibitors GAPDH 0.025

Angiotensin-receptor blockers GAPDH 0.023

Oral hypoglycemics RPL27 0.054

*Information related to metabolic syndrome was available for n = 30.
doi:10.1371/journal.pone.0032265.t005

Figure 3. Determination of the stable genes common to both Genorm and Normfinder algorithms. Correlation analysis between M-
values (Genorm) and S-values (Normfinder) representing the expression stability of each candidate gene for (A) n = 12 and (B) n = 33. The r-value
signifies the coefficient of correlation. A P#0.05 was considered to be significant.
doi:10.1371/journal.pone.0032265.g003

Table 4. Coefficient of correlation (r), coefficient of variation
(CV) and standard deviation (SD) in the Ct values of each
candidate gene calculated by the Bestkeeper algorithm for
n = 12 and n = 33.

Candidate Genes N = 12 N = 33

R CV SD r CV SD

POLR2A 0.973 2.04 0.55 0.843 2.13 0.58

CYCA 0.966 0.97 0.22 0.845 1.40 0.32

GAPDH 0.916 1.72 0.40 0.931 1.67 0.39

ACTB 0.912 1.88 0.39 0.878 1.84 0.39

RPL27 0.897 1.58 0.35 0.853 1.42 0.32

B2M 0.858 2.23 0.44 0.902 2.26 0.45

HPRT 0.813 1.47 0.48 0.809 1.34 0.44

18S 0.701 1.96 0.33 0.486 1.84 0.32

RPLPO 0.687 1.97 0.41 0.742 1.82 0.38

doi:10.1371/journal.pone.0032265.t004
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RPL27 were identified as the genes exhibiting least inter- and

intra-group variation for both sample sizes. However, the gene

rankings were different between Genorm and Normfinder.

Considering the different approaches used by Genorm and

Normfinder, it is expected that when two genes would exhibit

higher expression variation across samples/groups they would be

ranked lower with Normfinder even if their expression ratios do

not change, thereby receiving a better M-value with Genorm.

Since both of these approaches use valid assumptions, we

performed a correlation analysis to identify best HKGs that would

be common to both algorithms. Once again, CYCA, RPL27, ACTB

and GAPDH were identified as the best 4 genes clustering very

close on the correlation graph.

In contrast to Genorm and Normfinder, Bestkeeper analysis

chooses stable genes based on the low variation of expression

within the samples of tissue under study [27]. Bestkeeper calculates

the coefficient of correlation (r-values) between each candidate

gene and the bestkeeper index, which represents the geometric

mean of best candidate genes. Thus, a higher r-value would

correspond to stable expression of the candidate gene in the

chosen experimental set up. In addition, Bestkeeper calculates

standard deviation (SD) and coefficient of variation (CV) among

Ct values across samples that help to identify the stability of a

candidate gene. It is advised that a gene with SD value ,1, low

CV and higher r value would have stable expression across the

tested set of samples. All of the 9 tested genes exhibited SD values

,1, qualifying them as stable genes. However, CYCA, GAPDH,

RPL27 and ACTB were considered as the most stable genes due to

their higher r- and lower CV-values for both sample sizes. In

addition, when the data was re-analyzed using the disease and

medication status of patients in our cohort, CYCA, GAPDH and

RPL27 turned out to be the most stable genes out of a pool of 9

otherwise stable genes (as pointed by the Genorm M-values and

Bestkeeper SD values).

In conclusion, CYCA, GAPDH and RPL27 were identified as the

most stable reference genes common to Genorm, Normfinder and

Bestkeeper algorithms for studies involving human EAT, not only in

context of obesity but also under a variety of other conditions.

Indeed, a combination of 2 genes out of these 3 genes would

contribute to enhanced robustness of relative quantification analysis

thereby impacting our current and future understanding of the

epicardial fat depot in humans.

Methods

Ethics Statement
The study was approved by the ethics committee of the Institut

Universitaire de Cardiologie et de Pneumologie de Québec. A

written informed consent was obtained from all participants.

Samples
EAT corresponds to the adipose depot in direct contact with the

heart located between the myocardium and the visceral pericardium.

EAT samples were collected from 33 patients undergoing CABG at

the Institut Universitaire de Cardiologie et de Pneumologie de

Québec, QC, Canada. The patients were divided into lean (n = 9,

BMI,25.0), overweight (n = 16; BMI.25.0–30.0) and obese (n = 8;

BMI.30.0) based on the BMI criteria used by the World Health

Organization. The samples were collected in liquid nitrogen during

the CABG procedure and stored at 280uC until further analysis.

Selection of Reference genes
Candidate reference genes commonly used for the data normal-

ization in the studies involving epicardial and other adipose tissues

were selected for validation. These genes included: 18S [7,8,28,29],

B2M [30,31], CYCA [32,33,34], HPRT [35], GAPDH [36,37,38,39],

ACTB [10,40,41], RPLPO [42], RPL27 [43,44] and POLR2A

[45,46,47].

RNA extraction, reverse transcription and Quantitative
PCR

Total RNA was isolated from 100 mg of tissue using the RNeasy

Lipid Tissue Mini Kit (QIAGEN, Mississauga, Ontario) according to

manufacturer’s instructions. Purity of total RNA was determined as

260/280 nm absorbance ratio with expected values between 1.8–2.0

using a Multiskan Spectrum (Thermo Scientific, Milford, MA, USA).

In addition, RNA integrity of randomly selected samples (n = 12) was

assessed using the Bio-Rad Experion (Bio-Rad Laboratories, ON,

Canada). Five hundred ng of extracted total RNA was reverse

transcribed using Expand Reverse Transcriptase (Roche Diagnos-

tics, Montreal, QC, Canada) according to the manufacturer’s

instructions. The cDNA was diluted 1:20 in DNase-free water before

using for quantification by real-time quantitative PCR (qPCR). The

real-time PCR mixture was prepared using SYBRH Green

JumpStartTM Taq ReadyMixTM (#S5193, Sigma Aldrich, USA)

according to the manufacturer’s instructions. The primers for qPCR

were designed using AlleleID (PREMIER Biosoft International,

USA) and synthesized commercially (Invitrogen, USA). All primers

wereconfirmedusingtheNCBIBlast toolagainstallavailablemRNA

sequences toensure specificity.Thesequence foreachsetofprimers is

given inTable2.TheqPCRwasperformed ina384-well plate format

using the ABI-7900 HT Fast Real-time system (Applied Biosystems,

USA). At the end of each run, melting curve analysis was performed

andafewrepresentativesampleswererunonagarosegel toensure the

specificity of the amplification. All samples were amplified in

duplicates from the same RNA preparation and the mean values

were used for further analysis.

Determination of reference gene expression stability
To assess the stability of candidate reference genes, 3 commonly

used approaches Genorm, Normfinder and Bestkeeper algorithms

were utilized. Genormplus was downloaded as part of the Qbaseplus

software available from http://medgen.ugent.be/̃jvdesomp/

genorm/. Normfinder was downloaded and used as an excel applet

from http://www.mdl.dk/publicationsnormfinder.htm. In addi-

tion, the Bestkeeper algorithm was downloaded from http://www.

gene-quantification.de/bestkeeper.html and used as an excel macro

according to the developers instructions.

Statistical analysis
Clinical characteristics of patients were compared among

various groups using one-way ANOVA followed by Tukey’s post-

hoc analysis. Differences exhibiting a P#0.05 were considered

significant. Pearson’s correlation analysis was used to determine

the association between gene rankings obtained by Genorm and

Normfinder. All statistical analysis was performed using Graphpad

prism 5.0 software, La Jolla, CA, USA.
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