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The ketogenic diet (KGD) has been recognized as an effective treatment for individuals with
glucose transporter 1 (GLUT1) and pyruvate dehydrogenase (PDH) deficiencies as well as
with epilepsy. More recently, its use has been advocated in a number of neurological dis-
orders prompting a newfound interest in its possible therapeutic use in autism spectrum
disorders (ASD). One study and one case report indicated that children with ASD treated
with a KGD showed decreased seizure frequencies and exhibited behavioral improvements
(i.e., improved learning abilities and social skills). The KGD could benefit individuals with
ASD affected with epileptic episodes as well as those with either PDH or mild respiratory
chain (RC) complex deficiencies. Given that the mechanism of action of the KGD is not
fully understood, caution should be exercised in ASD cases lacking a careful biochemical
and metabolic characterization to avoid deleterious side effects or refractory outcomes.
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oxidative stress

BIOCHEMISTRY OF THE KGD
The ketogenic diet (KGD) is a nutritional approach constituted
by high-fat content with adequate protein amount for growth but
insufficient levels of carbohydrates for metabolic needs (1), thus
forcing the body to primarily use fat as a fuel source. The original
KGD was designed as 4:1 lipid:non-lipid (carbohydrate plus pro-
tein) ratio with 80% fat, 15% protein, and 5% carbohydrate. Most
of the fat is provided as long-chain triglycerides, composing ~80%
of the estimated caloric dietary requirement (2). To date, several
modifications to the original KGD have been introduced such as
lowering the lipid:non-lipid ratio (3) and decreasing the caloric
intake from fat (~60–70%) with either no restriction in calorie
amount with unlimited protein and fat intake (modified Atkins
diet) (4, 5), or with fat provided as triglycerides esterified with
medium-chain fatty acids (FA) (to overcome deficits in carnitine
metabolism; medium-chain triglyceride diet) (6).

The hormonal changes associated with a KGD include changes
in circulating insulin (due to insulin reduction in response to
decreasing plasma glucose) and/or leptin (7–9), thus limiting glu-
cose utilization. Under normal conditions, FA mobilized from
adipose tissue are catabolized to acetyl coenzyme A (CoA) via
β-oxidation, and then oxidized to CO2 and H2O in the Krebs’
cycle. However, when an imbalance is created between the rate of
FA mobilization and the capacity of the Krebs’ cycle to process
acetylCoA (e.g., low-carbohydrate and/or protein diet), the liver
converts the excess of acetylCoA into ketone bodies (KB), namely
acetoacetate (ACA) and d-β-hydroxybutyrate (BHB). A significant
fraction of acetone (~30%), the product of the spontaneous decar-
boxylation of ACA, is found in urine, sweat, and breath (10, 11). KB
are utilized as fuel by peripheral tissues sparing glucose and muscle
wasting. They generate a comparable amount of energy to protein
or carbohydrates (2.7 vs. 4 kcal/g) and, unlike FA, KB can cross the
blood–brain barrier (12) constituting the main fuel sources for

the brain during fasting periods (13). Most ATP from BHB is via
Complex I (70–80%), with the rest via Complex II (14). The low-
carbohydrate intake forces the body to sustain systemic glycemia by
hepatic gluconeogenesis from non-carbohydrate precursors (e.g.,
lactate, glucogenic amino acids, and glycerol).

At the center of intermediary metabolism reside mitochondria.
These dynamic organelles whose morphology, composition, and
function adapt to changes in response to pathological and phys-
iological signals respond to nutritional variations such as those
introduced by KGD. Several reports in the literature document
changes in mitochondrial number or function in a variety of bio-
logical systems, from in vitro to in vivo, when exposed to KGD or
KGD-mimetics (Table 1).

THERAPEUTIC USE OF THE KETOGENIC DIET IN HUMAN
DISEASES
By providing alternative sources of acetylCoA, KGD is the dietary
intervention for inborn genetic disorders in pyruvate dehydroge-
nase (PDH) and glucose transporter 1 (GLUT1) (Table 1), proven
effective also in other metabolic conditions, including phospho-
fructokinase deficiency and glycogenosis type V (McArdle disease)
(37). The KGD has also been investigated for the management
of neurological disorders such as Alzheimer’s and Parkinson’s
diseases (38).

Ketogenic diet has been utilized for >80 years in epilepsy treat-
ment (39, 40) especially in children and adolescents (1, 41) with
reduction in seizure frequencies (2, 42) and improvements in
developmental progress (26).

Evidence supporting the use of the KGD for patients with
intractable epilepsy and respiratory chain (RC) complex defects
has been reported in which the majority of patients responded
with decreased seizure frequencies, regardless of the RC complex
defect or magnitude of deficit (27). The administration of KGD
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Table 1 | Examples extracted from the literature on effects of KGD on mitochondrial function with the potential to benefit ASD symptoms.

Experimental model Diet/treatment KGD-dependent effects Source

OUTCOMES RELATEDTO ENERGY RESERVES AND/OR ENERGY-SENSING PATHWAYS

Rat hippocampus Young rats fed KGD for 9 weeks Increased gene expression of mt genes;

46% increase in mitochondria number with

no changes in citrate synthase or any other

mt enzymatic activity; [PCr]/[Cr] higher (due

to lower [Cr])

Bough et al. (15)

Rat hippocampus Young rats fed KGD for 1 month Decreased (−30%) body weight than

controls; few mt genes overexpressed

Noh et al. (16)

Rat brain Fed HFD for 3 weeks [ATP]/[ADP] increased by 12%; lower [Cr]

with no changes in [PCr]; lower [cAMP] and

[cGMP]

DeVivo et al. (17)

Rat hippocampus Slices from rat hippocampus

(4–7 weeks) with BHB and ACA

each at 0.5 or 1 mM

KB prevented rotenone- and 3NP-dependent

decrease in ATP and decreased

3NP-dependent ROS production

Kim do et al. (18)

Mouse brain Mice (8–10 weeks) treated with

d-BHB or l-BHB via pumps

BHB restored NADH-supported O2

consumption inhibited by MPP+, partly the

one inhibited by rotenone; BHB increased

mtROS. 70–80% ATP from BHB produced

via Complex I, the remaining via Complex II

Tieu et al. (19)

Rats CR-KGD for 7 days Body weight loss, increased brain expression

of IGFR and GLUT3

Cheng et al. (14)

Neuronal human SH–SY5Y cell line FA (C8 or C10) treatment for

1–6 days

Increased citrate synthase and Complex I

activities

Hughes et al. (20)

Rat hippocampus and liver Rats fed with a 6:1 lipid:non-lipid

KGD

Delayed occurrence of epileptic episodes via

mTOR inhibition

McDaniel et al. (21)

OUTCOMES RELATEDTO NEUROLOGICAL SYMPTOMS/BEHAVIOR WITH RC COMPLEX AND/OR PDH DEFICIENCIES

Child with Leigh syndrome KGD Improvement of cerebral lesions by brain

MRI

Wijburg et al. (22)

Individuals with PDH deficiency

(PDHA1 an PDHX mutations)

KGD (lipid:non-lipid 3:1) KGD improved only paroxysmal dysfunction Barnerias et al. (23)

Child, idiopathic PDH deficiency KGD for ~3 years (lipid:non-lipid 3:1

later switched to 2:1)

Seizure free; improvement in hypotonia,

motor development, relationship with

environment; poor weight gain, high

ketonemia

Di Pisa et al. (24)

Children with PDHE1 mutations KGD (varied degrees of

carbohydrate restriction)

Improved longevity and mental development Wexler et al. (25)

Child with PHDX KGD (lipid:non-lipid 4:1, later

switched to 3:1 plus MCT oil)

Weight gain, decreased seizure episodes,

improved sociability and activity

El-Gharbawy et al. (26)

Children with intractable epilepsy

with ETC defects

Age (mean) 45 months, KGD (4:1

lipid:non-lipid) for (mean) 18 months

Eleven of 14 patients decreased seizure

frequency by 50–90%; 8 ceased or lowered

antiepileptic medications; 8 showed

improved cognitive and behavioral functions

Kang et al. (27)

OUTCOMES RELATEDTO MITOCHONDRIAL ANTIOXIDANT DEFENSES AND ROS

Mouse hippocampus Young mice fed a 6:1 lipid:non-lipid

KGD for 10–12 d

Decreased mtROS; increases in UCP

expression

Sullivan et al. (28)

(Continued)
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Table 1 | Continued

Experimental model Diet/treatment KGD-dependent effects Source

Rat hippocampus Adolescent rats, KGD (78% lipid,

0.76% carbs) for 1, 3 days or 1,

3 weeks

KGD-induced initial mild oxidative stress,

activation of Nrf2 pathway

Milder et al. (29)

Rat cortex, cerebellum, and

hippocampus

Adolescent rats fed with KGD or

BHB for 3 weeks

Increased GPX activity and [GSH] Ziegler et al. (30),

Jarrett et al. (31)

Rat neocortical neurons Neurons exposed to BHB in vitro Decreased Glu-mediated excitotoxicity

mtROS production via increased NADH

oxidation

Maalouf et al. (32)

OUTCOMES RELATEDTO MITOCHONDRIA-DERIVED NEUROTRANSMITTER METABOLISM

Mouse forebrain Ketotic mice fed KGD (50% lipids)

for 3 days

Increased GABA and Gln production Yudkoff et al. (33)

Cerebrospinal fluid 26 children with refractory epilepsy

fed KGD for 6 months

Increased [GABA], [taurine], [Ser], and [Gly].

Higher [GABA] (>50–90% seizure reduction)

Dahlin et al. (34)

Zebrafish with PDHE1 mutation,

lower acetylcholine in inner retina

Larvae fed a mix of

lauric/myristic/palmitic acid, and

phosphatidyl choline

KGD rescued vision and prolong survival Maurer et al. (35)

SSDAH mouse model At PND 12 were fed KGD for

20–30 days

Increased mitochondrial number and size;

increased (ATP), no changes in lifespan or

neurological outcomes

Nylen et al. (36)

3-NP, 3-nitropropionic acid; AHA, acetoacetate; BHB, β-hydroxybutyrate; CR-KGD, calorie-restricted ketogenic diet; Cr, creatine; Gln, glutamine; Glu, glutamate; Gly,

glycine; GPX, glutathione peroxidase; FA, fatty acids; HFD, high-fat diet; IGFR, insulin-like growth factor receptor; Mt, mitochondrial; MCT, medium-chain triglycerides;

Nrf2, Nuclear factor-like 2; PCr, phospho-creatine; PND, post-natal day; Ser, serine.

to epileptic patients (37, 39) has been based on the assumption
that KB replace glucose as the major metabolic fuel to the brain,
although the precise molecular steps still remain obscure. It has
been proposed that KB metabolism is not the primary mechanism
of this diet, but rather an outcome of the metabolic shifts that
occur with this treatment (43) and that the anticonvulsant effects
of the KGD could result from an altered gene expression profile
accompanied by cellular adaptation mechanisms (15) needed to
modify the brain to utilize KB over glucose over time (39).

THERAPEUTIC USE OF KGD IN ASD
Autism spectrum disorders (ASD) include a complex neurodevel-
opmental condition characterized by abnormal social interaction,
verbal and non-verbal communication, and limited interest in the
surrounding environment associated with stereotyped and repet-
itive behaviors (44). Limited scientific advances have been made
regarding the causes of ASD, with general agreement that both
genetic and environmental factors contribute to this disorder (44–
47). ASD has been associated to metabolic dysfunction (44, 48)
and autism is a common trait of epilepsy-associated diseases (49),
and syndromes like Landau–Kleffner, Dravet (50, 51), and Rett
(52, 53). Thus, given the beneficial effects of KGD on epilepsy
and increased mitochondrial function, its use has the potential to
ameliorate some of the ASD-associated symptoms.

Beneficial effects of KGD in children with ASD symptoms have
been reported in two independent studies (54, 55). The first study
evaluated the role of KGD on 30 ASD children (54). The John

Radcliffe diet (a modified medium-chain triglyceride diet with
a caloric distribution of 30% in medium-chain triglyceride oil,
30% fresh cream, 11% saturated fat, 19% carbohydrates, and 10%
proteins) was administered for 6 months, with intervals of 4 weeks
interrupted by two diet-free weeks. Of the 30 children, 40% did not
comply or did not tolerate the diet. From the rest, the two children
with the milder autistic behaviors showed the most improve-
ment (as judged by total Childhood Autism Rating Scale score,
concentration and learning abilities, and social behavior and inter-
actions), while the rest displayed mild to moderate improvements.
Interestingly, the beneficial effects of KGD persisted even after ter-
mination of the trial. Six of the children enrolled in this study had
a higher baseline ketonemia with no apparent PDH and/or RC
deficiencies; but it is not clear if any of the other patients under-
went this screening, before and/or after the administration of the
diet in addition to the lack of the inclusion of a control diet before
administering the KGD to the ASD group or during the trial.

The other study (55) reports the administration of a gluten-free
casein-free modified KGD (1.5:1 lipid:non-lipid ratio; medium-
chain and polyunsaturated FA) for 14-months to a 12-year-old
child with ASD and seizures with substantial medical comorbidi-
ties associated with a family history of metabolic and immune dis-
turbances. Due to the improvements in seizure activity, improved
electroencephalogram, cognitive and social skills, language func-
tion, and complete resolution of stereotypies, anticonvulsant med-
ication doses were reduced without worsening of seizures. Of note,
the administration of the diet was accompanied by a wealth of
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medications, a significant weight loss, and transitioning to puberty,
so it is difficult to assess the sole role of the diet with this clinical
background.

In mouse models of ASD [i.e., Rett syndrome (56), BTBR
model (57), and succinate semialdehyde dehydrogenase (SSADH)
deficiency (36)], the use of the KGD has improved behavioral
abnormalities (increased sociability and decreased self-directed
repetitive behavior) and/or decreased the number of seizures,
normalized ataxia, and increased lifespan of mutant mice. How-
ever, while the KGD was originally designed to be administered
under controlled caloric intake (38), most of the mouse studies
have been performed under ad libitum conditions and/or for a
relatively short period [see Ref. (57)]. Moreover, a ketogenic low-
carbohydrate diet does not have a significant metabolic advantage
over a non-ketogenic low-carbohydrate diet as judged by equal
effects in body weight reduction and decreased insulin resistance;
however, the former one was associated with higher inflammatory
risk and increased perception of fatigue (58).

Although the exact molecular mechanisms underlying the
effect of the KGD are still under investigation, several scenarios
are reported below to explore the potential therapeutic effects of
the KGD in ASD.

KGD IN PDH DEFICIENCY
Peripheral blood mononucleated cell (PBMC) from children with
high severity scores for ASD has shown impaired PDH activity
(44). The KGD is recommended as an alternative source of the
acetylCoA in patients (37) with pathogenic mutations in PDH- or
GLUT1-encoding genes (22, 25) leading to amelioration of some
symptoms (59, 60) especially in those with milder phenotypes (25,
61). Thus, the use of the KGD in ASD with PDH deficiencies might
prove to be beneficial.

KGD IN β-OXIDATION DEFECTS
Some patients with ASD have been reported to have defects in
fatty acid β-oxidation evidenced as long-chain acyl dehydroge-
nase deficiency (62) and high concentrations of short or long
acyl-carnitines in plasma (63). Carnitine biosynthesis has been
recently identified as a risk factor for ASD (64). Thus in these
cases, it is advisable to limit the use of a high-fat diet or improve
its safety by switching to short or medium-chain FA, which do not
utilize the carnitine system.

KGD IN MITOCHONDRIAL BIOGENESIS
The KGD might improve mitochondrial function by enhanc-
ing mitochondrial biogenesis in murine models (15, 65). The
medium-chain triglyceride diet (6) has been shown to produce
significant increases in citrate synthase and Complex I activity in
SH–SY5Y neurons (20). However, the increases in mitochondr-
ial mass would need to result in an OXPHOS outcome of ≥30%
[30% as the limit for minor diagnostic criteria of mitochondrial
RC disorder (66)] for that particular tissue, given that each tis-
sue has a different ATP threshold (67). Otherwise the increases
in mass might not be sufficient to rescue the already impaired
ATP production in ASD individuals. Moreover, given the pres-
ence of mitochondrial DNA (mtDNA) deletions in PBMC from
ASD (44, 68, 69), the KGD-driven mitochondrial biogenesis may

result in an enrichment of defective mitochondria due to the
proliferating advantage of damaged or deleted mtDNA over wild-
type (70, 71). Conversely, treatment of cells containing large-scale
mtDNA deletions from a patient with Kearns–Sayre syndrome
with KB shifted the heteroplasmy between and within cells (72).
The observation that KB can distinguish between normal and
respiration-compromised cells suggests that the KB may be useful
in treating patients with heteroplasmic mtDNA disorders (72).

ROLE OF THE KGD IN RC COMPLEX DEFICITS
Children with ASD display an array of mitochondrial dysfunction
(MD) of differing severity (44, 73–75). Electron transport chain
(ETC) deficiencies have been reported in ASD, primarily in Com-
plex I and IV, but also affecting others such as Complex II, III,
and IV (44, 73, 74, 76). The prevalence of seizures (41%) has been
observed to be significantly higher in individuals with ASD and
MD than in the general ASD population (11%) (74), raising the
possibility that epileptic episodes observed in ASD might have a
mitochondrial origin. Indeed, epilepsy is a recurrent feature of
many inherited “classic” mitochondrial disorders, like myoclonic
epilepsy with ragged red fibers, mitochondrial encephalopathy
with lactic acidosis, and stroke-like episodes (77), and Leigh
syndrome (78). In a small study on children with ETC defects
(Table 1), the KGD has been proven to reduce epileptic attacks,
with far better prognosis among children with Complex I deficits
than Complex IV (27). These results are not surprising given that
KGD generates more NADH/FADH2 than glucose (2 vs. 5).

EFFECT OF KGD ON ENERGY-SENSING PATHWAYS ALTERATIONS
Recently, KGD-fed rats showed increased brain expression of
insulin-like growth factor receptor (ILGFR) and neuronal GLUT3
(14). The KGD might have a beneficial effect in some ASD cases
considering that IGFR is important for brain health throughout
life (79–81), and that IGFR and GLUT3 have both been implicated
in ASD (82, 83).

Some energy-sensing molecules and metabolism regulators
(including the mammalian target of rapamycin, mTOR) have been
recently indicated as possible downstream targets of KGD and
may be involved in neuroprotective effects associated to the diet
(84). Defects in the mTOR pathway have been linked to ASD (85–
87). Failure to inhibit mTOR pathway could lead to MD due to
decreased mitophagy (88) resulting in an accumulation of dys-
functional mitochondria as observed in a mouse model of ASD
with phosphatase and tensin homolog on chromosome ten (Pten)
gene haploinsuffciency (89). Indeed, inhibition of mTOR has been
linked to a delay in the occurrence of the epileptic episodes (90)
and KGD-fed rats showed inhibition of the activation of the
mTOR pathway in brain (21), thus representing an appropriate
treatment to control seizures while enhancing the clearance of
defective/damaged mitochondria.

ANTIOXIDANT AND NEUROPROTECTIVE ROLE OF THE KGD
Ketone bodies (without glucose and at concentrations 10-times
higher than physiological ones) inhibit mitochondrial reactive
oxygen species (ROS) production in rat neurocortical neurons by
increasing NADH oxidation following glutamate (Glu) excitotoxi-
city (32). It has been suggested that the production of NADPH via
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oxidation of succinate semialdehyde (SSA) into succinate in the
Glu decarboxylase (GAD)/γ-aminobutyric acid (GABA) pathway
may buffer the redox changes likely to occur in stressful conditions
(91–93). However, other mitochondrial NADPH sources are quan-
titatively more important than SSADH and fatty acid oxidation
produces more mitochondrial ROS than pyruvate oxidation (94).

Thus, the use of KGD could be beneficial in ASD given that
higher rates of mitochondrial ROS production and compromised
cellular antioxidant status (69, 95, 96) have been reported in
peripheral cells from children with ASD (44, 68, 69).

EFFECT OF THE KGD ON GABAergic AND CHOLINERGIC SYSTEMS
DISTURBANCES
The GABA shunt bypasses two steps of the tricarboxylic acid
cycle – the α-ketoglutarate (KG) dehydrogenase complex and
the succinylCoA synthase – for the conversion of KG into suc-
cinate (Figure 1). It involves three enzymes: a GAD, catalyzing the
Glu decarboxylation to GABA, a GABA transaminase, converting
GABA to SSA, and an SSADH, catalyzing the oxidation of SSA to
succinate (97). This metabolic route (the GAD/GABA pathway) is

conserved from bacteria, through yeast and plants, to vertebrates.
In higher eukaryotes, SSA can be reduced to γ-hydroxybutyric
acid (GHB) by an alternative reaction catalyzed by a GHB dehy-
drogenase (98–100). It has been proposed that KGD may limit
the availability of oxaloacetate to aspartate aminotransferase, an
enzyme involved in brain Glu metabolism, resulting in increased
Glu or Gln availability to produce GABA (101). The increased
conversion of Glu to GABA would be potentially beneficial in
ASD (102–105) (Figure 1).

Changes in GABA neurotransmission by KGD might explain
the decrease in seizure frequencies and improved behavior
observed in Rett syndrome (106). Studies in patients with ASD
strongly suggest a dysfunction in the GABAergic system (107–
109). However, changes in other components (including Gly,
taurine, and GABA) cannot be excluded (34). In the case of
SSADH deficiency (SSADH), the KGD may work through resti-
tution of GABAergic neurotransmission (36), although the use of
KGD in SSADHD has been strongly argued until more research
is performed to test its potential detrimental effects in humans
(110). Conversely, ketotic rodents fed on KGD showed no changes

FIGURE 1 | β-hydroxybutyrate and ACA are utilized as fuel molecules in
all mitochondria-containing tissues (except liver). BHB is oxidized to ACA
by β-hydroxybutyrate dehydrogenase at the inner mitochondrial membrane
(arrow 1). ACA acquires the CoA moiety from succinylCoA resulting in
succinate and acetoacetylCoA (ACACoA; arrow 2). ACACoA releases
acetylCoA catalyzed by ACACoA thiolase (arrow 3). AcetylCoA generated from
β-oxidation of fatty acids from the diet and acetylCoA generated by the
catabolism of KB is condensed into citrate in the Krebs cycle. The increased
flux in the right part of this cycle, increases the concentration of
α-ketoglutarate (KG) resulting in increases in the production of Glu via
glutamate dehydrogenase (arrow 5) or a transaminase (not shown). Glu from

these reactions in addition to that formed from the deamination of glutamine
(Gln) via glutaminase (arrow 6) result in the generation of γ-aminobutyric acid
(GABA). The GABA shunt bypasses two steps of the Krebs cycle – the KG
dehydrogenase complex and the succinyl coenzyme A (CoA) synthase – for
the conversion of KG into succinate. It involves three enzymes: a Glu
decarboxylase (GAD; arrow 7), which catalyzes the decarboxylation of
glutamate to GABA, a GABA transaminase (arrow 8), which converts GABA to
succinate semialdehyde (SSA), and an SSA dehydrogenase (arrow 11), which
catalyzes the oxidation of SSA to succinate. SSA can be reduced to
γ-hydroxybutyric acid (GHB) by an alternative reaction catalyzed by either a
hydroxyacid–oxoacid transhydrogenase or SSA reductase (arrows 9, 10).
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in whole brain (GABA) [between brackets= concentrations; (33,
111)]; however, regional (GABA) changes cannot be ruled out
(112), in addition to species-specific differences in the expression
of GABA receptors subtypes (113, 114). Considering that cere-
brospinal fluid from children treated with KGD showed higher
(GABA) (34), it would be of interest to evaluate GABA and amino
acid concentrations in different brain areas in animal models of
ASD fed KGD.

Dysfunction in the cholinergic system has been observed when
PDH deficits are present (115) because a block in this enzyme
decreases (citrate), the precursor of acetylcholine via citrate lyase
(116). Studies in humans and animal models of ASD suggested
that dysfunction of the cholinergic system underlies ASD-related
behavioral symptoms (117–119). Trials conducted on ASD indi-
viduals have shown beneficial effects of galantamine (an acetyl-
cholinesterase inhibitor) in the management of aberrant behav-
iors in children and adolescents with ASD (120–122). Treatment
of BTBR mice with the acetylcholinesterase inhibitor donepezil
hydrochloride improved social preference, social interaction and
decreased cognitive rigidity (123). Thus, a KGD has the potential
to exhibit beneficial effects in individuals with both ASD and PDH
deficiency because the metabolism of KB overcomes the decrease
in (citrate) (124) and that of (acetylcholine).

POTENTIAL SIDE EFFECTS OF KGD IN ASD
Several side effects of KGD have been reported, among them: (a)
limitation in protein, carbohydrate, and other nutrients intake can
result in a lack of weight gain and growth inhibition (42), which
could be detrimental in ASD because of a predisposition for being
underweight (125) and the presence of eating disorders (126).
Thiamine, lipoic acid, and l-carnitine supplementation have been
helpful in selected cases (25). (b) Dyslipidemia from KGD (127,
128) would need to be supervised in ASD patients with β-oxidation
deficits, including carnitine deficiency (64, 129) and, for older
patients, the additional increased risk in heart disease and ath-
erosclerosis (130). These patients should limit their fat intake or
a modified KGD possibly with carnitine and/or coenzyme Q10
supplementation (131), should be used (132). (c) KGD has an
increased risk of systemic ketosis, which may result in lower affin-
ity of hemoglobin for oxygen, resulting in severe outcomes (e.g.,
coma and death) especially in anemic ASD patients (133). (d)
Adverse events experienced by patients with RC complex deficits
and epilepsy, which could be extrapolated to those with ASD,
included symptomatic persistent hypoglycemia, persistent meta-
bolic acidosis, aspiration pneumonia, and pneumonia followed by
respiratory failure (27). (e) Initial fasting and prolonged caloric
restriction can cause acute metabolic decompensation in ASD
patients with metabolic disorders (134). To reduce the adverse
effects of fasting, some studies have omitted the initial fasting
period and substituted it with a gradual increase in calories (135).
(g) Other side effects include constipation, slower growth, kidney
stones, and gastroesophageal reflux (136), although most of them
are treatable and/or preventable.

CONCLUDING REMARKS
More research is necessary to understand the potential therapeu-
tic use of KGD in ASD as discussed at length for SSADHD (110).

More specifically, how this diet may improve mitochondrial func-
tion in ASD and how this putative improvement derived from a
better energy and/or neurotransmitter management may influ-
ence behavioral symptoms. There are concerns about utilizing
KGD in patients with metabolic encephalopathies, with specific
contraindications in pyruvate carboxylase deficiency, fatty acid
oxidation disorders, and Krebs cycle disorders. Thus, given that
the mechanism of action of KGD has not been yet fully under-
stood, even in cases of improved behavioral symptoms, KGD in
ASD might need to be prescribed on a case-by-case basis, upon
careful biochemical characterization and metabolic profiling.
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