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Abstract: The refinement of predicted 3D protein models is crucial in bringing them closer towards
experimental accuracy for further computational studies. Refinement approaches can be divided into
two main stages: The sampling and scoring stages. Sampling strategies, such as the popular Molecular
Dynamics (MD)-based protocols, aim to generate improved 3D models. However, generating 3D
models that are closer to the native structure than the initial model remains challenging, as structural
deviations from the native basin can be encountered due to force-field inaccuracies. Therefore, different
restraint strategies have been applied in order to avoid deviations away from the native structure.
For example, the accurate prediction of local errors and/or contacts in the initial models can be used
to guide restraints. MD-based protocols, using physics-based force fields and smart restraints, have
made significant progress towards a more consistent refinement of 3D models. The scoring stage,
including energy functions and Model Quality Assessment Programs (MQAPs) are also used to
discriminate near-native conformations from non-native conformations. Nevertheless, there are often
very small differences among generated 3D models in refinement pipelines, which makes model
discrimination and selection problematic. For this reason, the identification of the most native-like
conformations remains a major challenge.

Keywords: protein model refinement; tertiary structure prediction; molecular dynamics simulations;
energy functions; model quality estimates; Critical Assessment of techniques for Structure Prediction
(CASP)

1. Introduction

The determination of three-dimensional protein structures at an atomic resolution is the key to
unlocking an understanding of biological functions and the molecular mechanisms of diseases [1,2].
Although the established experimental methods, such as X-ray crystallography [3–7], Nuclear Magnetic
Resonance (NMR) [8,9], and cryo-electron microscopy [9,10], may enable the determination of 3D atom
coordinates at high accuracies, they are far from matching the pace of new genetic data, due to their
high cost and laborious processes in the cloning, expression, and purification stages [11–14]. Accurate
in silico protein modelling is comparatively cheaper and faster than experimental determination
methods, and helps us to bridge the gap between the known sequences and available structures.
Furthermore, in silico modelling is often able to provide detailed structure representations at an atomic
level [1,2,15–20].

In silico prediction of protein structures consists of three main stages, starting with: (1) predicting
3D models by template-based modelling (TBM) and free modelling (FM); continuing with (2) the
assessment of the predicted 3D models; and ending with (3) the refinement of the predicted 3D
models [16,21]. The prediction of 3D models from amino acid sequences has made significant progress
towards the accurate determination of native structures, especially with the use of templates from known
structures of homologous proteins, and the progress has been well-documented in the last 25 years of

Int. J. Mol. Sci. 2019, 20, 2301; doi:10.3390/ijms20092301 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-8124-5381
https://orcid.org/0000-0003-4501-4767
http://www.mdpi.com/1422-0067/20/9/2301?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20092301
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 2301 2 of 20

the CASP experiments [22–27]. In general, 3D modelling can be divided into two broad categories
(in terms of the usage, or not, of a known template structure): TBM and FM [16]. TBM [26,28,29]
methods are able to generate reliable 3D models, based on the available known structures, by copying
the relative atom coordinates from the aligned residues through sequence-structure alignments; such
approaches have been found to be the most successful for tertiary protein structure prediction, by
far [5,18,30–32]. If there is a high similarity between the target sequence and the template from the
protein data bank [33,34], then the predictions are likely to be highly accurate [18,21,30,35]. In addition,
the increasing number of available structures determined by advanced experimental techniques allows
for an increasingly higher coverage of protein structures [36–39].

In the cases where no suitable templates are available for generating predicted 3D models, then
template-free modelling (FM), or ab initio modelling, is used to predict the models by relying on physical,
chemical, and thermodynamic principles [16]. However, the accuracy of the 3D models produced by
FM has often been much lower than those produced by TBM and, historically, FM methods have only
been accurate in modelling small protein structures, up to 100 residues [16]. TBM and FM approaches
may generate hundreds of 3D structure “decoys” in different alternative conformations [16,40].
Model Quality Assessment Programs (MQAPs) have been used to determine the most native-like 3D
model among the decoys, by giving local and global scores, which can be used to estimate model
accuracy [12,41–43].

The accuracy of the predicted 3D models is a critical factor for detailed mechanistic studies, such
as drug design, protein docking, and the prediction of protein function. Furthermore, pharmaceutical
applications often require structures close to experimental levels of accuracy [5,30,32,44–51]. Although
the success of TBM and FM modelling has been observed in the CASP experiments, often the predicted
3D models are not without flaws—particularly those from FM methods—and they may still have some
local and global errors, including: irregular contacts or hydrogen bonds, clashes, and unusual bond
angles and lengths in the predicted 3D models [26,42,52,53]. The errors in the predicted 3D structures
also limit the usage of the models for further studies. The necessity for increasing the accuracy of the
predicted tertiary structures and the correction of the errors described above has led to development of
methods for the refinement of 3D models [5,43,54].

The refinement of 3D models of proteins has emerged as the last milestone of the structure
prediction journey to reach parity with experimental accuracy [55,56]. Refining 3D models often helps
to bring them closer to native structures by modifying the secondary structure units and repacking
sidechains [54]. However, ironically, refinement approaches can also lead to a degradation in the
quality of models. Knowing whether a model has been improved or made worse remains a major
challenge for developers of 3D model refinement methods [57,58]. Consistent beneficial refinement of
predicted 3D models is necessary for many In silico studies, ranging from drug discovery to protein
design [47,50,59–63].

Typically, the refinement of predicted 3D models involves two principal stages: Sampling and
scoring [5,53] (see Figure 1). For successful refinement, firstly, the sampling approaches have to be
able to generate at least some alternative 3D models that are closer to the native structure than the
initial model and, secondly, the generated 3D models must be accurately scored, in order to facilitate
identification of those that are closest to the native structure [5]. The sampling and scoring approaches
can also be applied in an iterative cycle, in order to find a pathway towards a more consistent
refinement. However, both the sampling and scoring of improved models remains elusive, and the
consistent refinement of predicted 3D models has not yet been witnessed in the CASP experiments.
The refinement category itself has seen more limited success in the CASP experiments, compared
with the tertiary structure prediction and quality assessment categories [5,53,54]. However, it must be
emphasised that the refinement of the typical predicted 3D models produced by standard prediction
servers is often much more successful than the refinement of the models selected by the CASP assessors
for the refinement category, as the CASP “refinement targets” may have already been refined during
other modelling pipelines [54,58].
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Figure 1. Flowchart outlining the generalized protocol for the refinement of tertiary structure
models applied by groups during the Critical Assessment of techniques for Structure Prediction
(CASP) experiments.

In the following sections, we will outline the alternative methods used for both sampling and
scoring. We will describe, compare, and contrast the different strategies and discuss the merits and
pitfalls of each approach.

2. Sampling Strategies

Two broad approaches are used in the sampling stage: the fully-automated server-based
programs and the non-server-based, highly central processing unit (CPU)-intensive programs, such
as Molecular Dynamics (MD) simulations (also known as manual/human refinement methods
in CASP) [43,64,65]. The sampling approaches may include the various combinations
of knowledge-based methods [32,41,47,52,64,66–72], Monte Carlo simulations [68–70,73–77],
physics-based potentials [69,70,78–83], and MD simulations [32,43,48,79–93], in order to sample
near-native conformations.

Automated and rapid server-based refinement methods are generally based on side-chain
optimisation and energy minimisation. Server-based approaches are practical, as they are often based
on utilising the knowledge of protein structures, particularly specific interactions between residues
and atoms, and they require less computational effort [43,56–58]. The generation of 3D models with
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automated server-based strategies is often more conservative and risk-averse, compared to the more
computationally-intensive manual approaches, which often utilise MD-based approaches, as seen
in the recent CASP experiments. Furthermore, the more conservative servers performed well in
both CASP8 and CASP9, and the structural deviations among the generated sampled models were
not as great as those observed in sampled models from the more computationally-intensive manual
approaches [56–58,89]). On the other hand, these early conservative servers were not as successful as
the non-server MD-based methods in the cases where the starting models were of poor quality, and
where there was more room for improvement [5,53,64,65,83].

Since CASP10, the non-server-based highly CPU intensive methods, which have mainly relied
upon MD simulations using physics-based force fields, parallel computing on graphics processing units
(GPUs) and/or CPUs, and smart constraints, have become more widely-used to generate sample 3D
models that are closer to the native structures [5,53,64,65,94]. MD simulations also provide important
information about dynamic aspects of the structure [29,32,48,69,80].

A leading MD-based refinement approach, using a physics-based potential, was developed by the
Shaw group [90,91,95] and tested in CASP9. However, they used a simulation time of 100 µs for each
target, which was subsequently found to be unnecessarily long. Furthermore, structural deviations
were also observed due to force-field inaccuracies and the lack of guidance towards the native basin
during MD simulations [48,90,91,95].

In CASP10, the Feig group also developed a physics-based sampling approach using MD
simulations, and managed to refine large proteins with shorter simulation times [32]. The MD-based
protocol from the Feig group made significant progress towards a more consistent refinement with the
usage of an improved force field, the application of C-alpha restraints, and an ensemble averaging
stage under explicit solvent conditions [32,64]. However, the approach used by Feig was still extremely
CPU intensive, requiring 75,000 core hours (12 days on 256 cores) to refine a single 3D model, and
so it was not broadly applicable for the sort of large-scale analysis typically required by servers or
proteomic pipelines [32].

With the growing availability of GPU/CPU computing [55,96], most of the top-performing groups
in CASP12 also used MD-based sampling strategies [48,53,87,96–101]. Nevertheless, the sampling of
alternative refinement models through MD simulations still brings about a high computational cost,
particularly for large protein targets. Additionally, there remains a need for improved force fields to
consistently increase the accuracy beyond that of the starting model, particularly where the starting
model is already of high accuracy [5].

Force field accuracy is an important component of molecular simulations, as the chosen force field
determines how the potential atomic interactions are modelled in molecular systems. The optimal
parameters of force fields used in the simulations are determined from datasets of experimental
structures [5,102]. Recently, popular force fields, such as the Chemistry at Harvard Macromolecular
Mechanics (CHARMM) c22/CMAP [103] and c36 [97] versions and the AMBER ff14SB [99] and
AMBER12SB [104,105] force fields, have been used in different sampling approaches, which included
Monte Carlo and Molecular Dynamics simulations in the refinement pipeline [56,77,94,106]. However,
all force fields are imperfect and cannot yet be relied upon to consistently generate models that are
closer to experimental structures. There is plenty of room for improvement in force field development.
Perhaps the main challenge is the further development of the parameter optimization strategies for the
potential energy functions [32,48,69,78].

Due to the use of imperfect force fields, molecular dynamics simulations also suffer from lack of
guidance for producing sample models that trend towards the native structure [69,78]. The usage of
smart restraints has been a key factor in ensuring that the refinement models do not deviate away from
the native structure [32,48]. However, there is a balance to be made, as the application of restraints
may limit the extent of the refinement sampling; very strong restraints may just allow sampling of
conformations that are close the starting model, instead of allowing a trend towards the native state [48].
Research has shown that the application of restraints is crucial, particularly where the initial model is
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highly accurate. It has also been observed that unrestrained MD simulations quickly drive the initial
models away from the native structure [48,53,78,80,90,107]. Furthermore, the strength of the applied
restraints has been found to be a significant parameter, in terms of increasing the quality of the sampled
models, but it is interesting to note that weaker, rather than stronger, C-alpha restraints have often
performed better [32,48,53,108].

In most cases, the restraints have generally been applied on all C-alphas, but different
kinds of restraints, based on prior knowledge [5,81,109], specific regions [5,81,109,110], and local
quality assessment [5,88,111], have also been applied by groups participating in CASP experiments.
The application of partial restraints can also give the sampling approaches more “wiggle room” to
improve the quality beyond that of the initial models. The determination of which specific parts of a
model are in need of more refinement, based, for example, on local quality estimates, may provide more
reliable guidance for MD simulations [88,111,112]. Based on this principle, our group (the McGuffin
group) has developed a new local quality assessment guided restraint strategy, which we used in
CASP13. The strategy depends on the predicted per-residue accuracy scores produced by ModFOLD7.
The regions of the starting models that are predicted to be close to the native structure are used as
restraints for the MD simulations (Figure 2). Flat-bottom potential widths of 2–4 Å were also applied
by the Feig group in CASP13, as a new restraint strategy which performed better than weak harmonic
positional restraints [94,113]. The new restraint strategies that were applied in CASP13 showed a
promising step towards a more consistent refinement.

The predicted residue–residue contacts have also made significant improvements to protein
structure prediction strategies, particularly during the CASP13 experiment [114,115]. This valuable
information has helped to increase the accuracy of the predicted 3D models. Furthermore, accurate
information regarding predicted pairwise distances might also provide very valuable guidance for a
more consistent refinement.

Sampling Protocols

The refinement sampling strategies, described above, have been developed by expert groups
participating in the CASP experiment and most of the more intensive methods are not straight-forward
to deploy for general biologists. However, many of the groups have also developed web servers and/or
stand-alone tools, many of which are freely available and easily accessible for life scientists who wish
to apply 3D models to understand different molecular systems (see Table 1). Feig [5] has also provided
a thorough review of the MD-based sampling strategies.

PREFMD is a refinement web server based on the successful MD-based strategy tested in CASP11
by the Feig group [85]. The locPREFMD web server, which was also developed by Feig group, aims
at improving the local quality of predicted 3D structures, rather than the overall quality, with the
molecular dynamics simulations using modified force fields, according to the MolProbity score [86].

The Rosetta hybridization refinement protocol, developed by the Baker group, was tested in
CASP11 and CASP12 and performed well [77]. The refinement approach used is dependent on the
accuracy of the starting models (high or low resolution) [77]. The high-resolution protocol consists of
the refinement of the local regions, including the errors. If the starting models are predicted to be far
away from the native state, then the whole structure is refined using the low-resolution protocol [77].

The Seok group has developed their GalaxyRefine method as a web server and its protocol is
based on re-packing side chains and then repeated structural relaxation by short molecular-dynamics
simulations [54,88]. The approach was tested in CASP8, CASP9, and CASP10, and it managed to
improve the local and global quality of the starting models [54]. GalaxyRefineComplex was also
developed in order to refine protein-protein interactions, based on the GalaxyRefine protocol [54,116].

The KoBaMIN refinement web server also employs an efficient protocol, based on the principle of
energy minimisation using a knowledge-based force field [66]. The approach performed well in CASP8,
CASP9, and CASP10, but mostly made conservative changes to the starting models [57,58,66,72].
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The Floudas group developed the Princenton_TIGRESS server, which employs a combination of
various restraint strategies: CYANA in the sampling stage [117], Rosetta Fast Relax relaxation [75],
CHARMM in the short MD stage [84,102], and a machine learning approach in the selection step using
ddFIRE [118], Banch [119], and Rosetta [75,120] energy functions, under implicit-solvent conditions [89].
The web server was subsequently upgraded (Princenton_TIGRESS2.0) with Support Vector Machine
(SVM)-driven classification and enhanced MD stages [56]. The Floudas group methods were among
the top five refinement programs in CASP10 and CASP11 [53,65,89].

The refinement of protein structure models is also possible using the ModRefiner algorithm,
which is based on two main steps [67]: The first step is the refinement of the backbone topology,
starting from C-alpha traces. This step is, then, followed by side-chain addition, using a physics- and
knowledge-based force field [67].

3Drefine is based on the optimisation of hydrogen bonds network with MESHI [121] and
atomic-level energy minimisation using composite physics and a knowledge-based force field [41,122].
The approach was tested in the CASP8 and CASP9 refinement categories, where it ranked among the
top groups. The method uses a relatively conservative approach for sampling models, making very
minor alterations to the backbone. i3Drefine is an iterative version of the 3Drefine refinement protocol,
and is also presented as a web server [41,52,122].

The ReFOLD server, developed by our group, uses a unique hybrid approach consisting of
three stages to refine 3D models and fix the errors identified by ModFOLD6 [112]. The first stage
is based on the optimisation of hydrogen bonds and contacts using i3Drefine [43,52]. The second
stage uses a scalable molecular dynamics simulation of the predicted 3D models with Nanoscale
Molecular Dynamics (NAMD) [123]. In the final stage, ModFOLD6 is also used to evaluate and
score the 3D models generated by the i3Drefine and NAMD protocols by giving predicted local and
global errors [43,52,112,123]. The ReFOLD server was first tested in CASP12 and showed promising
performance as a computationally efficient approach. The amino acid sequence and a 3D model
(in Protein Data Bank (PDB) format) of the target are the only required inputs to refine protein structures
and the method has recently been integrated with the IntFOLD server [124].

The original ReFOLD protocol was relatively novel, in that it used the model quality estimation
method ModFOLD6 for scoring the sampled models, instead of energy functions. The protocol has now
been further developed (ReFOLD2) with the guidance of the local quality assessment score produced
by ModFOLD7 (see Figure 2). The developed approach was also tested in CASP13 and ranked among
the top 10 refinement methods, according to its cumulative Global Distance Test Total Score (GDT-TS)
score [43,112]. The following section discusses the alternative strategies which have been deployed by
groups for scoring sampled models.

Table 1. Publicly-available refinement web servers, based on methods tested in the CASP experiments.

Name URL

PREFMD [85] http://feiglab.org/prefmd

locPREFMD [86] http://feig.bch.msu.edu/web/services/locprefmd/

GalaxyRefine [54] http://galaxy.seoklab.org/refine

KoBaMIN [66] http://csb.stanford.edu/kobamin

Princeton_TIGRESS 2.0 [56] http://atlas.engr.tamu.edu/refinement/

ModRefiner [67] http://zhanglab.ccmb.med.umich.edu/ModRefiner

3DRefine [41,122] http://sysbio.rnet.missouri.edu/3Drefine/

ReFOLD [43] http://www.reading.ac.uk/bioinf/ReFOLD/

FG-MD [110] http://zhanglab.ccmb.med.umich.edu/FG-MD/

http://feiglab.org/prefmd
http://feig.bch.msu.edu/web/services/locprefmd/
http://galaxy.seoklab.org/refine
http://csb.stanford.edu/kobamin
http://atlas.engr.tamu.edu/refinement/
http://zhanglab.ccmb.med.umich.edu/ModRefiner
http://sysbio.rnet.missouri.edu/3Drefine/
http://www.reading.ac.uk/bioinf/ReFOLD/
http://zhanglab.ccmb.med.umich.edu/FG-MD/
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Figure 2. Example of refinement of a CASP13 model by the McGuffin group. The predicted per-residue
error is produced by ModFOLD7 and, then, a new restraint strategy, based on the predicted per-residue
error, is applied during the sampling stage: (A) CASP13 prediction target T0958; (B) top selected
server model (BAKER-ROSETTASERVER_TS2), displayed using the B-factor scheme; (C) the top
selected server model is coloured using an occupancy column, where blue regions indicate restrained
residues and red regions indicate unrestrained residues during the MD simulation; (D) superposition
of the top selected server model (cyan), refined model (magenta), and native structure (green).
T0958: BAKER-ROSETTASERVER_TS2 versus T0958_ReFOLD_8, a GDT_HA improvement from 0.419
to 0.4464.
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3. Scoring Strategies

The MD-based and knowledge-based sampling approaches, described above, generate numerous
3D models in different alternative conformations [83,96]. Therefore, in the next stage of the refinement
process, it is necessary to be able to reliably score the alternative 3D models, in order to select those
that are closer to the native structure than the starting model. However, the generated alternative
models are often very similar to one another, and this represents a challenge for developers of energy
functions and/or quality assessment tools [5,48,54,71,83,88,108,110,125–133].

In Anfinsen’s hypothesis, it is stated that the native state has usually been found at the lowest
Gibbs free energy, and native-like conformations are represented at a lower energy [126,134,135].
In further analysis, the most native-like state was found generally to be at the lowest energy score
comparing to other states, but not always [94].

To score the 3D models sampled by the MD-based approaches utilising CHARMM c36 [97]
and AMBER ff14SB force fields [99], several different energy functions have been tested to select
native-like structures. Energy functions derived from the statistical analysis of known structures
typically have been utilised to recognise native and native-like structures in the refinement; for example,
the DFIRE [118], DDFIRE [118], RW+ [134], and Rosetta energy functions [5,48,108,126,136–138].
The energy scoring methods vary, depending on the choice of the reference state used to statistically
analyse the atomic interactions based on known structures [48,83,108,126,139–148]. The lowest score
produced by the scoring methods correlates with the lowest Root Mean Square Deviation (RMSD)
score, but a consistent selection and a clear correlation is still required [55,94,106,134,149,150].

The distance-scaled, finite-ideal gas reference (DFIRE) [118,151,152] is one of the knowledge-based
statistical potentials used to score native-like structures, using a distance-dependent and pairwise
statistical energy function to find the 3D models closer to the native state. The lowest DFIRE score is
often used to select the most native-like structures from among alternatives 3D models generated by
the MD-based protocols, but it was not better than the final MD structure [48,118,151,152].

Random Walk reference state (RWplus) [134] scoring has also been used to score native-like
structures. The RWplus score is based on a knowledge-based potential, including distance-
and orientation-dependent potentials trained using databases of known structures [55,134].
The performance of the RWplus score was found to be better than the DFIRE score, in terms of
the selection of native-like structures in refinement pipelines [55].

Rosetta energy functions [126] often identify the native-like states at a lower energy than the
non-native structures [74,75,120,137,138,153–155]. Therefore, Rosetta energy function searches are
often performed to discover the lowest energy conformation among the 3D models generated by the
sampling approaches. [156]. The Rosetta energy function was also used to score the 3D models by
the Baker and Feig groups in CASP13 [113,126]. However, energy-based approaches for selecting
native-like conformations have not shown considerable improvement in recent years [126,157].

More recently, MQAPs, such as ProQ [158], ProQ2 [159], SELECTpro [160], and ModFOLD6 [112],
have also been used to identify the most native-like structures, following the sampling stages in the
refinement pipeline [43,72,106]. The MQAP approaches have traditionally been used for selection of
the best models from among those submitted by tertiary structure prediction servers in the CASP
experiments. In this role, they have performed well, in terms of selection of the most native-like
predicted 3D models; furthermore, they are improving in their consistency [42,161–163]. However, such
tools have not reached consistent selection for 3D models generated by refinement pipelines, where
there is often much less variation. The consistent and accurate identification of the most native-like
refinement models is a much harder task for MQAP methods, given the very small differences between
models and, traditionally, MQAPs have not been developed for this specific role.

4. CASP: The Critical Assessment of Techniques for Protein Structure Prediction

Evaluation of predicted protein structures from a wide range of prediction approaches requires
objective blind tests, which are based on unreleased experimental structures [164]. The Critical
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Assessment of Techniques for Protein Structure Prediction (CASP) experiment has fulfilled the need
for such objective testing since 1994. For more than two decades, John Moult and his colleagues have
organised blind prediction experiments, every other year, in order to evaluate different approaches
for various aspects of predicting structures from amino acid sequences [17,25,165]. The assessment
experiment is always carried out by independent assessors and no prediction groups have access to the
experimentally-determined structures for targets, prior to their release into the PDB [23,26,165,166].

4.1. The Refinement Category in CASP Experiments

The refinement category was introduced as an additional prediction category in CASP8, in order
to encourage further improvements to the accuracy of predicted 3D models. The CASP assessors have
typically provided the best predicted 3D models as refinement targets, in order to evaluate whether
or not they can be successfully further improved [57]. Only the refinement of the provided starting
model is requested and teams are discouraged from providing alternative models built from additional
templates. The category aims to further increase in the accuracy of the best-predicted 3D models and
the refinement methods have been able to add value to the prediction process [53,57,58,64,65].

It has been challenging for developers of refinement methods to improve the 3D models provided
in the refinement category of CASP. This is primarily because the best-predicted models that are
chosen as refinement targets may have already been once-refined in their source pipelines. Therefore,
any further improvements to the quality of the provided models are, perhaps, less obvious and so it
becomes an exercise of diminishing returns [57,58]. Moreover, some parts of the provided starting 3D
models may have been based on known structures, particularly TBM predictions, and so the starting
models might already be highly accurate and fairly close enough to the native structures [57,58].
Therefore, any “refining” of the starting models may be more likely to lead to deterioration in model
quality, instead. With regard to the above, it is far harder to improve the quality of the predicted 3D
models generated by TBM, compared to FM targets, as TBM models are often already highly accurate.
In other words, the refinement of provided starting models that are already far away from the native
structure are much easier to improve, and they more likely to improve in any refinement process, as
there is more room for improvement to be made [5,57,58,64,83].

The selection of the CASP targets is also an important factor affecting the success of the refinement
approaches. Small domains and domains that are free of crystal and oligomeric contacts have been
preferred in previous CASP experiments [58]. Nevertheless, it is problematic to identify the target
difficulties and compare performances across CASP refinement datasets [64]. For example, relatively
bigger and oligomeric structures were selected as some of the refinement targets in CASP13, and such
targets were far harder to refine than single small domains provided in previous CASPs.

The assessment criteria of CASP in the refinement category are mainly based on the comparison
of the predicted 3D models with the native structure, utilising a wide range of measurements [64].
The alpha-carbon geometry and the backbone distance of the predicted models with the native structure
are also the major component of the measurements based on superposition, particularly in the Template
Modeling (TM)-Score [167]. Short-range contacts, including side-chain interactions, van der Waals
clashes, and different elements in the structure are also taken into account by using the Ramachandran
map along with the backbone units [57,58]. CASP assessors measure the global quality of predicted
and refined models using the Global Distance Test (GDT) [168,169] (GDT_TS and GDT_HA) scores, and
the Root Mean Square Deviation (RMSD) score, based on C-alpha atom superposition [57,58,167,168].
To measure the local quality of the models, the MolProbity [170] and SphereGrinder [171] (SphGr)
scores have been used. The Local Distance Difference Test (LDDT) [172] score has also been used as a
local and superposition-free measurement since CASP11 [65]. The global and local scores are combined
into a weighted Z-score, in order to rank the models. The Z-score has been upgraded, using a machine
learning algorithm, a Contact Area Difference Score [173] (CAD), and a Quality Control Score [174]
(QCS), to compare performance in CASP12 [53].
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It should be noted that the protein structures are flexible and can be observed in different
conformations. The flexibility of the protein structures is a vital concept to consider, in terms of
their functions; however, flexible regions are often not considered in CASP evaluations [58,175–177].
Although the experimental structures determined by NMR, X-ray crystallography, and cryo-electron
microscopy represent an average conformation, average conformations are not perfect enough to justify
their use in refinement approaches [58,178–181]. Therefore, non-native dependent measurements, such
as the MolProbity score, could be considered more in the Z-score formula. Furthermore, the major
CASP measurements, such as GDT-TS, GDT-HA, and RMS_CA, rely on backbone superposition, but
the rate of the side-chain and local interactions could also be given more emphasis in the formula,
depending on the interactions in the targets [53,57,58,64,65].

The refinement prediction groups in CASP are asked to submit up to five predicted or refined
models, from the best to the worst under time constraints, and the first submitted model is assumed as
the best model chosen by each group [53,57,58,64,65]. Submitting five predictions also enables groups
to test different sampling approaches. In the CASP9 experiment, it was noticed that the prediction
groups often had difficulties in ranking their structures accurately, and there were just a couple of
groups who were able to rank their models better than a random selection [58]. Therefore, CASP
assessors developed a new assessment method, called “cherry-picking”, as a second set of analysis [58].
The cherry-picked analysis considered the overall score as the best model, due to the lack of an accurate
order of submitted models. However, accurate rank order of predictions is an important part of any 3D
model selection process [58]. For example, MD-based approaches generate hundreds of models, so it is
necessary to be able to accurately order the models for practical purposes. This issue highlights the
importance of the scoring stage, but, presently, the CASP assessors do not evaluate the sampling and
scoring methods independently in the refinement category. The need for identifying the best model
was also emphasised in the following CASP experiments [53,58,64,65].

The sampling and scoring stages are different processes, and the best sampling or scoring groups
have not been clearly distinguished in recent CASP experiments [57,58]. If prediction groups were to
be able to submit more models, besides the top five models, then refinement methods could perhaps
be assessed in terms of the sampling and scoring aspects. Such a separation of evaluation may help to
boost the improvement of refinement methods. The relationship between sampling and scoring is
complicated, and a strong correlation has not been found between observed scores and the available
scoring methods [58]. Nevertheless, submitting additional models would bring an additional workload
for CASP predictors and assessors; thus, a more pragmatic strategy may need to be devised.

4.2. Progress with Refinement Strategies

It is noteworthy that, in the last 12 years, significant progress has been witnessed in the refinement
category, since it was introduced in CASP8 [57]. However, initially, the top groups in CASP8 did
not make any measurable improvement in performance in CASP9 [57,58]. It was also reported that
the refinement approaches tested in CASP9 were found to be conservative, in terms of improving
the starting models, and were not successful at correctly ranking the order of the submitted five
models [57,58]. In CASP9, some hints from the assessors about accurate and problematic regions
and the GDT-HA and GDT-TS scores of the starting models were also shared with prediction groups
during the CASP experiment [58], although it is not known how many groups made good use of
this information.

Although the cherry-picking approach was taken into consideration while analysing the
performance of the refinement groups participating in CASP9, significant progress was not observed [58].
The overall score of the refined models was much lower than the starting models in CASP9 [58]. It was
also observed that the conservative strategies were less likely to worsen the starting models than the
more adventurous MD-based strategies. On the other hand, some of the MD-based approaches tested
in CASP9 showed promising performance, in terms of sampling [58].
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In CASP10, the leading groups managed to increase the accuracy of the backbone and side-chain
interactions in most of the refinement targets [64]. However, the overall performance of most of the
groups indicated that they were not able to consistently improve upon the starting models. The groups
using MD-based approaches with access to advanced supercomputer facilities have opened a new epoch
in the refinement of protein structures since CASP10, and they have generally performed much better
than the knowledge-based approaches [64]. Significant energy changes were also observed among
models generated by the more adventurous MD groups in CASP10, and energy scoring appeared
to be more worthwhile information to be utilised by the scoring methods [64]. The top five groups
also managed to improve their methods in CASP11 with the same pace gained in CASP10 [64,65].
Furthermore, the majority of the groups had improved more than half of the refinement targets in
CASP11 [64,65].

While a modest improvement was seen in CASP8 and CASP9, compared to CASP10 [57,58,64],
the progress in the MD-based approaches has led to successive gains in accuracy since CASP10 [65].
The growing trend in the consistency of the refinement of 3D models has been consolidated in CASP11
and CASP12 [53,65]. Although the targets were difficult, the refinement approaches tested in CASP12
have shown a considerable improvement over CASP11 [53]. The diversity of the refinement approaches
in CASP12 is also promising for the future of the refinement, [53,166]. The numbers of targets and
groups have increased dramatically since CASP8, from 12 to 42 targets and from 24 to 39 prediction
groups in CASP12 [53,58,64,65]. In CASP13, many new hybrid refinement protocols emerged, using
new restraint strategies and scoring functions, including energy functions and MQAPs [113]. These
new methods performed well, in terms of increasing the accuracy of initial models, although the
refinement targets were larger and more difficult, compared to previous CASPs.

One of the headline-grabbing groups from CASP13 was DeepMind, with their AlphaFold method
for template-free modelling [182] however, the group did not participate in the refinement category.
The success of the group in the free modelling category was partly due their accurate prediction
of inter-residue distances. These more precise predictions could be used to enhance contact-based
restraints in future refinement strategies.

5. Conclusions

The accuracy of 3D predicted models is a key factor for furthering In silico studies, particularly
where experimental knowledge is scarce. Near-experimental accuracy is often required to properly
understand the functional role of a protein, and the accuracy degree may vary, depending on the
type of the computational application. Building 3D models with TBM and FM methods may not
always be adequate to meet the required accuracy level for some biological applications, due to the
unavailability of a suitable template and modelling errors, including irregular bonds and angles.
Therefore, the refinement of predicted 3D structure is crucial for increasing the accuracy of initial
structures and correction of local errors. Unfortunately, it is still challenging to deliver consistent
refinement of 3D protein models, especially at high resolutions, as there is less room for improving the
already highly-accurate predicted structures. The refinement of predicted 3D models consists of two
independent stages—the sampling and scoring of refined models—and both should be the focus of
future assessments, in order for us to gauge where progress is being made.

In the sampling stage, many different strategies, from rapid automated servers to highly
computationally-intensive MD methods, have been suggested for improving initial structures towards
the native basin. The MD-based sampling strategies have the potential to reach near-experimental
accuracies with improvements in computing power and scoring methods. Unfortunately, the most
successful approaches still require supercomputer-scale resources, which makes them less practical
and may put them out of reach of general biologists.

Although the current force fields perform well, in terms of directing the initial structures towards
the native structure, structural deviations are often encountered in MD simulations, due to imperfections.
A wide range of restraint strategies, based on the knowledge of the native structures, have been applied
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to avoid structural deviations. The partial restraints, particularly based on known structures, may
provide more reliable guidance for protein model refinement towards the native basin, compared to
restraining the whole structure, as the application of restraints on poorly-predicted regions may limit the
scope for refinement. For instance, the local quality assessment scores produced by MQAPs can provide
an alternative approach for determining poorly-predicted regions, which could lead to more focused
refinement, instead of refining or restraining the whole structures [43,77,88,111,112,156,183,184].

There are a few groups in CASP who start from sequences to build 3D models, assess the 3D
models, and finally refine the best predictions. Our group (the McGuffin group) is one of the leading
groups, in terms of producing local quality assessment scores, and our local quality assessment score
is used to guide our short and fast MD-based refinement approach, which we tested in CASP13.
The approach (ReFOLD2) is perhaps the first attempt at using local quality assessment scores to
guide the MD simulation and assess the sampled 3D models. The aim of this approach is to more
consistently refine the predicted 3D models with far less computational effort, by using the guidance
of the predicted per-residue errors.

The accuracy of the scoring functions, including energy functions and MQAPs, is crucial for
successful prediction and refinement. The 3D models generated by the sampling approaches are
structurally very similar and, so, consistently distinguishing the most native-like states from non-native
conformations, using either energy functions or MQAPs, still remains an unsolved problem.

The prediction of protein structures is a step towards computational functional analyses,
but interactions with ligands, ions, and proteins are also important for determining protein functions.
Therefore, ideally, the refinement of 3D models should also include oligomeric states and protein–ligand
complexes. In the real world, proteins are always interacting with various ligands, such as ions,
inhibitors, and peptides. Therefore, the refinement of protein models might still be somewhat artificial,
if they do not also consider more complete molecular systems.
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Abbreviations

NMR Nuclear Magnetic Resonance
CPU Central Processing Unit
GPU graphics processing unit
Cryo-EM cryo-electron microscopy
PDB Protein Data Bank
CASP Critical Assessment of techniques for Structure Prediction
CHARMM Chemistry at Harvard Macromolecular Mechanics
SVM Support Vector Machine
NAMD Nanoscale Molecular Dynamics
LDDT Local Distance Difference Test on All Atoms
TBM Template-Based Modelling
FM Free Modelling
MQAPs Model Quality Assessment Programs
MD Molecular Dynamics
DFIRE Distance-Scaled, Finite-Ideal Gas Reference
DDFIRE Dipolar Distance-Scaled, Ideal Gas Reference
RWplus Random Walk reference state Plus
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GDT-TS Global Distance Test Total Score
GDT_HA Global Distance Test High Accuracy
SphGr SphereGrinder
RMSD Root mean square deviation
TM-Score Template Modeling Score

References

1. McGuffin, L.J. Aligning Sequences to Structures. In Protein Structure Prediction; Humana Press: Totowa, NJ,
USA, 2008; pp. 61–90.

2. McGuffin, L.J. Protein Fold Recognition and Threading. In Computational Structural Biology; WORLD
SCIENTIFIC: Singapore, 2008; pp. 37–60.

3. Perutz, M.F.; Rossmann, M.G.; Cullis, A.F.; Muirhead, H.; Will, G.; North, A.C.T. Structure of Hæmoglobin:
A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis. Nature 1960, 185,
416–422. [CrossRef] [PubMed]

4. Kendrew, J.C.; Bodo, G.; Dintzis, H.M.; Parrish, R.G.; Wyckoff, H.; Phillips, D.C. A Three-Dimensional Model
of the Myoglobin Molecule Obtained by X-Ray Analysis. Nature 1958, 181, 662–666. [CrossRef] [PubMed]

5. Feig, M. Computational protein structure refinement: Almost there, yet still so far to go. Wiley Interdiscip.
Rev. Comput. Mol. Sci. 2017, 7, e1307. [CrossRef]

6. Petsko, G.A.; Ringe, D. Protein Structure and Function; New Science Press: London, UK, 2004;
ISBN 9781405119221.

7. Drenth, J. Principles of Protein X-Ray Crystallography. Springer: Berlin/Heidelberg, Germany, 1999;
ISBN 0387985875.

8. Heinemann, U.; Frevert, J.; Hofman, K.-P.; Illing, G.; Oschkinat, H.; Saenger, W.; Zettl, R. Linking Structural
Biology With Genome Research. In Genomics and Proteomics; Kluwer Academic Publishers: Boston, MA,
USA, 2002; pp. 179–189.

9. Murata, K.; Wolf, M. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules.
Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 324–334. [CrossRef] [PubMed]

10. Jonic, S.; Vénien-Bryan, C. Protein structure determination by electron cryo-microscopy. Curr. Opin.
Pharmacol. 2009, 9, 636–642. [CrossRef] [PubMed]

11. Brocchieri, L.; Karlin, S. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res. 2005, 33,
3390–3400. [CrossRef] [PubMed]

12. Rangwala, H.; Karypis, G. Introduction to Protein Structure Prediction: Methods and Algorithms; Wiley: New
York, NY, USA, 2010; ISBN 9780470470596.

13. Roche, D.B.; Buenavista, M.T.; McGuffin, L.J. Protein Structure Prediction and Structural Annotation of
Proteomes. In Encyclopedia of Biophysics; Roberts, G.C.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 2061–2068.

14. Stoker, H.S. Organic and Biological Chemistry, 6th ed.; White, A., Ed.; Cengage Learning, Brooks/Cole: Boston,
MA, USA, 2013; ISBN 1133103952.

15. Roche, D.B.; Buenavista, M.T.; McGuffin, L.J. FunFOLDQA: A Quality Assessment Tool for Protein-Ligand
Binding Site Residue Predictions. PloS ONE 2012, 7, e38219. [CrossRef] [PubMed]

16. Pavlopoulou, A.; Michalopoulos, I. State-of-the-art bioinformatics protein structure prediction tools (Review).
Int. J. Mol. Med. 2011, 28, 295–310.

17. Moult, J.; Fidelis, K.; Zemla, A.; Hubbard, T. Critical assessment of methods of protein structure prediction
(CASP)-round V. Proteins Struct. Funct. Genet. 2003, 53, 334–339. [CrossRef]

18. Bradley, P.; Misura, K.M.S.; Baker, D. Toward High-Resolution de Novo Structure Prediction for Small
Proteins. Science 2005, 309, 1868–1871. [CrossRef] [PubMed]

19. Zhang, C.; Liu, S.; Zhu, Q.; Zhou, Y. A Knowledge-Based Energy Function for Protein–Ligand, Protein–Protein,
and Protein–DNA Complexes. J. Med. Chem. 2005, 48, 2325–2335. [CrossRef]

20. Ginalski, K.; Grishin, N.V.; Godzik, A.; Rychlewski, L. Practical lessons from protein structure prediction.
Nucleic Acids Res. 2005, 33, 1874–1891. [CrossRef] [PubMed]

21. Lee, J.; Wu, S.; Zhang, Y. Ab Initio Protein Structure Prediction. In From Protein Structure to Function with
Bioinformatics; Springer: Dordrecht, The Netherlands, 2009; pp. 3–25.

http://dx.doi.org/10.1038/185416a0
http://www.ncbi.nlm.nih.gov/pubmed/18990801
http://dx.doi.org/10.1038/181662a0
http://www.ncbi.nlm.nih.gov/pubmed/13517261
http://dx.doi.org/10.1002/wcms.1307
http://dx.doi.org/10.1016/j.bbagen.2017.07.020
http://www.ncbi.nlm.nih.gov/pubmed/28756276
http://dx.doi.org/10.1016/j.coph.2009.04.006
http://www.ncbi.nlm.nih.gov/pubmed/19464952
http://dx.doi.org/10.1093/nar/gki615
http://www.ncbi.nlm.nih.gov/pubmed/15951512
http://dx.doi.org/10.1371/journal.pone.0038219
http://www.ncbi.nlm.nih.gov/pubmed/22666491
http://dx.doi.org/10.1002/prot.10556
http://dx.doi.org/10.1126/science.1113801
http://www.ncbi.nlm.nih.gov/pubmed/16166519
http://dx.doi.org/10.1021/jm049314d
http://dx.doi.org/10.1093/nar/gki327
http://www.ncbi.nlm.nih.gov/pubmed/15805122


Int. J. Mol. Sci. 2019, 20, 2301 14 of 20

22. Moult, J.; Fidelis, K.; Kryshtafovych, A.; Rost, B.; Hubbard, T.; Tramontano, A. Critical assessment of methods
of protein structure prediction—Round VII. Proteins Struct. Funct. Bioinform. 2007, 69, 3–9. [CrossRef]

23. Moult, J.; Fidelis, K.; Kryshtafovych, A.; Schwede, T.; Tramontano, A. Critical assessment of methods of
protein structure prediction: Progress and new directions in round XI. Proteins Struct. Funct. Bioinform. 2016,
84, 4–14. [CrossRef]

24. Moult, J.; Fidelis, K.; Rost, B.; Hubbard, T.; Tramontano, A. Critical assessment of methods of protein structure
prediction (CASP)—Round 6. Proteins Struct. Funct. Bioinform. 2005, 61, 3–7. [CrossRef]

25. Moult, J.; Pedersen, J.T.; Judson, R.; Fidelis, K. A large-scale experiment to assess protein structure prediction
methods. Proteins Struct. Funct. Genet. 1995, 23, ii–iv. [CrossRef]

26. Moult, J. A decade of CASP: Progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin.
Struct. Biol. 2005, 15, 285–289. [CrossRef] [PubMed]

27. Tramontano, A.; Morea, V. Assessment of homology-based predictions in CASP5. Proteins Struct. Funct.
Genet. 2003, 53, 352–368. [CrossRef] [PubMed]

28. Lance, B.K.; Deane, C.M.; Wood, G.R. Exploring the potential of template-based modelling. Bioinformatics
2010, 26, 1849–1856. [CrossRef]

29. Joo, K.; Lee, J.; Lee, S.; Seo, J.-H.; Lee, S.J.; Lee, J. High accuracy template based modeling by global
optimization. Proteins Struct. Funct. Bioinforma. 2007, 69, 83–89. [CrossRef]

30. Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function
prediction. Nat. Protoc. 2010, 5, 725–738. [CrossRef]

31. Šali, A.; Blundell, T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993,
234, 779–815. [CrossRef] [PubMed]

32. Mirjalili, V.; Noyes, K.; Feig, M. Physics-based protein structure refinement through multiple molecular
dynamics trajectories and structure averaging. Proteins Struct. Funct. Bioinform. 2014, 82, 196–207. [CrossRef]
[PubMed]

33. Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F.; Brice, M.D.; Rodgers, J.R.; Kennard, O.;
Shimanouchi, T.; Tasumi, M. The Protein Data Bank. A Computer-Based Archival File for Macromolecular
Structures. Eur. J. Biochem. 1977, 80, 319–324. [CrossRef]

34. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E.
The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [CrossRef]

35. Fischer, D. 3D-SHOTGUN: A novel, cooperative, fold-recognition meta-predictor. Proteins Struct. Funct. Genet.
2003, 51, 434–441. [CrossRef] [PubMed]

36. Montelione, G.T. Structural genomics: An approach to the protein folding problem. Proc. Natl. Acad. Sci. USA
2001, 98, 13488–13489. [CrossRef]

37. Westbrook, J.; Feng, Z.; Chen, L.; Yang, H.; Berman, H.M. The Protein Data Bank and structural genomics.
Nucleic Acids Res. 2003, 31, 489–491. [CrossRef] [PubMed]

38. Gerstein, M.; Edwards, A.; Arrowsmith, C.H.; Montelione, G.T. Structural genomics: Current progress.
Science 2003, 299, 1663. [CrossRef]

39. Baker, D.; Sali, A. Protein structure prediction and structural genomics. Science 2001, 294, 93–96. [CrossRef]
40. Roche, D.B.; Buenavista, M.T.; Tetchner, S.J.; McGuffin, L.J. The IntFOLD server: An integrated web resource

for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction
and ligand binding site prediction. Nucleic Acids Res. 2011, 39, 171–176. [CrossRef] [PubMed]

41. Bhattacharya, D.; Cheng, J. 3Drefine: Consistent protein structure refinement by optimizing hydrogen
bonding network and atomic-level energy minimization. Proteins 2013, 81, 119–131. [CrossRef]

42. McGuffin, L.J.; Buenavista, M.T.; Roche, D.B. The ModFOLD4 server for the quality assessment of 3D protein
models. Nucleic Acids Res. 2013, 41, 1–5. [CrossRef] [PubMed]

43. Shuid, A.N.; Kempster, R.; McGuffin, L.J. ReFOLD: A server for the refinement of 3D protein models guided
by accurate quality estimates. Nucleic Acids Res. 2017, 45, W422–W428. [CrossRef] [PubMed]

44. Brylinski, M.; Skolnick, J. A threading-based method (FINDSITE) for ligand-binding site prediction and
functional annotation. Proc. Natl. Acad. Sci. USA 2008, 105, 129–134. [CrossRef] [PubMed]

45. Bonneau, R.; Tsai, J.; Ruczinski, I.; Baker, D. Functional Inferences from Blind ab Initio Protein Structure
Predictions. J. Struct. Biol. 2001, 134, 186–190. [CrossRef] [PubMed]

46. Wieman, H.; Tøndel, K.; Anderssen, E.; Drabløs, F. Homology-based modelling of targets for rational drug
design. Mini Rev. Med. Chem. 2004, 4, 793–804. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/prot.21767
http://dx.doi.org/10.1002/prot.25064
http://dx.doi.org/10.1002/prot.20716
http://dx.doi.org/10.1002/prot.340230303
http://dx.doi.org/10.1016/j.sbi.2005.05.011
http://www.ncbi.nlm.nih.gov/pubmed/15939584
http://dx.doi.org/10.1002/prot.10543
http://www.ncbi.nlm.nih.gov/pubmed/14579324
http://dx.doi.org/10.1093/bioinformatics/btq294
http://dx.doi.org/10.1002/prot.21628
http://dx.doi.org/10.1038/nprot.2010.5
http://dx.doi.org/10.1006/jmbi.1993.1626
http://www.ncbi.nlm.nih.gov/pubmed/8254673
http://dx.doi.org/10.1002/prot.24336
http://www.ncbi.nlm.nih.gov/pubmed/23737254
http://dx.doi.org/10.1111/j.1432-1033.1977.tb11885.x
http://dx.doi.org/10.1093/nar/28.1.235
http://dx.doi.org/10.1002/prot.10357
http://www.ncbi.nlm.nih.gov/pubmed/12696054
http://dx.doi.org/10.1073/pnas.261549098
http://dx.doi.org/10.1093/nar/gkg068
http://www.ncbi.nlm.nih.gov/pubmed/12520059
http://dx.doi.org/10.1126/science.299.5613.1663a
http://dx.doi.org/10.1126/science.1065659
http://dx.doi.org/10.1093/nar/gkr184
http://www.ncbi.nlm.nih.gov/pubmed/21459847
http://dx.doi.org/10.1002/prot.24167
http://dx.doi.org/10.1093/nar/gkt294
http://www.ncbi.nlm.nih.gov/pubmed/23620298
http://dx.doi.org/10.1093/nar/gkx249
http://www.ncbi.nlm.nih.gov/pubmed/28402475
http://dx.doi.org/10.1073/pnas.0707684105
http://www.ncbi.nlm.nih.gov/pubmed/18165317
http://dx.doi.org/10.1006/jsbi.2000.4370
http://www.ncbi.nlm.nih.gov/pubmed/11551178
http://dx.doi.org/10.2174/1389557043403639
http://www.ncbi.nlm.nih.gov/pubmed/15379646


Int. J. Mol. Sci. 2019, 20, 2301 15 of 20

47. Zhang, Y. Protein structure prediction: When is it useful? Curr. Opin. Struct. Biol. 2009, 19, 145–155.
[CrossRef]

48. Mirjalili, V.; Feig, M. Protein Structure Refinement through Structure Selection and Averaging from Molecular
Dynamics Ensembles. J. Chem. Theory Comput. 2013, 9, 1294–1303. [CrossRef]

49. Laskowski, R.A.; Watson, J.D.; Thornton, J.M. ProFunc: A server for predicting protein function from 3D
structure. Nucleic Acids Res. 2005, 33, W89–W93. [CrossRef]

50. Becker, O.M.; Dhanoa, D.S.; Marantz, Y.; Chen, D.; Shacham, S.; Cheruku, S.; Heifetz, A.; Mohanty, P.;
Fichman, M.; Sharadendu, A.; et al. An Integrated in Silico 3D Model-Driven Discovery of a Novel, Potent,
and Selective Amidosulfonamide 5-HT1A Agonist (PRX-00023) for the Treatment of Anxiety and Depression.
J. Med. Chem. 2006, 49, 3116–3135. [CrossRef]

51. Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Applications to targets and beyond.
Br. J. Pharmacol. 2007, 152, 21–37. [CrossRef]

52. Bhattacharya, D.; Cheng, J. i3Drefine Software for Protein 3D Structure Refinement and Its Assessment in
CASP10. PloS ONE 2013, 8. [CrossRef] [PubMed]

53. Hovan, L.; Oleinikovas, V.; Yalinca, H.; Kryshtafovych, A.; Saladino, G.; Gervasio, F.L. Assessment of the
model refinement category in CASP12. Proteins Struct. Funct. Bioinforma. 2018, 86, 152–167. [CrossRef]

54. Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic
Acids Res. 2013, 41, 384–388. [CrossRef] [PubMed]

55. Heo, L.; Feig, M. What makes it difficult to refine protein models further via molecular dynamics simulations?
Proteins Struct. Funct. Bioinform. 2018, 86, 177–188. [CrossRef]

56. Khoury, G.A.; Smadbeck, J.; Kieslich, C.A.; Koskosidis, A.J.; Guzman, Y.A.; Tamamis, P.; Floudas, C.A.
Princeton_TIGRESS 2.0: High refinement consistency and net gains through support vector machines and
molecular dynamics in double-blind predictions during the CASP11 experiment. Proteins Struct. Funct.
Bioinform. 2017, 85, 1078–1098. [CrossRef] [PubMed]

57. MacCallum, J.L.; Hua, L.; Schnieders, M.J.; Pande, V.S.; Jacobson, M.P.; Dill, K.A. Assessment of the
protein-structure refinement category in CASP8. Proteins Struct. Funct. Bioinform. 2009, 77, 66–80. [CrossRef]

58. MacCallum, J.L.; Pérez, A.; Schnieders, M.J.; Hua, L.; Jacobson, M.P.; Dill, K.A. Assessment of protein
structure refinement in CASP9. Proteins Struct. Funct. Bioinform. 2011, 79, 74–90. [CrossRef]

59. Terashi, G.; Kihara, D. Protein structure model refinement in CASP12 using short and long molecular
dynamics simulations in implicit solvent. Proteins Struct. Funct. Bioinform. 2018, 86, 189–201. [CrossRef]

60. Meiler, J.; Baker, D. Rapid protein fold determination using unassigned NMR data. Proc. Natl. Acad. Sci. USA
2003, 100, 15404–15409. [CrossRef]

61. Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev.
2014, 66, 334–395. [CrossRef] [PubMed]

62. Giorgetti, A.; Raimondo, D.; Miele, A.E.; Tramontano, A. Evaluating the usefulness of protein structure
models for molecular replacement. Bioinformatics 2005, 21, ii72–ii76. [CrossRef] [PubMed]

63. Qian, B.; Raman, S.; Das, R.; Bradley, P.; McCoy, A.J.; Read, R.J.; Baker, D. High-resolution structure prediction
and the crystallographic phase problem. Nature 2007, 450, 259–264. [CrossRef]

64. Nugent, T.; Cozzetto, D.; Jones, D.T. Evaluation of predictions in the CASP10 model refinement category.
Proteins Struct. Funct. Bioinform. 2014, 82, 98–111. [CrossRef] [PubMed]

65. Modi, V.; Dunbrack, R.L. Assessment of refinement of template-based models in CASP11. Proteins 2016,
260–281. [CrossRef]

66. Rodrigues, J.P.G.L.M.; Levitt, M.; Chopra, G. KoBaMIN: A knowledge-based minimization web server for
protein structure refinement. Nucleic Acids Res. 2012, 40, 323–328. [CrossRef] [PubMed]

67. Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step
atomic-level energy minimization. Biophys. J. 2011, 101, 2525–2534. [CrossRef] [PubMed]

68. Misura, K.M.S.S.; Baker, D. Progress and challenges in high-resolution refinement of protein structure models.
Proteins Struct. Funct. Genet. 2005, 59, 15–29. [CrossRef]

69. Jagielska, A.; Wroblewska, L.; Skolnick, J. Protein model refinement using an optimized physics-based
all-atom force field. Proc. Natl. Acad. Sci. USA 2008, 105, 8268–8273. [CrossRef] [PubMed]

70. Lin, M.S.; Head-Gordon, T. Reliable protein structure refinement using a physical energy function. J. Comput.
Chem. 2011, 32, 709–717. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.sbi.2009.02.005
http://dx.doi.org/10.1021/ct300962x
http://dx.doi.org/10.1093/nar/gki414
http://dx.doi.org/10.1021/jm0508641
http://dx.doi.org/10.1038/sj.bjp.0707306
http://dx.doi.org/10.1371/journal.pone.0069648
http://www.ncbi.nlm.nih.gov/pubmed/23894517
http://dx.doi.org/10.1002/prot.25409
http://dx.doi.org/10.1093/nar/gkt458
http://www.ncbi.nlm.nih.gov/pubmed/23737448
http://dx.doi.org/10.1002/prot.25393
http://dx.doi.org/10.1002/prot.25274
http://www.ncbi.nlm.nih.gov/pubmed/28241391
http://dx.doi.org/10.1002/prot.22538
http://dx.doi.org/10.1002/prot.23131
http://dx.doi.org/10.1002/prot.25373
http://dx.doi.org/10.1073/pnas.2434121100
http://dx.doi.org/10.1124/pr.112.007336
http://www.ncbi.nlm.nih.gov/pubmed/24381236
http://dx.doi.org/10.1093/bioinformatics/bti1112
http://www.ncbi.nlm.nih.gov/pubmed/16204129
http://dx.doi.org/10.1038/nature06249
http://dx.doi.org/10.1002/prot.24377
http://www.ncbi.nlm.nih.gov/pubmed/23900810
http://dx.doi.org/10.1002/prot.25048
http://dx.doi.org/10.1093/nar/gks376
http://www.ncbi.nlm.nih.gov/pubmed/22564897
http://dx.doi.org/10.1016/j.bpj.2011.10.024
http://www.ncbi.nlm.nih.gov/pubmed/22098752
http://dx.doi.org/10.1002/prot.20376
http://dx.doi.org/10.1073/pnas.0800054105
http://www.ncbi.nlm.nih.gov/pubmed/18550813
http://dx.doi.org/10.1002/jcc.21664
http://www.ncbi.nlm.nih.gov/pubmed/20925085


Int. J. Mol. Sci. 2019, 20, 2301 16 of 20

71. Lu, H.; Skolnick, J. Application of statistical potentials to protein structure refinement from low resolutionab
initio models. Biopolymers 2003, 70, 575–584. [CrossRef] [PubMed]

72. Chopra, G.; Kalisman, N.; Levitt, M. Consistent refinement of submitted models at CASP using a
knowledge-based potential. Proteins Struct. Funct. Bioinform. 2010, 78, 2668–2678. [CrossRef]

73. Han, R.; Leo-Macias, A.; Zerbino, D.; Bastolla, U.; Contreras-Moreira, B.; Ortiz, A.R. An efficient
conformational sampling method for homology modeling. Proteins Struct. Funct. Bioinform. 2008,
71, 175–188. [CrossRef] [PubMed]

74. Kim, D.E.; Blum, B.; Bradley, P.; Baker, D. Sampling Bottlenecks in De novo Protein Structure Prediction.
J. Mol. Biol. 2009, 393, 249–260. [CrossRef]

75. Leaver-Fay, A.; Tyka, M.; Lewis, S.M.; Lange, O.F.; Thompson, J.; Jacak, R.; Kaufman, K.W.; Renfrew, P.D.;
Smith, C.A.; Sheffler, W.; et al. Rosetta3: An Object-Oriented Software Suite for the Simulation and Design of
Macromolecules. Methods Enzymol. 2011, 487, 545–574.

76. Song, Y.; DiMaio, F.; Wang, R.Y.-R.; Kim, D.; Miles, C.; Brunette, T.; Thompson, J.; Baker, D. High-Resolution
Comparative Modeling with RosettaCM. Structure 2013, 21, 1735–1742. [CrossRef] [PubMed]

77. Ovchinnikov, S.; Park, H.; Kim, D.E.; DiMaio, F.; Baker, D. Protein structure prediction using Rosetta in
CASP12. Proteins Struct. Funct. Bioinform. 2018, 86, 113–121. [CrossRef]

78. Summa, C.M.; Levitt, M. Near-native structure refinement using in vacuo energy minimization. Proc. Natl.
Acad. Sci. USA 2007, 104, 3177–3182. [CrossRef]

79. Fan, H.; Mark, A.E. Refinement of homology-based protein structures by molecular dynamics simulation
techniques. Protein Sci. 2004, 13, 211–220. [CrossRef]

80. Chen, J.; Brooks, C.L. Can molecular dynamics simulations provide high-resolution refinement of protein
structure? Proteins Struct. Funct. Bioinform. 2007, 67, 922–930. [CrossRef]

81. Ishitani, R.; Terada, T.; Shimizu, K. Refinement of comparative models of protein structure by using
multicanonical molecular dynamics simulations. Mol. Simul. 2008, 34, 327–336. [CrossRef]

82. Kannan, S.; Zacharias, M. Application of biasing-potential replica-exchange simulations for loop modeling
and refinement of proteins in explicit solvent. Proteins Struct. Funct. Bioinform. 2010, 78, 2809–2819.
[CrossRef]

83. Gront, D.; Kmiecik, S.; Blaszczyk, M.; Ekonomiuk, D.; Koliński, A. Optimization of protein models. Wiley
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