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ABSTRACT

Although gene fusions have been recognized as im-
portant drivers of cancer for decades, our under-
standing of the prevalence and function of gene fu-
sions has been revolutionized by the rise of next-
generation sequencing, advances in bioinformatics
theory and an increasing capacity for large-scale
computational biology. The computational work on
gene fusions has been vastly diverse, and the
present state of the literature is fragmented. It will
be fruitful to merge three camps of gene fusion
bioinformatics that appear to rarely cross over:
(i) data-intensive computational work characterizing
the molecular biology of gene fusions; (ii) develop-
ment research on fusion detection tools, candidate
fusion prioritization algorithms and dedicated fusion
databases and (iii) clinical research that seeks to
either therapeutically target fusion transcripts and
proteins or leverages advances in detection tools
to perform large-scale surveys of gene fusion land-
scapes in specific cancer types. In this review, we
unify these different––yet highly complementary and
symbiotic––approaches with the view that increased
synergy will catalyze advancements in gene fusion
identification, characterization and significance eval-
uation.

INTRODUCTION

Gene fusions are hybrid genes formed when two previously
independent genes become juxtaposed. The fusion can re-
sult from structural rearrangements like translocations and
deletions, transcription read-through of neighboring genes
(1–3), or the trans- and cis-splicing of pre-mRNAs (4–8)

(Figure 1). Many gene fusions are associated with onco-
genic properties, and often act as driver mutations in a wide
array of cancer types (9,10). Gene fusions commonly ex-
ert their oncogenic influence by either deregulating one of
the involved genes (e.g. by fusing a strong promoter to a
proto-oncogene), forming a fusion protein with oncogenic
functionality (e.g. by causing a constitutive activation of a
tyrosine kinase) or inducing a loss of function (e.g. by trun-
cating a tumor suppressor gene). One estimate states that
translocations and gene fusions are responsible for 20% of
global cancer morbidity (11), largely due to their central
involvement in prostate cancer. Recent bioinformatics ad-
vances have elucidated many aspects of oncogenic gene fu-
sions, from the origin and causative importance of fusion
events, to the structural and regulatory properties of fusion
proteins.

The total number of gene fusions is now estimated to
be 10 000, with over 90% of these being identified in the
past 5 years due to advances in deep-sequencing and fusion
detection algorithms (12). The prevalence of gene fusions
varies widely between cancer types (10): at one extreme,
gene fusions occur in (and frequently drive) 90% of all lym-
phomas, over half of leukemias (13), and one third of soft
tissue tumors (14). In prostate cancer, one specific fusion
(TMPRSS2-ERG) is the most common genetic alteration,
being found in over 50% of patients (15). However, many
recurrent gene fusions occur at low frequencies, such as the
KIF5B-RET fusion, which is present in 1–2% of lung ade-
nocarcinomas (16).

Knowledge of both common and rare gene fusions has
improved numerous aspects of clinical care. For example,
the TMPRSS2-ERG fusion transcript functions as a uri-
nary biomarker for prostate cancer risk and prognosis (17)
and gene fusions are used in the diagnosis of a variety of
cancers (14,18,19). Gene fusions have also been important
in identifying molecular subtypes of cancers (19–21), pa-
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Figure 1. Mechanisms of gene fusion formation. (A) Structural rearrangements of chromosomes, such as translocations, inversions, deletions and in-
sertions, can lead to the formation of gene fusions. These hybrid genes may then be transcribed and translated into fusion transcripts and proteins. (B)
Non-structural rearrangement mechanisms, such as transcription read-through of neighboring genes or splicing of mRNA molecules, are increasingly
recognized as leading to the formation of a large proportion of gene fusions.

tient stratification (22,23), monitoring residual disease post-
treatment (24,25) and predicting relapse (25). Importantly,
fusion transcripts are also promising therapeutic targets
(19,26–28). As an example, the development of drugs that
target the ATP-binding sites (29) and allosteric regions (30)
of the BCR-ABL fusion kinase, a constitutively active ty-
rosine kinase and the driving mutation in chronic myel-
ogenous leukemia, has significantly improved patient out-
come. Similarly, inhibitors of the anaplastic lymphoma ki-
nase (ALK) protein have greatly improved prospects for pa-
tients with EML4-ALK fusion positive non-small cell lung
tumors (31).

Although fusions have been recognized drivers of cancer
for over 30 years, recent bioinformatics studies have sub-
stantially enriched our knowledge of fusions. However, the
computational gene fusion literature is dispersed––for ex-
ample, many fusion landscape studies make little reference
to bioinformatics surveys of gene fusion molecular biology,
which could help elucidate the function of novel fusions
and set them into the context of other known oncogenic fu-
sions. Similarly, an increased awareness of fusion prioritiza-
tion algorithms could aid investigators in narrowing down
putative fusion lists to only the instances that are likely to
be biologically functional. This review aims to promote in-
creased exposure and collaboration between different gene
fusion researchers, especially those involved in identifying
and describing novel fusions. In Section 1, we discuss the
findings of recent data-intensive computational methods to
study global properties of gene fusions, including gene fu-
sion landscapes across different cancer types and the struc-
tural and regulatory characteristics of fusion proteins. In
Section 2, we briefly outline fusion detection tools before
focusing on reviewing computational approaches for pri-
oritizing driver fusions and efforts to catalog and annotate
oncogenic gene fusions within specialized databases.

DATA-INTENSIVE COMPUTATIONAL STUDIES OF
GENE FUSION FUNCTIONALITY

Bioinformatics approaches have been crucial to identifying
global patterns in gene fusion functionality. In this section,
we outline the recent computational work on the molecular
functions, structural design principles and regulatory fea-
tures of fusion proteins across diverse cancers.

Global trends in gene fusion formation and function

Gene fusion landscapes have now been studied in many
cancer types, including breast (32–34), lung (35), prostate
(36–39), lymphoid (40), soft tissue (14) and gastric cancer
(3) (see (19) for a collection of fusion landscape studies in
epithelial cancers). Such studies have generated diverse in-
sights, such as the finding that gene fusions are the ma-
jor genomic abnormality in glioblastoma multiforme (41)
and the discovery that private gene fusions cause an ag-
gressive type of prostate cancer (42). The biology of cer-
tain rare cancers has been elucidated by the discovery of
frequent oncogenic fusions, including the C11orf95-RELA
fusion in supratentorial ependymoma (43) and the recurrent
DNAJB1-PRKACA fusion in fibrolamellar hepatocellular
carcinoma (44). These large-scale surveys continue to un-
derscore the importance of screening for gene fusions (Fig-
ure 2A).

Given the expanding list of known gene fusions in can-
cer, it is important to understand the types of genes that
frequently form fusions and what partners they fuse with.
Gene fusion networks, in which nodes are individual genes
and edges indicate the occurrence of a fusion between those
genes, offer an organized approach to studying fusion part-
nerships (Figure 2B). Several studies of gene fusion net-
works have found that the majority of fusion genes part-
ner with a single other gene, with only a few genes be-
ing highly promiscuous (11,12,45–47). An extreme exam-
ple of promiscuity is the mixed lineage leukemia (MLL)
gene, which fuses with over 60 different partner genes, and
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Figure 2. Trends in fusion functionality. (A) Recent surveys have uncovered the diverse gene fusion landscapes present in a variety of cancers. (B) The
frequency of gene fusions varies by cancer type and appears to anti-correlate with frequencies of other somatic mutations at the level of both cancer types
and individual tumor samples. (C) Gene fusions tend to involve genes with kinase, DNA-binding and chromatin modifying activity. (D) Network studies
of fusions have identified global and cancer-type-specific patterns in gene partnerships, such as the trend toward most fusion genes only fusing with only
one other partner.

causes most infant leukemias and a significant proportion
of adult leukemias (48). The set of fusion partners for a
given gene may be influenced by the position of those part-
ners in protein interaction networks (49), their domain con-
tent (46) or their structural capabilities (e.g. oligomerization
ability in FGFR fusion partners (50)), but these concepts
require further investigation. Höglund et al. performed the
pioneering work on gene fusion networks using 291 onco-
genic gene fusions from the Mitelman database (45). In ad-
dition to demonstrating that most fusion genes form few
fusions, the fusion network was found to be fragmented-
fusion pairs from hematological, mesenchymal and epithe-
lial tumors tended to localize to different sections of the net-
work, suggesting that gene fusion pairs are segregated ac-
cording to tumor histology. However, this type of fragmen-
tation in gene fusion networks may have been due to incom-
plete knowledge––in an updated gene fusion network anal-
ysis with 358 gene fusion pairs (11), 89% of genes formed
three large interconnected networks, compared to 72% in
the previous study. This updated gene fusion network study
confirmed both the presence of several highly promiscuous
fusion genes (e.g. MLL, ETV6, EWSR1) and many poorly
connected ones, and also the apparent grouping of the net-
work by cancer type (11). Interestingly, gene fusion net-
works can differ substantially in their topology across dif-
ferent cancer types––for example, the gene fusion network
in acute myelogenous leukemia is clustered around a few
genes (like MLL and NUP98), whereas the ovarian cancer
gene fusion network is much more dispersed, with very few
genes fusing with more than one partner (12). The basis for
these cancer subtype-specific differences in gene fusion net-
works remains to be explained.

Several bioinformatics studies have searched for trends
in fusion frequencies across cancers (Figure 2C). In gen-

eral, the frequency of recurrent fusion transcripts is much
lower than other somatic mutations (51). For example, in
lung adenocarcinoma, the EML4-ALK driver fusion oc-
curs at a rate of 6%, while driver mutations in KRAS and
EGFR are much more common (rates of 25 and 23%, re-
spectively) (52). Furthermore, the rates of gene fusions vary
significantly across cancer types (11). A recent bioinformat-
ics survey of gene fusions in TCGA identified 7887 high
confidence fusion transcripts, with substantial differences
in fusion frequencies across tumor types (highest rates in
bladder cancers and the lowest in thyroid carcinoma) (10).
Interestingly, the same study discovered a significant anti-
correlation between frequencies of recurrent in-frame fu-
sion transcripts and other gene mutations, hinting at po-
tential oncogenic redundancy. However, given that in most
tumors, >80% of fusion transcripts were associated with ge-
nomic instability (DNA amplification or deletion), it is un-
clear what proportion of gene fusions are oncogenic drivers
rather than instability-induced passengers. The association
between genomic instability and gene fusions has been pre-
viously reported (12,53), and it has been suggested that non-
recurrent, singleton gene fusions are potential passenger
mutations (54).

One open question concerns whether gene fusions play
similar roles in different cancer types (Figure 2D). There are
some hints that gene fusions in carcinomas are more likely
to disrupt cell signaling processes involved in cell prolifera-
tion and homeostasis (55) than in hematopoietic and mes-
enchymal cancers, possibly due to differences in differenti-
ation history. However, the same broad categories of genes
tend to be fused in all cancers––predominantly, kinases and
transcriptional control genes (56). Fusions involving ki-
nases have been extensively documented as an important
class of gene fusions (54,57) and are especially interesting
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due to their susceptibility to kinase inhibitors (58). Recently,
at least one in-frame kinase fusion was found in 7.4% of
analysed tumor samples in TCGA, with the highest rates oc-
curring in thyroid carcinoma. This suggests that kinase in-
hibition will continue to grow as a promising treatment op-
tion for kinase fusion-positive cancers (10). Another study
of kinase fusions also reported the highest rate of recurrent
kinase fusions in thyroid cancers, and further found that
fusions between the kinases ALK, BRAF, MET, NTRK1,
NTRK2, RAF1 and RET were mutually exclusive (54). Hi-
stone methyltransferases are increasingly recognized as an-
other attractive drug target in cancer (59), and were found
to be fused in-frame in 2.5% of all tumor samples in TCGA
in a mutually exclusive manner with protein kinase fusions
(10). Finding the rationale behind observed patterns of mu-
tual exclusivity between gene fusions and other oncogenic
mutations, as well as between different types of gene fusions,
is likely to be a fruitful avenue for future research.

Many gene fusions are found across a variety of different
cancer types. For example, RAF kinase family fusions have
recently been profiled across a dozen different solid tumors
(60), and FGFR tyrosine kinase fusion proteins (which
interestingly, occasionally exclude the tyrosine kinase do-
main) are similarly promiscuous (50). In such cases, treat-
ments developed for a specific cancer type can potentially be
used to treat another. For instance, FGFR fusion proteins
have emerged as promising therapeutic targets across the
spectrum of cancers they are detected in (27,50,61–64). A
growing number of studies seek to target oncogenic fusion
transcripts and proteins, and an overview of recent thera-
peutic work has recently been written (19), together with a
compiled list of 33 recent clinical trials targeting epithelial
cancer fusions (Additional File 2 within reference). Fusions
involving the ALK, ETS and RET genes dominate this list
(19), suggesting that updates to the treatment repertoires of
the cancers affected by these fusions are forthcoming.

Knowledge of how precisely fusion transcripts or pro-
teins have been successfully targeted will be valuable for
future drug development studies. One important success
story is the treatment of non-small-cell lung cancer with
ALK inhibitors (65). The transforming EML4-ALK fu-
sion transcript was initially detected in approximately 7%
of patients with non-small-cell lung cancer (NSCLC) (66),
with the fusion being mutually exclusive with the better-
known EGFR mutations. The EML4-ALK fusion protein
consists of the N-terminus of the microtubule-associated
EML4 protein and the C-terminus of the ALK receptor ty-
rosine kinase, which itself contains an intact tyrosine kinase
domain that mediates ALK oligomerization and the sub-
sequent induction of constitutive kinase activity. Similarly
to many other fusions, the tyrosine kinase domain of ALK
was from the start found to be core to the oncogenic ac-
tivity of the EML4-ALK fusion protein (66). Highly effec-
tive and well-tolerated ALK inhibitors, such as crizotinib,
were rapidly developed for therapeutic purposes (65,67–
69). Crizotinib inhibits the ALK tyrosine kinase by bind-
ing to its ATP-binding pocket, and the introduction of this
drug substantially improved prospects in both EML4-ALK
positive (31,65) and ROS1 fusion positive NSCLC patients
(70,71). However, through a variety of mechanisms (72–76),
both ALK and ROS1 fusion positive NSCLC are suscepti-

ble to developing resistance to crizotinib, and current re-
search focuses on overcoming this resistance (77–79). The
prevalence of gene fusions involving kinases (54) such as
ALK (80,81), together with the relatively high success of
targeting kinases in cancer (82), suggest that research focus-
ing on inhibiting deregulated fusion kinases will continue to
pay dividends. Notably, nuanced knowledge of the specific
structural variants of the same type of fusion protein (33)
and the downstream signaling of fusion proteins (83) can be
key to developing successful therapeutic agents, reinforcing
the need for larger scale computational studies which can
detect these molecular trends and suggest candidate targets.

Structural properties of fusion proteins

Fusion transcripts can be translated into fusion proteins,
though estimates of translation frequency vary (84). Pre-
dicting the function of fusion products is non-trivial, but
is distinct from the extremely difficult task of predicting a
protein’s function from a sequence. One can attempt to in-
fer a fusion protein’s function by examining the structural
and regulatory features of the parent proteins it is composed
of, as well as the precise segments of the parent proteins
that form the fusion product. A variety of studies have tried
to understand the underlying structural design principles of
fusion proteins by examining translocation breakpoint po-
sitions, domain architectures and the role of intrinsic struc-
tural disorder.

The location of translocation breakpoints in cancer is
known to be non-random and recurrent, and has been ex-
tensively demonstrated to be influenced by both the spatial
proximity of chromosomes in the nucleus as well as features
of the DNA sequence, such as repeats, fragile sites and en-
donuclease misrecognition sites (85) (Figure 3A). However,
the structure and function of the resulting fusion proteins
has emerged as an additional force governing breakpoint
locations. For example, one global analysis of fusion tran-
scripts reported that translocation breakpoint positions al-
most universally (98%) conserve reading-frame compatibil-
ity (46). However, the most recent census of fusions across
13 tumor types reported that 36% of detected fusion tran-
scripts are in frame, with AML and thyroid carcinoma hav-
ing the highest rates of reading frame conservation (79 and
70%, respectively) (10). Interestingly, these were also the
cancer types with the highest rates of balanced transloca-
tions. More recently, a study aimed at discovering novel
gene fusions in prostate cancer found a very limited number
of feasible transcripts, and most were not in frame (36). A
fusion prioritization study found that in-frame transcripts
were the most powerful predictor of driver fusions (86),
confirming the intuition that in-frame transcripts are cru-
cial to function. These conflicting reports appear to suggest
that rates of reading frame conservation––which is likely
to correlate with rates of functional and potentially driv-
ing gene fusions––may vary significantly across cancer types
and samples.

Translocation breakpoints have been found to generally
occur in intrinsically disordered regions, which may re-
flect a selection for regions that can more seamlessly com-
bine different segments (87) (Figure 3A). Notably, break-
points were also observed to preferentially avoid splitting
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Figure 3. Structural features of fusion proteins. (A) Genes which form fusions tend to have fewer domains, but fusion transcript sequences have been
shown to have more domains than expected by chance. (B) Fusion proteins are enriched for specific domains and permutations, which are occasionally
proteomically novel. (C) Fusion breakpoints are biased toward locations which preserve fusion protein reading frames and structural viability. (D) Increased
intrinsic disorder in fusion proteins may permit the protein to fold and place the constituent domains into proximity of each other.

domains, and in instances where globular domains were
split, the truncations tended to generate viable proteins due
to the breakpoints being positioned in low hydrophobicity
regions. Together with frame-shift conservation (where it
occurs), such trends could reflect a selection on fusion pro-
teins to maintain viability and evade degradation pathways.

A study of intrinsic disorder in fusion proteins found that
translocated proteins are more intrinsically disordered and
tend to have fewer Pfam domains than non-translocated
proteins (87) (Figure 3B), which has recently been demon-
strated again (88). However, another survey of fusion pro-
teins showed that they contain complete protein domains
much more frequently than would be expected if fusion
transcripts were generated from randomly fused protein
coding sequences (89). Hence, domains may be relatively
rare in fusion proteins but occur more often than random.
Where fully functional domains are present in fusion pro-
teins, these could in some cases compete with original pro-
teins and produce dominant negative effects––for example,
in their fusion protein set (89), DNA binding domains were
found to be frequent but transcriptional activation domains
were rare, which reflects a known dominant negative mech-
anism employed by some oncogenic fusion proteins (90). In
general, fusions involving transcriptional activators or re-
pressors could be liable to exerting dominant negative ef-
fects (89), and one of the best studied examples of this mech-
anism is the RUNX1-ETO fusion protein, which is impli-
cated in the development of acute myeloid leukemia (91–
93). RUNX1-ETO exerts a dominant negative influence
over RUNX1, a crucial regulator of hematopoietic stem cell
differentiation, by interfering with normal RUNX1 func-

tion and blocking differentiation. The fusion proteins typi-
cally retain the DNA-binding Runt homology domain from
the RUNX1 transcription factor, thus inheriting the abil-
ity to bind to RUNX1 target genes, as well as incorpo-
rating most of the transcriptional repressor ETO protein,
thereby allowing the fusion protein to act as a constitu-
tive transcriptional repressor through several mechanisms.
The result is the transcriptional repression of RUNX1 tar-
get genes, which is strongly implicated in leukemogenesis
(91).

The types of domain combinations observed in fusion
proteins have been relatively well studied (Figure 3C). A sur-
vey of fusion protein domain architectures demonstrated
that the same architectures are reused in different gene fu-
sion events, providing an underlying principle behind fusion
networks (46). The most commonly reused architectures in
fusion proteins involve tyrosine kinases, EWS activation do-
mains and Runt domains. In general, domain combinations
with closer links to oncogenic behavior are more frequently
found (46). Another study compared Pfam domain permu-
tations in 7424 fusion mRNAs to domains in known hu-
man proteins (89) and reported that although most domain
types (69%) appear in fusion proteins, eight domain types
are over-represented. These included AT hooks (involved
in transcriptional regulation) and MHC and receptor ty-
rosine kinase catalytic domains (which are membrane pro-
tein and receptor domains). Interestingly, some fusion pro-
teins encode novel combinations of domains not found in
normal proteins, including pairings between DNA-binding
HLH (helix-loop-helix) and GTP-binding domains as well
as fusions between PHD-zinc finger and coiled-coil (DNA
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binding) domains (89). However, novel domain recombina-
tions may be rare––fusions have been shown to preferen-
tially include partners that, when fused, reconstitute known
domain co-occurrences (49). Finally, a study of fusion pro-
tein exon and domain organization showed an enrichment
of transmembrane domains and signal peptides in fusion
proteins (84), which suggests that fusion protein functional-
ity could be modulated by changing the cellular localization
or context of biochemical functions.

In line with these findings, the presence of certain do-
mains in fusion proteins has been shown to be predictive
of driver fusions: the developers of the ConSig algorithm
for fusion driver prioritization found that although domain
architectures of fusion proteins were highly diverse, espe-
cially for 5′ partners, certain architectures were predictive of
driver fusions (49). Interestingly, domain architectures did
not appear to be significantly shared by sets of fusion part-
ners of a given gene––that is, there was no evidence that re-
combination patterns of specific fusion partners were espe-
cially impacted by domain content. Furthermore, there was
no apparent association between specific domain architec-
tures and tumor types. However, other reports have found
evidence for different domain patterns in partner sets and
across cancer types (11,46,47). Further work is required to
reconcile the apparent conflict (which may be due to differ-
ences in datasets) and develop a molecular model for ob-
served fusion partnerships.

Gene fusions are formed from two partner genes, and
these partners need not necessarily encode similar struc-
tural elements. A computational study of domains and
protein–protein interaction (PPI) interfaces in fusion pro-
teins found substantial differences in the structural proper-
ties of 5′ and 3′ fusion partner genes (47). Although both
DNA-binding and PPI domains were most common in
both 5′ and 3′ partners, kinase and histone modification
domains were almost entirely absent in 3′ partners. The
co-occurrence of domains in 5′ and 3′ partners is strongly
correlated––for example, protein interaction domains dis-
proportionately co-occur with DNA-binding and kinase
domains, which is a combination that could conceivably
lead to signaling defects (94). The retention patterns also
differ between 5′ and 3′ partners: the 3′ partners tended
to retain a significant portion of their domains and pro-
tein interaction interfaces, whereas the 5′ partners tended
to lose domains, often retained no domains and in the in-
stances where they did retain domains, these tended to lack
a clear oncogenic function. The Oncofuse predictor for pri-
oritizing driver fusions found that lost interaction interfaces
were actually more predictive of drivers than retained ones,
hinting at the importance of loss of parental protein func-
tion effects, in addition to gain of function effects (47,95).
Still, the protein interactions of fusion proteins are likely to
contribute to oncogenicity, as suggested by the observation
that, in known fusion partners, there is a significant over-
representation of domain–domain interactions among their
constituent domains (49). These initial observations, as well
as the recent successes in studying cancer mutations from
the point of view of interaction networks (96–102), call for
deeper analyses of fusion–protein interactions.

In addition to structured protein regions like domains, in-
trinsically disordered regions have been increasingly recog-

nized as important functional players in the proteome and
in disease (103,104) (Figure 3D). An early computational
study found that translocated proteins are over twice as dis-
ordered as other human proteins, and this disorder may
help mediate oncogenic functions by providing the flexibil-
ity necessary to allow the different elements in fusion pro-
teins to synergistically interact (87).

Long non-coding RNAs (lncRNAs), which do not en-
code for proteins, have recently been the subject of inter-
est in cancer research (105–107). However, possibly due to
the fact that many fusion-detection pipelines filter out fu-
sion candidates that do not map to protein-coding regions,
only a handful of gene fusions involving lncRNAs have been
documented. The list includes a fusion between ETV1 and
a prostate-specific lncRNA in prostate cancer (108,109) and
the fusion of the BCL6 proto-oncogene with the non-coding
GAS5 gene in a B-cell lymphoma patient (110). These lncR-
NAs may simply contribute to the aberrant regulation of
their oncogene partner, rather than having an oncogenic
function themselves (111). Additionally, a study of prostate
cancer in Asian populations found several novel fusions in-
volving lncRNAs (112), including a surprisingly common
gene fusion between the USP9Y protease and the TTTY15
ncRNA, which results in a fusion transcript and is associ-
ated with a loss of USP9Y function. This fusion has since
been found to be an effective urine-based biomarker that
is predictive of prostate biopsy outcomes (113). These few
cases highlight the fact that fusions involving lncRNAs can
be functional and even clinically relevant, and therefore the
current approach of filtering out non-coding gene fusions
may be systematically omitting substantial useful informa-
tion.

To conclude, the previous bioinformatic studies of the
structural aspects of fusion proteins suggest the following
trends: fusion proteins are structurally diverse, but tend to
be disordered and depleted in domains. However, certain
domain combinations are enriched, such as those involv-
ing kinase and DNA-binding activity. Breakpoints tend to
preserve in-frame translation and globularity, and 5′ and 3′
fusion partners generally contribute to different structural
elements to fusion proteins.

Expression and regulation of fusion proteins

The principles that govern the expression and regulation
of fusion proteins are currently insufficiently understood,
but several pilot studies have begun to sketch an initial por-
trait of fusion protein regulation. A screen of 7424 puta-
tive fusion transcripts used RNA sequencing and mass spec-
trometry to confirm the expression of 175 fusion transcripts
in 16 human tissues (84). The expression of fusion pro-
teins was generally found to be low, and much more tis-
sue specific than for other proteins (Figure 4A). A survey of
transcription read-through fusions in prostate cancer found
a correlation between parent gene expression and fusion
transcript abundance: 5′ and 3′ genes with higher expres-
sion were more likely to produce observable fusion tran-
scripts. Furthermore, the expression and tissue specificity
of the fusion transcript correlated with expression patterns
of the upstream parent gene (1). In accord, a more recent
study of transcription read-through fusions in prostate can-
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Figure 4. Expression and regulation of fusion proteins. (A) Although the parent proteins that constitute fusion proteins tend to be more highly expressed
than average, the expression of fusion proteins tends to be low. Fusion protein expression is highly tissue specific and tends to follow the tissue distribution
of the parent proteins. (B) 5′ translocation partners tend to have highly active promoters and 3′ partners have especially stable UTR regions, which suggests
an optimization for increasing fusion transcript and protein levels. (C) An increasing number of reports demonstrate that cancer-associated fusions can
also be present in healthy, non-diseased tissue. (D) The translation of fusion transcripts into fusion proteins is relatively rarely confirmed, which may be
partially due to false positive hits from fusion transcript detection algorithms.

cer demonstrated that fusion transcript expression is similar
to parental expression, and that fusion transcript levels re-
spond similarly to androgen and anti-androgen treatment
(114). By contrast, a study of cis-spliced fusions in prostate
cancer found that only half of the fusions were significantly
expressed relative to the parent genes (8). These results sug-
gest that different mechanisms of fusion formation may in-
fluence the expression levels of the fusion transcripts and
proteins.

Similarly, a computational review of translocated genes
in hematological cancers confirmed that fusion proteins
tend to be lowly expressed and tissue specific, but also re-
ported that the constituent parents of fusion proteins are
more highly expressed than average (47). In particular, 5′
translocation partners tended to have increased promoter
activity and 3′ partners tended to have increased 3′ UTR
stability. In general, one of the fusion parents (typically
the 5′ gene) was found to predominantly contribute to the
overexpression of the fusion protein instead of contributing
structural features such as domains. Hence, 5′ partners ap-
pear to supply expression gains while 3′ supply functional
protein segments and stability, which together could in-
crease the expression of fusion proteins (Figure 4B). Given
these trends, it remains unclear why, in practice, fusion tran-
script and protein expression levels are so low (115) (Figure
4C). A complicating aspect is the well-documented fact that
false positive hits are a common occurrence in fusion tran-
script detection (116,117), which could artificially lower es-
timates of fusion protein expression by inflating the number
of putative fusion transcripts.

Importantly, the expression of fusion proteins is not
restricted to cancer tissue––the presence of fusion tran-
scripts or proteins in normal cells has been known for years
(39,84,118–121) (Figure 4D). For example, in the recent fu-
sion screen of TCGA, 192 gene fusions were identified from
364 normal tissue samples (10). The function of fusions
in healthy tissues is unclear, but has been suggested to in-
crease the complexity of the proteome (115,119,122). After
finding that translocation-induced fusion proteins seen in
cancers were very rarely expressed in normal tissues, one
study has suggested that there may be two, mostly non-
overlapping sets of gene fusions––those associated with
cancer and those found in normal tissue (84). However, the
story behind the expression of fusion transcripts is likely
much more complex––for instance, the recurrent VTI1A-
TCF7L2 fusion has been found in 42% samples of colorec-
tal cancer samples, but also in 29% of normal colonic mu-
cosa samples and, remarkably, in 25% of tested normal tis-
sues from other organs (123). Further, the overactive pro-
duction of certain apparently ‘normal’ fusions has been as-
sociated with cancer: for example, the constitutive expres-
sion of the JAZF1-JJAZ1 fusion protein is pro-neoplastic
in endometrial stromal sarcoma, but the same fusion pro-
tein is also found in benign tissues at lower levels (4,124).
Similarly, the SLC45A3-ELK4 fusion transcript is detected
in both prostate cancer and benign prostate tissue, but is
expressed at a higher level in the cancerous state (125). Fur-
ther studies––especially global analyses that can capture the
dominant trends of fusion protein expression across many
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(diseased and normal) human tissues––are urgently called
for.

DETECTING, PRIORITIZING AND ORGANIZING
ONCOGENIC GENE FUSIONS

Historically, gene fusions have been associated with hema-
tological cancers, partially because the complexity of the
genomic changes in solid tumors confounded the avail-
able molecular cytogenetic methods (126). The advent of
next-generation sequencing (NGS) technology, especially
paired-end transcriptome sequencing (PE RNA-seq), and
the development of complementary bioinformatics algo-
rithms have revolutionized the detection of gene fusions
and underscored the importance of fusions in solid tumors
(34,127–129). These improved methods have discovered nu-
merous novel gene fusions critical for cancer development
(130). For example, bioinformatics approaches led to the
discovery of the TMPRSS2-ETS gene fusion in prostate
cancer (129) and the EML4-ALK fusion in non-small-cell
lung cancer (66). The clinical importance of detecting bona
fide gene fusions in tumor cells translates into a need for
highly accurate and sensitive fusion detection and priori-
tization, while the rise in the number of gene fusion stud-
ies necessitates specialized databases and web services. Al-
though gene fusion algorithms have been well-reviewed, pri-
oritization algorithms and databasing work requires further
dissemination.

Detecting gene fusions in cancer

In recent years, there has been a remarkably concerted ef-
fort to develop algorithms and tools for identifying gene
fusions from sequencing data. The first dedicated software,
FusionSeq, was published in 2010 (131); by the end of 2012,
15 other tools had been released. At present, we find 30
different methods for identifying gene fusions (131–158)
(Table 1), with the contenders for the most widely used
packages being TopHat-Fusion (157) and deFuse (152). In
addition, many other software packages, such as Break-
Dancer (159) and CREST (160), can call gene fusions in
addition to other structural rearrangements. In the last 2
years, several additional fusion mapping tools have been
released––FusionMetaCaller (161), JAFFA (133), IDP-
fusion (132), TRUP (134), FusionCatcher and PRADA
(136). A number of supporting tools, such as the Biocon-
ductor package Chimera (162), offer utilities for organiz-
ing, analyzing and validating gene fusion lists reported by
detection tools.

The mechanisms, performance and features of different
gene fusion detection algorithms have been well reviewed
(130,163–166). Practical concerns––like the memory usage
and computing time of detection algorithms––limit some
tools (134), but this constraint is likely to decrease in impor-
tance as computing power continues to expand. Most re-
cently, the performance and computational cost of 15 pop-
ular fusion detection algorithms was evaluated under a vari-
ety of experimental conditions, and a meta-caller algorithm
that blended the three top performing methods to produce
improved predictions was released as an R package (161).
Meta-algorithms, or ensembles of different algorithms, of-
ten improve classification performance (167) and are likely

to become more popular in fusion detection, especially since
different fusion detection algorithms can be plagued by lit-
tle predictive overlap (142,168). The difficulties of calling
genuine gene fusions––including the complexity and insta-
bility of many cancer genomes, and technical errors in the
sequencing or alignment procedure––are also well covered
(116,117,130,169). In the rest of this section, we focus on
methods for deciding which fusions are likely to be drivers
and on gene fusion databases.

Identifying driver gene fusions

Given the unprecedented sensitivity of gene fusion detec-
tion, and the repeated identification of fusion transcripts in
normal cells, it is increasingly important to separate driver
fusions from passenger mutations. Although many fusion
detection tools encode their own filters in order to cut down
on false positive calls (166), the criteria are most often
based on read mapping quality and the presence of certain
sequence features. Biological approaches that rank fusion
candidates by some notion of functional importance are
complementary and can offer a significant improvement in
removing false positive calls.

The first integrative bioinformatics study with the goal
of distinguishing ‘driver’ from ‘passenger’ fusions in high-
throughput data took a gene-centric approach, ranking
each gene by its similarity to ‘molecular concepts’ charac-
teristic of cancer genes (49). These characteristics included
specific functional annotations, pathway involvements pro-
tein interactions and domains. Interestingly, domain archi-
tectures and shared pathways were not nearly as indicative
of cancer-related fusion genes as specific gene ontologies
and the engagement of distinct interaction networks (e.g.
fusion genes in acute lymphoblastic lymphoma tend to fre-
quently interact with GATA3) (49). Notably, while point
mutated cancer genes tended to be involved in DNA re-
pair and cell cycle checkpoints, driver fusions tended to in-
clude genes with signal transduction and transcription ac-
tivation functions. Further, by analyzing high-throughput
copy number genomic data, recurrent gene fusion events
were found to be associated with consistent, specific pat-
terns of copy number alteration. These trends were used
to design an algorithm for ranking genes by their ability to
form driver fusions.

Prioritization of gene fusions using characteristics from
only one gene is necessarily incomplete, because gene fu-
sions generally involve two partner genes. Wu et al. ad-
dressed this concern using the concept of network centrality
(170). They observed that in most known cancer fusion gene
pairs, at least one of the fusion partners acts as a hub (i.e.
has many interaction partners) in a gene interaction net-
work (where genes are nodes and edges indicate a regulatory
or protein–protein interaction). Many fusions were found to
be formed from two hubs, possibly because the central posi-
tioning of hub-like genes confers a large radius of influence,
maximizing the deregulation of other genes and pathways if
they are fused or disrupted. A network centrality based clas-
sifier was developed for scoring fusions, which showed supe-
rior performance compared to both the above method (49)
and a simpler gene-based model that selects drivers based
on whether the fusion includes a cancer-associated gene.
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Table 1. Software packages, algorithms and tools for identifying gene fusions from sequencing data

Name Notable features URL PMID Year

FusionMetaCaller An ensemble of the three fusion transcript detection algorithms (SOAPfuse,
FusionCatcher and JAFFA) with the best performance on three synthetic and
three real PE RNA-seq cancer data sets. R package.

http://tsenglab.biostat.pitt.edu/software.htm 26582927 2015

INTEGRATE Combines WGS for structural variant detection with RNA-seq to detect
expressed gene fusion transcripts. Emphasizes the minimization of false
positive hit rate.

https:
//sourceforge.net/projects/integrate-fusion/

26556708 2015

IDP-fusion Detects gene fusions, identifies junctions and quantifies fusion isoforms by
integrating third-generation sequencing long reads and second-generation
sequencing short reads.

http://www.healthcare.uiowa.edu/labs/au/
IDP-fusion/

26040699 2015

JAFFA Fusion transcript detection algorithm optimized for reads of 100 base pairs or
greater. Uses a known transcriptome as an alignment reference instead of
genome.

https://github.com/Oshlack/JAFFA/wiki 26019724 2015

TRUP Detects fusion transcripts from PE RNA-seq data. Performs split read
mapping and assembly of potential breakpoint regions. Filters include
thresholds on repeat content and number of supporting reads.

https://github.com/ruping/TRUP 25650807 2015

ChildDecode Detects several predefined pathognomonic gene fusions in childhood sarcomas
from RNA-seq data. Operates on cloud-computing platform. Part of the
FUSIONCloud commercial analytical platform.

http://www.fusiongenomics.com/onetest-
products/

24517889 2014

FusionCatcher Detects somatic fusion transcripts. Uses ensemble approach of four different
methods and aligners to identify fusion junctions. Discordantly mapping reads
are filtered on gene identity and positioning.

https://github.com/ndaniel/fusioncatcher http:
//dx.doi.org/10.
1101/011650

2014

PRADA Uses dual-mapping strategy of aligning paired-end reads to a combined
genome and transciptome reference to detect fusion transcripts. Outputs fusion
frame classification, homology scores and other summary features.

http://sourceforge.net/projects/prada/ 24695405 2014

EBARDenovo Method for de novo assembly of short RNA-seq reads with a focus on detecting
fusion transcripts. Optimized to handle confounding assembly errors.
sequencing errors, repetitive sequences and amplicons.

http://ebardenovo.sourceforge.net/ 23457040 2013

FusionQ Detects gene fusions from PE RNA-seq data, reconstructs features of fusion
transcripts and estimates their abundances. Uses a residual sequence extension
method to extend short reads.

https://sites.google.com/site/fusionq1/home/ 23768108 2013

iFUSE Web-based visualization tool for structural variants that prioritizes breaks that
are likely to be associated with gene fusions. Provides candidate transcript and
protein sequences resulting from the identified gene fusions.

http://ifuse.erasmusmc.nl 23661695 2013

SOAPFuse Identifies fusion transcripts through discordant PE reads and junction
spanning reads. Features an improved algorithm for constructing the putative
junction library and a relatively high computational efficiency.

http://soap.genomics.org.cn/soapfuse.html 23409703 2013

SOAPfusion Part of the SOAP software for genome-wide detection of gene fusions from PE
RNA-Seq data. Focuses on high sensitivity and low false discovery rates at low
coverage.

http:
//soap.genomics.org.cn/SOAPfusion.html

24123671 2013

Bellerophontes Identifies fusion transcripts from PE data. Selects from fusion candidates using
a ’gene fusion model’, and features splice site and abundance analyses that
provide a more accurate set of junction reads.

http://eda.polito.it/bellerophontes/ 22711792 2012

BreakFusion Detects fusion transcripts using a targeted transcriptome assembly strategy.
Introduces a single statistical chimeric score that summarizes the likelihood of
a junction sequence containing true breakpoints.

http://bioinformatics.mdanderson.org/main/
BreakFusion

22563071 2012

elDorado Commercial software for identifying fusions from paired-end RNA seq reads.
Filters on fusion structure and read support. Introduces the Transcriptome
Viewer, a tool for visualizing gene fusions.

https://www.genomatix.de/online help/
help eldorado/introduction.html

23036331 2012

EricScript Detects fusion transcripts from PE data. Can create synthetic gene fusions with
the EricScript simulator, and EricScript CalcStats can generate summary
statistics for scoring fusion detection methods.

https://sites.google.com/site/bioericscript/ 23093608 2012

FusionAnalyser A graphical tool for detecting fusion transcripts from PE data that provides a
user-friendly GUI and filtering system for non-programmers.

http://www.ilte-cml.org/FusionAnalyser/ 22570408 2012

FusionFinder Identifies gene fusion partners from either SE or PE RNA-seq data. Filters on
features including read-through transcripts, homology and antisense
information.

http://bioinformatics.childhealthresearch.org.
au/software/fusionfinder/

22761941 2012

LifeScope GUI-based splice and fusion detection from RNA-seq data method. Available
from within the LifeScope software package.

https://www.thermofisher.com/uk/en/home/
technical-resources/software-downloads/
lifescope-genomic-analysis-software.html

22496636 2012

nFuse Detects fusion transcripts and related chromosomal rearrangements from
matched RNA-seq and whole genome shotgun sequencing data.

https://code.google.com/p/nfuse/ 22745232 2012

ChimeraScan Detects fusion transcripts from PE RNA-seq data. Automatically generates
HTML reports to facilitate results analysis.

http://code.google.com/p/chimerascan/ 21840877 2011

Comrad Performs an integrated analysis of RNA-Seq and WGS data to detect genomic
rearrangements and fusion transcripts. Handles low coverage genome data.

http://code.google.com/p/comrad/ 21478487 2011

deFuse Uses discordant paired end alignments to guide the split read analysis. Does
not discard ambiguously mapping reads, but considers all possible alignments
and fusion boundaries and resolve the most probable position.

http://sourceforge.net/apps/mediawiki/defuse/ 21625565 2011

FusionHunter Detects fusion transcripts from PE data. Can identify transcript fragments
without known annotations. Filters on anchor length, read-through
transcripts, junction reads and PCR artifacts.

http://bioen-compbio.bioen.illinois.edu/
FusionHunter/

21546395 2011

FusionMap Fusion gene detection from either SE or PE RNA-seq or gDNA-seq data.
Focuses on improving the accuracy of mapping junction-spanning single reads.

http://www.omicsoft.com/fusionmap/ 21593131 2011

ShortFuse Fusion transcript detection from PE RNA-seq data. Focuses on accurately
identifying fusion transcripts when many read pairs map ambiguously.

https://bitbucket.org/mckinsel/shortfuse 21330288 2011

SnowShoes-FTD Fusion transcript detection from PE RNA-seq data. Includes prediction of
genomic rearrangements, fusion protein sequence reconstruction and
generation of fusion spanning sequence for PCR validation.

http://mayoresearch.mayo.edu/mayo/
research/biostat/ stand-alone-packages.cfm

21622959 2011

TopHat-Fusion A version of TopHat specialized for the detection of fusion transcripts.
Implements a two stage process of aligning reads to genomic reference using
altered version of TopHat, then a processing step to incorporate annotation
and filter candidates.

http://tophat-fusion.sourceforge.net/ 21835007 2011

http://tsenglab.biostat.pitt.edu/software.htm
https://sourceforge.net/projects/integrate-fusion/
http://www.healthcare.uiowa.edu/labs/au/IDP-fusion/
https://github.com/Oshlack/JAFFA/wiki
https://github.com/ruping/TRUP
http://www.fusiongenomics.com/onetest-products/
https://github.com/ndaniel/fusioncatcher
http://dx.doi.org/10.1101/011650
http://sourceforge.net/projects/prada/
http://ebardenovo.sourceforge.net/
https://sites.google.com/site/fusionq1/home/
http://ifuse.erasmusmc.nl
http://soap.genomics.org.cn/soapfuse.html
http://soap.genomics.org.cn/SOAPfusion.html
http://eda.polito.it/bellerophontes/
http://bioinformatics.mdanderson.org/main/BreakFusion
https://www.genomatix.de/online_help/help_eldorado/introduction.html
https://sites.google.com/site/bioericscript/
http://www.ilte-cml.org/FusionAnalyser/
http://bioinformatics.childhealthresearch.org.au/software/fusionfinder/
https://www.thermofisher.com/uk/en/home/technical-resources/software-downloads/lifescope-genomic-analysis-software.html
https://code.google.com/p/nfuse/
http://code.google.com/p/chimerascan/
http://code.google.com/p/comrad/
http://sourceforge.net/apps/mediawiki/defuse/
http://bioen-compbio.bioen.illinois.edu/FusionHunter/
http://www.omicsoft.com/fusionmap/
https://bitbucket.org/mckinsel/shortfuse
http://mayoresearch.mayo.edu/mayo/research/biostat/%20stand-alone-packages.cfm
http://tophat-fusion.sourceforge.net/
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Table 1. Continued

Name Notable features URL PMID Year

FusionSeq Fusion transcript detection from PE RNA-seq data. Considers annotated
exons during mapping procedure, and reports read-through fusions in addition
to other fusions. Variety of filters, including comparing fusion expression with
general expression.

http://archive.gersteinlab.org/proj/rnaseq/
fusionseq/

20964841 2010

GUI = graphical user interface, PCR = polymerase chain reaction, PE = paired-end, RNA-seq = RNA sequencing, SE = single end, WGS = whole genome sequencing.

Oncofuse (95) innovated the use of fusion sequences, in-
stead of gene qualities, to identify driver fusions. First, a
set of 24 features of fusion transcripts was built up, includ-
ing functional profiles, tissue-specific expression, replica-
tion timing of the gene-containing locus, interaction part-
ners, interaction partner expression, 3′ UTR length and
domains. Notably, both retained and lost features were
included in the dataset, e.g. the domains that were both
lost and retained as a result of the fusion breakpoint po-
sition. A Naı̈ve Bayes classifier was trained on these fea-
ture sets, which contained both positive data (known onco-
genic fusions) and negative data (fusion genes and read-
through transcripts found in normal cells). Functional pro-
file information provided the largest information gain for
classification––molecular functions related to transcription
factors, kinases and histone modification were highly en-
riched in driver fusions. This echoes previous results (49).
Expression and replication features were most important
for 5′ partners, which also resonates with other literature
(1,47). Interestingly, certain lost features, like protein inter-
action interfaces, were more informative than the retained
features.

The most recent method for nominating fusion drivers is
the Pegasus pipeline (86), which emphasizes transcript se-
quence reconstruction and domain annotation. Pegasus ex-
tends the Oncofuse domain analysis by considering reading
frame conservation and all possible isoforms. Specifically,
Pegasus reconstructs the fusion transcript sequence for each
gene fusion candidate, annotates breakpoints as occurring
in the CDS, introns or UTRs, and assesses reading frames.
Lost and retained domains of the 5′ and 3′ partners are de-
termined, and certain domain features (e.g. oncogenic do-
mains) are annotated. A gradient tree boosting algorithm is
trained on positive driver fusions from ChimerDB 2.0 (171)
and on a complex negative dataset (composed of passen-
ger fusions, read-through transcripts in normal tissue, etc.).
In-frame transcripts were found to by far be the most distin-
guishing feature of driver fusions. Other important factors
included breakpoints in the CDS and domains from known
oncogenes (or domains interacting with known oncogenes).
Pegasus performed well on the curated validation set and on
real RNA-seq data, and outperformed Oncofuse in several
tests. It is probable that the identification of driver fusions,
either with these existing tools or with new methods, will
play an increasingly important role in cancer research as
the number and size of fusion-detecting studies continues
to expand.

Curating knowledge on oncogenic gene fusions

The rapid increase of gene fusion data requires signifi-
cant organizational effort, and at present almost a dozen

databases of oncogenic fusion genes exist (Table 2). Some of
the earliest efforts to catalog gene fusions, such as the Atlas
of Genetics and Cytogenetics in Oncology and Haematol-
ogy (172), arose before the advent of deep sequencing of the
transcriptome. Most currently available databases leverage
sequence technology advances but vary significantly in their
methodology, focuses and sizes––for example, the ∼29 000
fusion transcripts in ChiTaRS result mainly from bioinfor-
matics analyses of public databases, while the ∼2600 chro-
mosome rearrangements in dbCRID are manually curated
from the literature. Here, we outline the progress made by
recent gene fusion databases. We only focus on databases
that concentrate on gene fusions, but related resources such
as the database of genomic variants (173) or the DECI-
PHER database of chromosome imbalances and pheno-
types (174) also include gene fusions.

Initial efforts to catalog gene fusions included (early
versions of) the Mitelman database, COSMIC (175),
ChimerDB (171,176), TICdb (177) and HYBRIDdb (178).
The Mitelman database of chromosomal aberrations and
gene fusions began as early as 1994, appearing in print and
on CD-ROM, and has grown into one of the most pop-
ular current resources on gene fusions (179). This heavily
curated database of fusions is supplemented with clinical
association information, like karyotype abnormalities as-
sociated with a particular tumor type or patient progno-
sis. The database is searchable by a wide variety of fields,
such as patient age, publication authors, gene, tumor his-
tology, tissue type, mutation recurrence, associated clinical
features and cancer types. Similarly, the COSMIC catalog
of somatic mutations in cancer offers an extensive curated
collection of oncogenic gene fusions. Initially published in
2004 (175), the COSMIC database has also grown to signif-
icant size and scope (180). COSMIC’s fusion information is
manually curated from the literature (though currently only
for solid tumors) and incorporates information on inferred
breakpoints, included exons of the 5′ and 3′ partners, and
mutation frequency. Extensive clinical data are also inte-
grated, such as patient details, tumor (stage/drug response)
and sample features (histology, source) and tissue-specific
fusion mutation frequencies.

Another relatively early fusion resource, ChimerDB, was
initially published in 2006 (171) and now houses 2700 fu-
sion transcripts (176), which were identified via bioinfor-
matics analysis of GenBank, the NCBI short read archive,
Sanger CGP, OMIM, Mitelman’s database and PubMed.
The ChimerDB computational pipeline involves aligning
fusion sequences to the reference human genome and clas-
sifying gene fusions into confidence classes based on the
transcript fusion boundary matching exon boundaries. The
service offers support for detailed searches (e.g. by gene,
chromosomal band and tissue), filtering by alignment (e.g.

http://archive.gersteinlab.org/proj/rnaseq/fusionseq/
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Table 2. Databases of gene fusions

Database name Description Data sources URL PMID

Database size (in current
release or as of October
2015)

First published and
current database release

Mitelman Relates gene fusions and
other chromosomal
aberrations to tumor
characteristics, based either
on individual cases or
associations.

Manual literature curation. http://cgap.nci.nih.gov/
Chromosomes/Mitelman

17361217
(review)

10 026 gene fusions; 65
975 patient cases

1994–2015. Current
release: August 2014

COSMIC
Curated
Fusions

Catalog of translocations and
fusions between gene pairs
supplemented with extensive
clinical data.

Manual literature curation. http://cancer.sanger.ac.
uk/cosmic/help/fusion/
overview

25355519 (full
2015 COSMIC
db)

10 534 gene fusions 2004–2015. Current
release: v70 (2014)

FARE-CAFÉ Database of functional and
regulatory elements in gene
fusion events related to
cancer.

Integration of diverse data
sets, including fusion events,
molecular and regulatory
features.

http://ppi.bioinfo.asia.
edu.tw/FARE-CAFE.

26384373 1587 gene fusions 2015

TCGA Fusion
Gene Data
Portal

Repository for the results of
the landscape of
cancer-associated fusion
study carried out using the
PRADA pipeline.

Integrated analysis of
paired-end RNA sequencing
and DNA copy number data
from TCGA.

http://54.84.12.177/
PanCanFusV2/

25500544 7887 fusion transcripts 2015. Current release:
December, 2014.

FusionCancer Fusion gene database derived
exclusively from cancer
RNA-seq data.

Compiled from 591 recently
published RNA-seq datasets
covering 15 kinds of human
cancer.

http:
//donglab.ecnu.edu.cn/
databases/FusionCancer/

26215638 11 839 gene fusions 2015

ChiTaRS Catalogue of fusion
transcripts in humans, mice,
fruit flies, zebrafishes, cows,
rats, pig and yeast.

Bioinformatic analysis of
ESTs and mRNAS from
GenBank.

http:
//chitars.bioinfo.cnio.es/

25414346 (2.1);
23143107

29 159 fusion transcripts 2013. Current release:
ChiTaRS 2.1 (2014)

dbCRID Curated database of human
chromosomal
rearrangements, associated
diseases and clinical
symptoms.

Manual literature curation. http://dbcrid.biolead.org/ 21051346 2643 chromosome
rearrangements

2011. Current release: v
0.9 (2010)

ConjoinG Database of conjoined genes
(transcription read-through
fusions).

Manual literature curation
and bioinformatic analysis of
EST and mRNA sequences
from GenBank.

http://metasystems.riken.
jp/conjoing/

20967262 800 conjoined genes from
1542 parent genes

2010

HYBRIDdb Database of hybrid genes in
the human genome.

Analysis of mRNA, EST,
cDNA and genomic DNA
sequences in the INSDC
resource.

http://www.primate.or.kr/
hybriddb/

17519042 3404 gene fusions 2007

TICdb Finely mapped translocation
breakpoints in cancer.

Manual literature curation
and analysis of public
databases (Mitelman,
GenBank).

http://www.unav.es/
genetica/TICdb/

17257420 1374 fusion sequences
from 431 different genes

2007. Current release:
release 3.3 (2013)

ChimerDB Knowledgebase of fusion
transcripts across multiple
species, as well as
information on cancer
breakpoints.

Bioinformatics analysis of
Sanger CGP, OMIM,
PubMed and the Mitelman’s
database and transcript
sequences in GenBank.

http://biome.ewha.ac.kr:
8080/FusionGene/

19906715 (2.0);
16381848

2699 fusion transcripts 2006. Current release:
ChimerDB 2.0 (2010)

DACRO Database of all published
chromosomal
rearrangements that are
associated with an abnormal
phenotype.

Online searches of PubMed,
Scopus and OMIM.

https:
//www1.hgu.mrc.ac.uk/
Softdata/Translocation/

Unpublished 965 translocations NA

Databases are annotated with source data types, URLs, estimates of database content and size and first and current releases. EST = expressed sequence tag, INSDC = International Nucleotide Sequence
Database Collaboration, OMIM = Online Mendelian Inheritance in Man, Sanger CGP = Sanger Cancer Genome Project, TCGA = The Cancer Genome Atlas.

intact exons at breakpoint) and an alignment viewer. In-
terestingly, the ChimerDB study reported that the over-
lap between Sanger CGP, OMIM, Mitelman and their
PubMed gene fusion list was relatively small, with almost
60% of fusion pairs found in only one resource, indicat-
ing a strong need to integrate fusion datasets. TICdb, a
resource of translocation breakpoints in cancer published
the year after ChimerDB, is a highly curated database
that sought to address the lack of molecular information
on gene fusions in the Mitelman database (177). It was
also the first repository to map translocation breakpoints
onto the reference genome and provide fusion boundary
sequences. TICdb was built by extracting 298 genes in-
volved in reciprocal translocations from the 2006 version of
the Mitelman database and searching PubMed and Gen-

bank to find translocation junction sequences. Another
early effort by HYBRIDdb (178) identified 3400 gene fu-
sions from a bioinformatics analysis of mRNA, EST, cDNA
and transcript sequences in the NCBI database. Unfor-
tunately no longer functional, the HYBRIDdb resource
mapped fusion transcripts and junctions, classified fusions
into translocation and transcription-mediated categories
and integrated information on splicing sites, domains and
associated pathologies and affected tissues.

The ConjoinG (181) and dbCRID (182) databases rep-
resented the next wave of fusion databases. The develop-
ment of the ConjoingG database of ‘conjoined genes’, or
transcription-induced fusion genes, sought to address the
lack of uniformity in annotating conjoined genes in the
UCSC, GenBank, Ensembl and Vega databases. ConjoinG

http://cgap.nci.nih.gov/Chromosomes/Mitelman
http://cancer.sanger.ac.uk/cosmic/help/fusion/overview
http://ppi.bioinfo.asia.edu.tw/FARE-CAFE
http://54.84.12.177/PanCanFusV2/
http://donglab.ecnu.edu.cn/databases/FusionCancer/
http://chitars.bioinfo.cnio.es/
http://dbcrid.biolead.org/
http://metasystems.riken.jp/conjoing/
http://www.primate.or.kr/hybriddb/
http://www.unav.es/genetica/TICdb/
http://biome.ewha.ac.kr:8080/FusionGene/
https://www1.hgu.mrc.ac.uk/Softdata/Translocation/
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computationally identified and curated 800 read-through
transcripts that were supported by one or more mRNA
or EST sequence in NCBI. Representative conjoined genes
were selected and subjected to validation by RT-PCR and
sequencing, and the evolutionary conservation and splicing
patterns of these fusion events were analyzed. On the other
hand, the dbCRID database of chromosomal rearrange-
ments in human diseases focused on documenting chromo-
somal rearrangements in both tumor and non-tumor dis-
eases, covering several types of chromosomal rearrange-
ments.

The most recent gene fusion databases include ChiTaRS
2.1 (183,184), FusionCancer (168), the TCGA Fusion Por-
tal (10) and FARE-CAFE (88). The ChiTaRS 2.1 database
of fusion transcripts and RNA-seq data (184) is the largest
fusion databases and one of the few containing non-human
fusion data. It catalogs over 29 000 fusion transcripts,
largely from humans, mice and fruit flies. The fusion tran-
scripts were identified via bioinformatics analysis of ESTs
and mRNAs from several databases, and some fusion tran-
scripts also have associated expression and tissue specificity
data.

The FusionCancer database is a unique gene fusion
repository derived solely from the analysis of raw cancer
RNA-seq data (168). To create FusionCancer, 591 recent
RNA-seq datasets from 15 cancer types were compiled and
gene fusions identified using several fusion detection pack-
ages. Interestingly, though ∼12 000 gene fusions were iden-
tified with at least one software, only 137 fusions were iden-
tified by all four. FusionCancer implements information
from COSMIC and ChimerDB, and includes breakpoint
location, recurrence rate and fusion sequences. A similar
methodology underlies the TCGA Fusion Portal––using
stringent bioinformatic criteria, Yoshihara and coworkers
identified over 8600 distinct fusion transcripts from data
on 13 different cancer types in the Cancer Genome Atlas
(TCGA), many involving genes not previously known to
form fusions (10). These results have illuminated the roles
of many gene fusions (see Section II) and have been inte-
grated into other resources, such as the Mitelman database.
Finally, the most recently released fusion database is FARE-
CAFE (88), a resource of functional and regulatory ele-
ments in fusions. This highly integrated database aims to
summarize how fusions affect a variety of molecular com-
ponents and activities, including Pfam domains, domain–
domain interactions, protein–protein interactions and tran-
scription factor functions.

It is clear that our understanding of the number of gene
fusions and their potential functions is far from being com-
plete. Notably, many fusion databases have very limited
overlap between the fusions they document. This is certainly
partially due to methodological differences in detection and
filtering. However, considering the rate at which novel onco-
genic fusions are still being discovered (10,12,57), it is likely
that we have still only detected a small fraction of exist-
ing fusions, and future research will continue to gradually
improve coverage. Furthermore, current databases reflect
the fact that we have little knowledge of certain classes
of fusion, such as fusions involving genes encoding long
non-coding RNAs, despite their documented central role
in cancer (105–107). Finally, although many studies and

databases understandably focus on oncogenic fusions, ex-
ploring certain poorly understood aspects of fusions which
are perhaps not directly related to cancer is likely to syner-
gistically improve our understanding of cancer-related fu-
sions. Such topics include the role of fusions in healthy tis-
sues and non-human organisms, the functions of singleton
fusions, and the extent to which ‘known’ fusions are false
positive results. Indeed, our intuition of what constitutes
a ‘functional’ fusion event (e.g. being recurrent, in-frame
and only present in diseased tissues) is likely to transform as
more information is acquired on these topics. The substan-
tial number of unknown facets of gene fusion functionality
presents truly exciting opportunities for future discovery.

CONCLUSIONS AND FUTURE DIRECTIONS

The computational study of fusion genes, transcripts and
proteins is still in its infancy. The improved detection and
functional characterization of these frequently oncogenic
mutations will continue to play an important role in eluci-
dating cancer processes across diverse tumor types. The re-
cent successes in the development of drugs against mutated
kinases and chromatin modifying proteins (59,82,185,186),
and novel methods of therapeutically downregulating pro-
teins in general (187,188), suggest that fusion transcripts
and proteins are likely to be promising targets for the next
generation of therapeutic agents against cancer, and data-
intensive studies of gene fusions have the key role of direct-
ing these future avenues of medical research.
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