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Abstract

Background: Taxonomic assignment is a crucial step in a metagenomic project which aims to identify the origin of
sequences in an environmental sample. Among the existing methods, since composition-based algorithms are not
sufficient for classifying short reads, recent algorithms use only the feature of similarity, or similarity-based combined
features. However, those algorithms suffer from the computational expense because the task of similarity search is
very time-consuming. Besides, the lack of similarity information between reads and reference sequences due to the
length of short reads reduces significantly the classification quality.

Results: This paper presents a novel taxonomic assignment algorithm, called SeMeta, which is based on
semi-supervised learning to produce a fast and highly accurate classification of short-length reads with sufficient
mutual overlap. The proposed algorithm firstly separates reads into clusters using their composition feature. It then
labels the clusters with the support of an efficient filtering technique on results of the similarity search between their
reads and reference databases. Furthermore, instead of performing the similarity search for all reads in the clusters,
SeMeta only does for reads in their subgroups by utilizing the information of sequence overlapping. The experimental
results demonstrate that SeMeta outperforms two other similarity-based algorithms on different aspects.

Conclusions: By using a semi-supervised method as well as taking the advantages of various features, the proposed
algorithm is able not only to achieve high classification quality, but also to reduce much computational cost. The
source codes of the algorithm can be downloaded at http://it hcmute.edu.vn/bioinfo/metapro/SeMeta.html
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Background

Metagenomics is a powerful approach for studying micro-
bial samples, without the needs of isolating and culturing
single organisms. The discipline offers opportunities to
discover the complexity and diversity of microbial com-
munities. Earlier metagenomic projects have provided a
good understanding of various microbial environments
such as acid mine drainage [1], seawater [2], and human
gut [3]. With the development of the next-generation
sequencing (NGS) techniques, e.g., 454 pyrosequenc-
ing, llumina Genome Analyzer, AB SOLiD [4], current
metagenomic projects usually process an unprecedented
amount of biological data. Moreover, reads generated
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by the NGS techniques are often less than 700 bp [5].
For instance, current Illumina read lengths are from 36 to
300 bp (single-end or paired-end reads). These aspects
pose major challenges for computational analysis [6, 7].

One of the crucial tasks in a metagenomic project,
referred to as taxonomic assignment problem, is to iden-
tify the origin of each sequence in an environmental sam-
ple. This task helps in grouping the sequences into bins
and determining how they are related to known taxa. Cur-
rent taxonomic assignment algorithms are mainly based
on the composition and similarity features of genomic
sequences.

Some algorithms only use composition features, e.g.,
GC-content (TAC-ELM [8]), oligonucleotide frequencies
(TACOA [9], MetalD [10], AKE [11]), which are extracted
from both analyzed and reference sequences. Most of
those algorithms are proposed to process long reads (>
1000 bp), and consequently to be inaccurate in short read
classification, though they are really fast. For example,
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TACOA can only achieve the sensitivity values from 3 %
to 17 % for reads as short as 800 bp at the taxonomic levels
of order and genus. It is clear that the lack of composition
information in short reads results in the low classification
performance of those methods. Besides, some unsuper-
vised binning methods [12—-14] use composition features,
but they do not assign taxonomic identity for reads.

Recent taxonomic assignment methods are commonly
based on the similarity information between analyzed
sequences and sequences in reference databases, which
can be obtained by an alignment tool (e.g., BLAST, BLAT).
MEGAN [15] is a similarity-based method using the low-
est common ancestor (LCA) algorithm to find the best
common ancestor based on BLAST bit-scores. One of
the drawbacks of the LCA is that ambiguous hits may
result in assigning reads to taxonomic levels higher than
those of their origin. MEGAN overcomes the problem by
using some thresholds related to the bit-scores to filter
out the ambiguous hits. Other BLAST-based algorithms,
SOrt-ITEMS [16], and CARMA3 [17], also attempt to
address the drawback by using a reciprocal search step
to identify significant hits. The similarity-based meth-
ods are demonstrated to be able to work with short
reads. However, a large percentage of reads cannot be
classified because those reads do not match to refer-
ence sequences or match with extremely low bit-scores.
Besides, those methods are very time-consuming because
the task of similarity search requires an enormous amount
of time.

Utilizing the advantages of the combined usage of com-
position and similarity features are major motivations for
currently available hybrid algorithms. In order to reduce
computational time, but still retaining the accuracy like
similarity-only based methods, SPHINX [18] firstly clas-
sifies reference sequences into clusters, and computes the
distance between each query sequence and the centriod
of the clusters. The algorithm then only needs to per-
form BLAST search for each query against sequences
in a cluster, instead of the whole reference sequences.
MetaCluster-TA [19] and PhymmBL [20] are also known
as hybrid algorithms. PhymmBL, an extension of Phymm
[20], uses BLAST tool to perform similarity search for all
reads to provide reference information supporting for the
classification process in Phymm. MetaCluster-TA, on the
other hand, can be classified as a semi-supervised method,
is a combination of three available algorithms, IDBA-UD
[21] for assembling reads into virtual contigs, MetaCluster
5.0 [22] for clustering the contigs as well as unassembled
sequences, and MEGAN [15] for labeling clusters. The
two algorithms aim to improve the classification quality,
but this could make them suffer from more computational
expense than similarity-only based methods. Moreover,
due to the usage of MEGAN, MetaCluster-TA does not
combinedly use the similarity information of reads with

Page 2 of 12

reference sequences in each cluster in the process of
cluster labeling.

In this paper, we present a new taxonomic assignment
algorithm which uses a semi-supervised cluster-and-label
method for metagenomic reads. The proposed algo-
rithm, called SeMeta (i.e., a semi-unsupervised taxonomic
assignment of metagenomic reads), aims to improve both
the quality and computational efficiency of the classi-
fication for short reads which sufficiently overlap each
other. After separating reads into clusters, the proposed
method assigns each cluster to the best suitable taxon bas-
ing on the similarity between their reads and reference
databases. Two main new ideas contributed in this work
mainly support to the assignment step of the clusters, uti-
lizing output of the clustering process. Firstly, instead of
performing the similarity search of all reads in the clus-
ters against reference databases, the method only needs
to do for their subgroup of non-overlapping reads so that
it can help in reducing overall run-time significantly. Sec-
ondly, the similarity information of reads with reference
sequences in each cluster are combinedly used for the
cluster assignment to produce better classification quality.

The next section presents the details of the proposed
algorithm. The strength of SeMeta on both simulated
and real metagenomic datasets is demonstrated in the
section of experimental results. The final sections are for
discussions and conclusions.

Methods

Fundamentals of proposed method

Semi-supervised learning has been known as an effi-
cient technique in many fields, especially in the fields of
labeling a large amount of data. It is expected that the
technique helps more data items to be labeled, and the
labeling to be more accurate comparing to supervised
algorithms due to the support of unsupervised process.
Several semi-supervised classification methods have been
proposed in the literature [23]. In this study, we proposed
a semi-supervised algorithm which can be classified as a
cluster-and-label method [23]. The proposed algorithm is
based on an assumption that reads tend to form separated
clusters, and reads in the same cluster are more likely to
share a same label.

Given a list of » metagenomic reads. By using the above
assumption, the first step of the proposed method aims
to partition the # reads into k sets C;,Cy,...,Cy, k < n.
In the second step, each cluster C; is labeled based on the
similarity search of its reads against reference databases.
One of the ideas applied in this study is that instead of per-
forming the similarity search for all reads in each cluster,
our method only does for its representative defined as fol-
lows. Each representative K(C;) of a cluster C;,1 < i < k,
called a core of Cj, is its subset which contains only non-
overlapping reads. This is motivated by an observation
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that although a core K(C;) consists of a small number of
reads of G, it still keeps most of the sequence information
of C;. It thus contains the majority of the similarity infor-
mation between C; and reference sequences. The idea is
exemplified in Fig. 1. Given a cluster consisting of 16 reads
which covers from position x to y in a reference sequence.
Choosing a subset of the cluster consisting 5 reads from
r1 to rs. It can be seen that the subset also covers most of
positions from x to y in the reference sequence. An exper-
iment conducted in this work (presented in the section of
Experimental results) demonstrates that the usage of clus-
ter cores has an extremely light effect on the classification
quality while reducing much computation cost. Besides,
it can be realized that the cores of clusters are similar to
assembled contigs which are possibly generated from the
reads. The procedure applied in this work helps to avoid
an assembly process which is very time-consuming [24]
while still keeping classification quality.

In order to determine whether two reads r,s € R over-
lap each other or not, this work uses a same method as
described in [25] which is based on the number of shared
I-mers between reads. It is stated as follows. Given m, [ €
N (I is sufficiently large), if r, and s share at least m [-mers,
the two reads are considered as overlapping reads. Other-
wise, they are non-overlapping reads [25].

In the step of cluster labeling, a two-level filtering tech-
nique is proposed to reduce insignificant hits of the simi-
larity search output (by BLAST tool). The first level filters
out the BLAST hits of low bit-scores for each read by using
two basic thresholds min-score and top-percent similar to
existing studies [15, 16, 26]. The repeat of short sequences
between different organisms may cause for the fact that a
read may be mapped against reference sequences of dif-
ferent organisms with all high bit-scores, especially with
the case of short reads. Thus, it is difficult to distinguish
which hits are reliable by only using the first level filtering.
By taking the advantage of the clustering process, an addi-
tional filtering is applied at the cluster level. Because reads
in the same cluster are more likely to have the same taxon,
we label reads in the same cluster together. The proposed
method only chooses the hits which are mapped by the
majority of reads in the core of clusters. For example,
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assuming that after performing the similarity search for
the core consisting of 5 reads (from r; to r5) in Fig. 1, and
applying a filtering at the read level, we have 5 lists of hits
corresponding to the reads (the list of hits for read 7; is
denoted by #j,1 <j <5).

h ={G1, Go, Gz},

hy = {G1, Gy},
h3 = {Ga, Gs},
hy = {G2, G4},
hs = {Ga},

in which, Gi,G3,G3,Gs are the names of genomes
(BLAST hits). If we choose a threshold is 60 %, it means
that the hits mapped by at least 0.6 x 5 = 3 reads in
the cluster core will be chosen. Therefore, the hit G, is
retained, while the others are discarded.

Algorithms

This section describes algorithmic aspects of the pro-
posed method in details. Figure 2 presents the process
of SeMeta, including two major steps: Clustering and
Taxonomic Assignment.

Step 1: clustering

In this step, reads are classified into clusters of closely
related organisms using an improvement of BiMeta [25] -
an efficient clustering algorithm for metagenomic reads. It
is similar to BiMeta, the proposed algorithm firstly groups
reads based on their overlapping information among
them. A k-means algorithm is used to merge the groups
into clusters basing on extracted /-mer frequencies of the
groups themselves. However, there are two differences in
SeMeta compared to BiMeta. Firstly, since /-mer frequen-
cies extracted from extremely small groups are usually
not reliable due to the lack of composition information,
SeMeta removes them from the phase of group merg-
ing to improve the clustering precision. Secondly, while
BiMeta requires the number of clusters in data from users,
SeMeta is able to detect it automatically by using the
evaluation function f (k) from the study in [27]. The eval-
uation method has been demonstrated to be effective for
k-means based algorithms.
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Fig. 1 A subset of non-overlapping reads in a cluster. A cluster consists of 16 reads. A subset of 5 non-overlapping reads from ry to r5 covers most of
positions from x to y in the reference sequence. Those reads are also mapped with reference sequences G, Gy, Gs, G4 with high bit-scores
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Fig. 2 Process of SeMeta. Step 1 separates reads into clusters, and builds the cluster cores. Step 2 does similarity searching between the cores and

Building cores of clusters

After reads are separated into k clusters Cy, . . ., C, cores
of the clusters are built based on the information of over-
lapping sequence between reads. A core K(C;),1 < i <
k, of a cluster C;, which will be a representative of the
cluster, is equivalent to an independent set or stable set
on graphs. An independent set defined on a graph is a
set of vertices which does not consist any pair of adja-
cent vertices [28]. In this work, a greedy heuristic algo-
rithm is applied to find a maximal independent set of the
cluster.

In practice, datasets may contain reads of extremely
low-abundance genomes. These reads are more likely sep-
arated into extremely small groups due to the lack of reads
overlapping with them. As a result, they could be removed
from the clustering step. As an effort to label the reads, the
proposed algorithm considers them as clusters and puts
them to the taxonomic assignment process. This means
that in this case, C; = K(C;).

Step 2: taxonomic assignment
This step consists of the three following tasks:

- Task 1 - Similarity search: All reads in cluster cores
generated in step 1 are mapped against reference
databases by the BLAST tool. As denoted above,
hj,j € N, is a list of distinct hits returned by the
similarity search for a read r;. Each hit £ € /; has a
bit-score denoted by bs(z).

- Task 2 - Labeling clusters: The labeling of each
cluster C;,1 < i < k, is based on the mapping results
of the reads in its core K(C;) against reference
databases, described in Algorithm 1. The idea behind
the algorithm is as follows. Given a list

L = {hj,1 <j < |L|}, consisting |L| lists of hits
returned by the similarity search for all reads

rj € K(C;), the algorithm performs a filtering
technique at two levels: read level and cluster level.

+ Read level: Two parameters min-score Sy
and top-percent py,, are applied. The
threshold min-score s,,;, is used to discard the
hits of extremely low bit-scores. Among the
remaining hits of each read, the second
threshold top-percent py,, allows to choose
the highest bit-score hits of them.

+ Cluster level: This level uses a threshold 0,4«
to reduce further unreliable hits. Let U be a set
of hits, and U = U}ﬂlhj. We define a function

f:U — Nbyf(t) = the number of the
occurrences of a hit t in L. By using the
function, the algorithm only retains the hits
which occur in at least 0,45 percentage of the
lists in L. If the value of 0,4 leads to that all
list zj € L,1 < j < |L|, are empty, it will be
decreased by half once.

Finally, the Lowest Common Ancestor (LCA)
algorithm is used to find the lowest common taxon of
remaining hits after the filtering. Cluster C; as well as
all reads r € C; will be labeled by the common taxon.
- Task 3 - Post processing: This task is to merge clusters
which have the same label into the same cluster.
Some clusters may not be labeled because their reads
do not match with any reference sequences or match
with extremely low bit-scores. Those reads and the
reads of clusters assigned at the highest level of the
taxonomy tree will be considered as unassigned reads.
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Algorithm 1 Taxonomic assignment of a cluster
Input: Lists of hits L = {/;,1 < j < |L|} of a cluster core
K(Cy),1 < i < k; min-score Sy;,; top-percent pyp;
max-oCCUr Oygyx.
Output: Taxonomy name and taxonomy identity of clus-
ter C;
: /[Filtering at the read level
. forallje{l,...,|L]} do
|/ Filtering with s,y
hj = {t € hj|bs(t) > Syin}
| [Filtering with pyop
hj = prop% hits of highest bit-score of 4;
: end for
. //Filtering at the cluster level with 0,45
u= Ull»illhj
. M = {Omax) Omax/2, 0}
i=1,Q=40
: while Q = 0 do
Q={te Uty > my)
L =
i=i+1
: end while
. Call LCA algorithm for Q.
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Databases

The protein RefSeq database (release 69, January 2, 2015),
including 51,661 microbial organisms from the NCBI
(National Center for Biotechnology Information), is used
as a reference database. In order to validate the pro-
posed method in the aspects of assignment for known and
unknown species, different variants of the database are
created corresponding to two scenarios:

i) Known species: This scenario simulates the case that
reference databases contain sequences of species in
queries.

ii) Unknown species: In this case, sequences of query
species are absent in reference databases.

Performance metrics

The proposed method is evaluated with metrics which
are commonly used in literature [17, 29, 30]. They can be
defined as follows. Let N be the total number of reads, and
A be the number of assigned reads. Considering at taxo-
nomic level i, let E; be the number of reads assigned to
the correct taxa exactly at this level, and U; be the number
of reads assigned to the correct taxa under this level. Two
metrics sensitivity and precision (notated by sensitivitys
and precisiony, respectively in this work) can be calculated
by the following formulations (From now, when we only
mention that reads are assigned at a taxonomic level, it
means that the reads are assigned exactly at or under the
taxonomic level).

sensitivity (at level i) = ! 1_[ L
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Ei+ U

Y

For example, given a read originating from Mycoplasma
Sfermentans, when we consider at genus level, an assign-
ment of the read as Mycolasma would increase Ej,
and Mycoplasma fermentans, Mycoplasma gallisepticum
would increase U;. These values are computed at five
taxonomic levels: species, genus, family, order, and class.

Because each of the metrics precision and sensitiv-
ity itself does not fully reflect the performance of an
assignment algorithm, we use an additional metric named
F-measure emphasizing comprehensively on the both
metrics. It is defined as in [31].

precisiony (at level i) =

2
1 + 1

precisiong sensitivitys

F — measuresq =

One of the meaningful goals of metagenomic analy-
sis is to discover the DNA sequences belonging to novel
organisms whose genomes are not present in reference
databases. This can be measured by calculating the total
number of reads assigned to the correct taxa exactly at
taxonomic levels supported by the evidence. The assign-
ment to the correct taxa under the taxonomic levels
would be counted as incorrect assignment [30]. This study
applies the measurement for the database scenario of
unknown species as follows.

ZieT E;

sensitivityp = N
precisiong = %,

in which, T = the lowest levels of the correct taxa sup-
ported by the evidence. For example, given a read from
a species not present in a reference database. Assuming
that sequences from the same family with the organism
are available, but no sequences from the same genus are
present in the reference database, E; would be counted
exactly at family level.

Results

SeMeta is compared with two well-known similarity-
based algorithms on the RefSeq database: MEGAN [15]
(version 5.8.6), and SOrt-ITEMS [16]. Two common
parameter thresholds, namely minimum bit-score, and the
top-percent, of the three algorithms are set equally of
35 and 10 %, respectively. Remaining parameters of the
MEGAN and SOrt-ITEMS are set by default. The max-
occur threshold 0,,,x of the proposed algorithm is set
of 50% for all tests. In order to perform the similarity
search, the BLASTx tool (version 2.2.30) is downloaded
from the NCBI website. The tool runs with the fast mode
(parameter -task is blastx-fast), and other parameters are
set to default values. Besides, the algorithms use the NCBI
taxonomy versions reported in Additional file 1.
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Datasets

Three simulated datasets (described in Additional file 2:
Table S1, S2 and S3), named dsl,ds2 and ds3, respec-
tively, are generated using bacterial genomes from the
NCBI database. These datasets are created by MetaSim
tool [32] following the Illumina error profile with length
of 80 bp, and 100 bp, and an error rate of 1 %. The num-
ber of genomes in the datasets are 5, 10, and 15. Dataset
ds1 and ds3 consists of genomes which are described in
[16, 30], respectively.

SeMeta also is used to analyze two real metagenomes.
The first dataset is the Acid Mine Drainage (AMD)
dataset [1] which consists of 180,713 sequences, down-
loaded from NCBI trace archive. The second real dataset
is the sample MH0051 containing of human gut metage-
nomic (HGM) data [3]. It consists of 20,309,712 Illumina
paired-end reads with the length of 75 bp.

Validation of SeMeta on simulated datasets

SeMeta is compared with MEGAN and SOrt-ITEMS on
the dataset dsl, ds2 and ds3 for two scenarios of refer-
ence databases: known species and unknown species. For
the first scenario, it can be seen from Table 1 that SeMeta
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returns much better results than MEGAN and SOrt-
ITEMS at species level. While SOrt-ITEMS is unable
to detect any organisms at this level, SeMeta achieves
from 10.12 % to 29.46 % sensitivity, higher than those of
MEGAN, and from 0.04% to 27.54% precisions higher
those of the method for the three datasets. At the higher
levels from genus to class, SeMeta and MEGAN outper-
form SOrtITEMS in both aspects of the sensitivitys and
the precisiony. Although MEGAN gets higher precisiony
values than SeMeta in the levels for dataset ds1 and ds2,
the proposed method returns better semsitivity, values
than MEGAN for all cases.

Figure 3 presents the F-measuresy of the three algo-
rithms, which reflects the overall classification quality of
them in this scenario. At species level, SeMeta achieves
5.5%, 24.77 %, 25.77 % F-measurey higher than those of
MEGAN for dataset dsl, ds2 and ds3, respectively. At
the remaining levels, MEGAN gets slightly higher F-
measuresy than those of SeMeta for dataset dsl. Con-
versely, SeMeta returns better F-measures, than those of
MEGAN for dataset ds2 and ds3.

Table 2 shows the experimental results of the three
algorithms for the scenario of unknown species. Because

Table 1 The performance of MEGAN, SOrt-ITEMS and SeMeta on the simulated datasets at different taxonomic levels - The scenario of

known species

Method Species Genus Family Order Class
level level level level level
Dataset ds1
MEGAN Sen.a 56.9% 69.13% 69.47 % 71.34% 71.79%
Pre.s 67.83% 82.42% 82.82% 85.06 % 85.59%
SOrt-ITEMS Sen.a N/A 37.83% 3891 % 39.87% 48.84%
Pre.s N/A 4583 % 47.14 % 48.31% 5917 %
SeMeta Sen., 67.02% 72.96 % 72.99 % 73.27 % 75.19%
Pre. 67.87 % 73.89% 73.92% 7421 % 76.15%
Dataset ds2
MEGAN Sen., 46.78% 74.94% 7571% 75.85% 7742 %
Pre. 5829% 93.36 % 94.33 % 94.49 % 96.46 %
SOrt-ITEMS Sen., N/A 5851 % 60.7 % 60.8 % 7191 %
Pre.s N/A 74.76 % 77.56 % 77.69 % 91.89%
SeMeta Sen., 76.24% 86.01 % 86.09 % 86.11 % 90.5 %
Pre.s 771 % 86.98 % 87.07 % 87.09 % 91.52%
Dataset ds3
MEGAN Sen.a 36.82% 49.55% 57.54% 58.1% 61.68%
Pre.s 4291 % 57.76 % 67.07 % 67.73% 71.89%
SOrt-ITEMS Sen.a N/A 34.88 % 50.12% 55.96 % 63.2%
Pre.s N/A 4248 % 61.04% 68.15% 76.97 %
SeMeta Sen.a 61.03 % 68.33 % 76.57 % 77.07 % 81.14%
Pre.s 70.45% 78.88 % 88.39% 88.97 % 93.67 %

N/A = Not Available. The bold values indicate the best results among the algorithms in the aspect of sensitivitys (Sen.4) or precisiona (Pre.s)
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Fig. 3 The F-measure, of MEGAN, SOrt-ITEMS, and SeMeta on simulated datasets for the scenario of known species. The left chart is for the dataset
ds1, the middle chart is for dataset ds2, and the right chart is for the dataset ds3
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all sequences of species in each dataset are removed
from the reference database (RefSeq database), we only
validate the methods at genus level to higher levels.
It is interesting that SeMeta also achieves much better
precisions and sensitivity4 than those of MEGAN and
SOrt-ITEMS at genus level for the three datasets. SeMeta
gets from 5.24 % to 46.91 % sensitivitys, and from 2.82 % to
47.57 % precision higher than those of the two remaining
methods.

For the higher levels from family to class, it is differ-
ent from the scenario of known species, SeMeta out-
performs the remaining algorithms for all cases. Our
method achieves higher both precisions and sensitivitys
than those of MEGAN and SOrt-ITEMS for most of the
cases (7 out of 9 cases). Consequently, the F-measuresy
of our algorithm are much higher than those of the other
methods for all cases in this scenario (presented in Fig. 4).

In the aspect of assigning reads to the correct taxa
exactly at the lowest levels supported by the evidence
(for the scenario of unknown species), SeMeta and SOrt-
ITEMS get higher senusitivityg and precisiong than those
of MEGAN for the three datasets (Fig. 5). In addition,
while SOrt-ITEMS achieves higher results than SeMeta
for dataset ds2, the proposed algorithm is better than
SOrt-ITEMS for dataset ds1 and ds3.

Computational costs

Considering the computational efficiency, we compute the
runtime of different steps of SeMeta on dataset ds2, and
compare them with those of MEGAN, and SOrt-ITEMS.
This experiments is conducted on virtual machines with a
hardware configuration of 4-core processor, 132 GB RAM,
running at 2.4 GHz. It can be seen from the Table 3 that

SeMeta spends running time approximately 5.6 times less
than those of MEGAN and SOrt-ITEMS (187.67 h com-
pared with 1052.57 h, and 1061 h, respectively). For more
details, although SeMeta has to spend time to perform
the clustering step while the two other methods do not,
the proposed method requires much less runtime than
MEGAN and SOrt-ITEMS at the similarity search and
assignment steps.

In addition, the similarity search by BLAST against
the reference database (RefSeq) is very time-consuming,
and the majority of computational costs of the three
algorithms are used for this task. For example, it costs
approximately 1052 CPU hours to perform the BLAST
search for all 428,674 queries of dataset ds2 on our sys-
tem, and the task accounts for 99.9 % of the total running
time of MEGAN on this dataset. Thus, the number of
BLAST search against the reference database can help
us to estimate roughly the computational costs of the
algorithms.

Figure 6 presents the number of BLAST queries
required by MEGAN or SOrt-ITEMS on three datasets
dsl, ds2, and ds3. Since MEGAN and SOrt-ITEMS
have to perform the similarity search against reference
database for all reads in the datasets, the number of
BLAST queries required by the two algorithms is the
same (Note that, SOrt-ITEMS also performs the BLAST
search at the assignment step, called reciprocal search.
However, it does not search against the given reference
database, and is not counted in this experiment). Due to
the usage of cluster cores, SeMeta requires the number
of BLAST queries approximately 4.5 times less than in
average those of MEGAN or SOrt-ITEMS for the three
datasets.
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Table 2 The performance of MEGAN, SOrt-ITEMS, and SeMeta on the simulated datasets at different taxonomic levels - The scenario of
unknown species

Method Genus Family Order Class
level level level level
Dataset ds1
MEGAN Sen.a 50.35% 51.63% 59.38% 60.15%
Pre., 70.36% 72.14% 82.98% 84.05%
SOrt-ITEMS Sen.a 21.05% 27.96 % 31.91% 41.05%
Pre. 30.11% 40% 45.66 % 58.73%
SeMeta Sen.a 67.66 % 74.64 % 75.38% 76.59 %
Pre.s 77.68 % 85.71% 86.57 % 87.95%
Dataset ds2
MEGAN Sen., 56.14% 58.74 % 59.1% 61.39%
Pre. 8323% 87.08 % 87.62% 91.05%
SOrt-ITEMS Sen.a 31.54% 39.69 % 40.05% 52.6%
Pre. 48.05% 60.46 % 61.02% 80.14%
SeMeta Sen.a 78.45 % 78.53 % 78.55 % 83.06 %
Pre. 86.05 % 86.13% 86.15% 91.09 %
Dataset ds3
MEGAN Sen. 32.18% 5248 % 56.32% 61.78%
Pre.s 4143 % 67.57 % 7251 % 79.54 %
SOrt-ITEMS Sen., 9.34% 28.5% 34.19% 4442 %
Pre., 12.45% 37.98% 4557 % 59.2%
SeMeta Sen.a 37.41% 58.64 % 60.38 % 71.46 %
Pre. 49.37 % 77.39% 79.68 % 94.31%

The bold values indicate the best results among the algorithms in the aspect of sensitivitys (Sen.s) or precisions (Pre.s)

MEGAN BN SOrt-l TEMS B SeMeta B MEGAN BEEEE SOrt-ITEMS B SeMeta BT MEGAN BEESE SOrt-ITEMS B SeMeta BT

1 T T T T 1 T T T T 1 T T T T

F-measure
F-measure 5
F-measure s

Genus Family Order Class Genus Family Order Class Genus Family Order Class
Level Level Level
Fig. 4 The F-measure, of MEGAN, SOrt-ITEMS, and SeMeta on simulated dataset for the scenario of unknown species. The left chart is for the dataset
ds1, the middle chart is for dataset ds2, and the right chart is for the dataset ds3
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Parameter evaluation
Further experiments are conducted for dataset ds2 to val-
idate the impact of parameters on the performance of
SeMeta. It can be seen from Additional file 1: Figures S1 to
S6 that when parameter min-score #1,,;,, and top-percent
Pmax are not too high (mu, < 50,pmar < 20%), the
classification quality of SeMeta is relatively stable at con-
sidered taxonomic levels. In the other hand, the various
values of parameter max-occur 0,4, do not highly affect
the performance of SeMeta at class level. However, the
proposed algorithm gets high sensitivity4 and precisiony
at species level or genus level when 40 % < 0,41 < 60 %.
In another aspect, SeMeta achieves high sensitivityp and
precisionp values when 40 < m,;;, < 60 in the case of
assigning reads from unknown species exactly at the low-
est taxonomic levels supported by the evidence (presented
in Additional file 1: Figures S7 to S9). When parame-
ter pmax increases, the trend is that the sensitivityp and
precisionp of SeMeta decrease. In addition, the increase of
parameter 0,4, can increase the seusitivityp, but decrease
the precisionp of SeMeta.

Table 3 The running time of MEGAN, SOrt-ITEMS, and SeMeta on
dataset ds2

Methods  Clustering Similarity search  Assignment  Total
runtime (hour) runtime (hour)  runtime (hour) (hour)
MEGAN N/A 1052 0.57 1052.57
SOrt-ITEMS  N/A 1052 9 1061
SeMeta 0.62 187 0.05 187.67

N/A = Not Available

The effect of the usage of cluster cores

In order to validate the effect of usage of cluster cores
on the classification quality, we compare SeMeta with its
variant in which all reads in each cluster are used for label-
ing the cluster, instead of using cluster cores. Additional
file 1: Figure S10, S11 and S12 compare the performance
of SeMeta with that of the not using core algorithm on
dataset ds2. It can be seen from the figures that the
usage of cluster cores does not much reduce the classifica-
tion quality. At most of the considered taxonomic levels,
SeMeta gets from 0.1% to 1.8 % lower sewusitivitys, and
precisiony than those of the variant algorithm. Besides,
not using core algorithm obviously gets slightly better
sensitivityp and precisiong than SeMeta in the aspect of
assigning exactly at taxonomic levels. However, from the
experiment, SeMeta runs approximately 5 times faster
than the variant algorithm.

Results on real datasets

The AMD metagenome

By using a traditional method, a study in [1] has revealed
that the AMD dataset contains five dominant species:
Leptospirillum sp. Group III, Leptospirillum sp. Group I,
Thermoplasmatales archaeon Gpl, Ferroplasma sp. Type
II, and Ferroplasma acidarmanus. Among of them, Ferro-
plasma sp. Type I, and Leptospirillum sp. Group II have
higher abundances than the remaining species. SeMeta is
able to assign 79.03 % of the AMD sequences, and returns
results (Fig. 7) supporting the previous observation. Our
algorithm has detected three species of them including:
Ferroplasma sp. Type Il (27.75%), Thermoplasmatales
archaeon Gpl (11.75%), and Ferroplasma acidarmanus
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Fig. 6 The number of BLAST queries of MEGAN/SOrt-ITEMS, and SeMeta for simulated datasets

(10.22%). Besides, because the RefSeq database does not
contain two species Leptospirillum sp. Group III and Lep-
tospirillum sp. Group II, SeMeta has detected the exis-
tence of genus Leptospirillum and some species belonging
to the taxon. They account for 40.49 % in the dataset. A
small remaining percentage of the dataset belongs to other
organisms with 9.78 %. Besides, the number of required
BLAST queries accounts for approximately 33.46 % of the
number of the AMD sequences.

The human gut metagenome

For considering the aspect of the computational efficiency
of SeMeta on a large real metagenome, this study con-
ducts an experiment on a sample from the HGM dataset.
The experiment shows that SeMeta only performs the

similarity search for approximately 20 % of the total num-
ber of sequences in the dataset. The list of the most
abundant taxa detected by the proposed method is pre-
sented in Additional file 2: Table S4 (considering at species
level), and Additional file 2: Table S5 (considering at genus
level). It can be seen that there are 6 out of the 20 detected
species appearing in the list of common microbial species
in human gut presented in the study [3], and 11 out of 20
detected genus are in the list. The results demonstrate that
SeMeta could be a potential method to work with large
metagegomes.

Discussions
It is a fact that binning algorithms get more difficult
to classify reads at lower taxonomic levels. From the

Ferroplasma sp. Type II

27.75% \

Thermoplasmatales
archaeon Gpl 11.75%

Fig. 7 Results of SeMeta on the AMD dataset

Leptospirillum's species
40.49%

~—Other orgamisms
9.78%

Ferroplasma acidarmanus
10.22%
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experimental results, the proposed method outperforms
MEGAN and SOrt-ITEMS at the lowest considered lev-
els (species level for the first scenario, and genus level for
the second scenario). This is resulted from the reason that
after reads are grouped into clusters during the clustering
step, the filtering step by using parameter max-occur 0,4
at cluster level helps to reduce ambiguous hits success-
fully, and thus many clusters are assigned correctly to low
levels. The technique also performs effectively for the sce-
nario of unknown species. In this case, since all sequences
of species present in datasets are removed from reference
databases, reads in the datasets are likely to be mapped
against reference sequences with low bit-scores, and thus
many hits are ambiguous. The filtering makes SeMeta suc-
cessful in selecting reliable hits, and helps it to classify
reads better than the other methods.

In the clustering step of the proposed algorithm, an
expected case is that the number of clusters detected auto-
matically is equal or higher than the number of species
in datasets. When reads from the same species are sepa-
rated into different clusters, they are likely to be assigned
into the same taxon in the second step of the method. In
the case that reads are separated into a smaller number of
clusters than the expected one, some clusters which con-
tain reads from different species may be assigned to taxa
of higher taxonomic levels (e.g., genus, family, or higher
levels).

The prediction of correct taxa for reads from unknown
species exactly at the taxonomic levels supported by
the evidence, which helps to discover novel organisms
directly, is still a challenge. In this aspect, the sensitivityp
and precisionp of the tested methods in the experiments
are lower than 38 % for the lowest supported levels. Note
that, the results corroborate with the previous experi-
ments [16, 19] in which the number of reads assigned
correctly is not high for low taxonomic levels. Thus,
this could be a future research direction for our work
to improve the classification quality of the proposed
algorithm.

Conclusions

In this paper, we present a semi-supervised method to
solve the taxonomic assignment of metagnomic reads.
With the support of an unsupervised learning process
and an efficient filtering technique at cluster level, the
proposed algorithm is able to achieve high classification
quality in different aspects. In case of classifying short
reads which have sufficient mutual coverage, SeMeta out-
performs the two other similarity-based methods. In addi-
tion, the usage of reads in cluster cores instead of clusters
helps reducing computational costs significantly. For the
demand of processing a huge amount of sequences from
microbial communities, the algorithm can be used as a
promising tool to analyze metagenomic sequences.
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