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ABSTRACT
Background. Invasive gibel carp, Carassius gibelio (Bloch, 1782) has become well-
established in the Hungarian waters and now are spreading in the European waters.
On major concern now is the potential hybridization between gibel carp and the other
invasive species in the Carassius auratus complex (CAC), which may further accelerate
the spread of the whole invasive species complex. The identification of gibel carp and
their hybrids is difficult because of its morphological similarity to the other species
in CAC. Here we carry out a genomic assessment to understand the history of gibel
carp invasion and its phylogenetic relationship with the other species in CAC. Three
loci of the mitochondrial genome (D-loop, CoI, Cytb) were used to determine the
phylogenetic origin of individuals and relarionship among six gibel carp populations
and the other species in the CAC.
Methodolgy. A total of 132 gibel carp samples from six locations in Southern
Transdanubia (Hungary) were collected after phenotypic identification to measure the
genetic diversity within and among gibel carp populations of Southern Transdanubia
(Hungary). The genetic background was examined by the sequences of the mito-
chondrial genome: D-loop, Cytochrome c oxidase I (CoI) and Cytochrome b (Cytb).
Mitochondrial genetic markers are excellent tools for phylogenetic studies because
they are maternally inherited. Successfully identified haplotypes were aligned and with
reference sequences in nucleotide databases (i.e., NCBI-BLAST: National Centre for
Biotechnology Information and BOLD: Barcode of Life Data System). The phylogenetic
relationships among gibel carp populations were then analyzed together with the
reference sequences to understand the relationship and the level of hybridization with
the species in CAC.
Results. Among the 132 aligned D-loop sequences 22 haplotypes were identified.
Further examination of representative individuals of the 22 haplotypes, six Cytb and
four CoI sequences were detected. The largest number of haplotypes of all three loci
were found in Lake Balaton, the largest shallow lake in Central Europe. Based on the
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NCBI-BLAST alignment of the D-loop, haplotypes of Carassius auratus auratus and
Carassius a. buergeri in CAC were identified in the C. gibelio samples. Further analysis
of haplotypes with the other two mitochondrial markers confirmed the occurrence of
intragenus hybridization of C. gibelio in the Hungarian waters.
Conclusion. By using three mitochondrial markers (D-loop, Cytb, CoI), we genomi-
cally characterized a gibel carp-complex in Hungarian waters and assessed theC. gibelio
phylogenetic status between them. Hybrid origin of locally invasiveCarassius taxon was
detected in Hungary. It points out that invasive species are not only present in Hungary
but reproduce with each other in the waters, further accelerating their spread.

Subjects Aquaculture, Fisheries and Fish Science, Biodiversity, Ecology, Genetics, Freshwater
Biology
Keywords Population genetic, Mitochondrial, Carassius, Hybridization, Taxonomy

INTRODUCTION
Gibel carp, Carassius gibelio (Bloch, 1782) is a highly invasive fish species in European
freshwaters (Ferincz et al., 2016b; Piria et al., 2016; Puntila et al., 2013). It belongs to the
Cyprinidae family, the biggest freshwater fish family, and the genus Carassius is native in
East Asia (Nelson, Grande & Wilson, 1994). The circumstances of its initial introduction
to Europe are still unclarified. The species’ mass invasion dates back to the second half of
the 20th century (Balon et al., 1974; Banarescu, 1991; Holcik, 1980; Lelek, 1987), which was
facilitated by human activities such as intentional introduction for creating aquaculture
and accidental introduction to common carp stock (Kalous & Knytl, 2011) and their high
ecological tolerance (Rylkova & Kalous, 2013) and ability of gynogenetic spawning (Zhou,
Wang & Gui, 2000; Toth et al., 2000; Toth et al., 2005). Gibel carp was also introduced
to North America (Elgin, Tunna & Jackson, 2014) and rapidly became one of the most
successful invasive species, its area expanded by 233–1,250 km2/year (Docherty et al., 2017),
which gives a warning sign to Western European countries, where gibel carp is occurring
in an increasing number of freshwater habitats (Perdikaris et al., 2012; Vasile, Gibelio &
Species, 2019;DeGiosa, Czerniejewski & Rybczyk, 2014; Przybyl et al., 2020; Verreycken et al.,
2007). The species’ impact on native communities is mainly through food competition in
natural waters (Halacka, Luskova & Lusk, 2003). For example, it is known to outcompete
crucian carp (Carassius carassius, Linnaeus 1758), native to European lentic waters (Harper
et al., 2019).

In Hungary, it was mentioned in the literature the first time in 1887 by Herman, but
it was most likely a misidentified specimen (Herman, 1887). The first official shipment to
fish farms arrived in 1954, from Bulgaria (Szalay, 1954). Nowadays it is one of the most
common generalist fish species in the lowland waters of the country (Takacs et al., 2017).

Although gibel carps are now found in most of European waters, its taxonomy remains
unsolved. The species has been grouped into the Carassius auratus-complex (CAC), which
also includes, for example, C. auratus, C. gibelio, C. praecipuus, C. langsdorfii, C. cuvieri, C.
carassius (Rylkova et al., 2018; Takada et al., 2010). Some authors referred it as a subspecies
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of the goldfish,Carassius auratus (Linnaeus, 1758), but the others argued that the differences
are not enough to list it as a subspecies and both belong to the same speciesC. auratus (Berg,
1932; Guti, 1993; Pinter, 2002). Furthermore, gibel carp has different levels of ploidy (2n=
100, 3n= 150–160) within a single population (Zhou & Gui, 2017) whichmakes the genetic
diversity analysis of this species even more difficult. Kalous et al. (2012) have specified two
neotypes of theC. gibelio. The described neotypes and knowledge of the genetic background
allows tracking of the spreads of gibel carp populations and CAC and help understand the
level of hybridization among them. Hybrids between gibel carp and the other species in
CAC can be more of a threat to native species than gibel carp in European waters given
their rapid growth and even wider environmental tolerance (Wouters et al., 2012).

The main objectives of this study are, by using different molecular markers, to
identify gibel carp haplotypes, assess the phylogenetic status of the recent, locally invasive
populations in Hungary, and understand their genetic diversity within and among these
populations.

MATERIALS AND METHODS
Sample collection and DNA extraction
One hundred and thirty-two gibel carp samples were collected from six locations in
Hungary including Lake Balaton (Siófok; n= 29; N46◦54′24 E18◦02′41), two reservoirs of
Kis-BalatonWater Protection System (KBWPS) I stage (n= 17; N46◦36′02 E17◦09′01) and
II (n= 18; N46◦39′47 E17◦07′23), Hőgyész (n= 30; N46◦28′34 E18◦26′02), Siófok-Töreki
fish pond system (n= 19; N46◦52′32 E18◦00′14) and Őszödi-berek wetland (n= 19;
N46◦49′02 E17◦48′12) (Fig. 1). Fish collection for laboratory examinations was authorized
by the Government Office of Pest county (Permit no.: XIV-I-001/2302-4/2012). Fishes were
collected with electrofishing and from the eel trap of Balaton Fish Management Nonprofit
Ltd. at Siófok. Since gibel carp is an invasive fish species, all collected individuals were
euthanized with clove oil before tissue samples were collected for DNA sequencing. Tissue
samplings have been authorized by the Minister of Agriculture (Permit no.: HHgF/122-
1/2018). Tissue samples were collected from the caudal fin and then stored in 96%
ethanol at −20 C◦ before use. DNA was isolated from the tissue samples by E.Z.N.A
Tissue DNA Kit (Omega Bio-tek, Norcross, GA, USA) following the producer’s protocol.
DNA concentration was measured by spectrophotometer (IMPLEN, NanoPhotometerTM

Uv/Vis) and the quality was tested by running 250 ng of each DNA sample on 1.5% agarose
gel.

PCR amplification and sequences
The control region of the mitochondrial genome (D-loop) was amplified with primers
from the Cyprinidae family, Carp-pro2-F (5′-TCACCCCTGGCTCCCAAAGC-3′) and
Carp-phe2-R (5′-CTAGGACTCATCTTAGCATCTTCAGTG-3′) (Wang et al., 2010).
PCR reaction final volume was 25 µl, contained 1 × PCR buffer with (NH4)2SO4

(Fermentas; Thermo Fisher Scientific, Waltham, MA, USA), 2000 µM dNTP mix,
250 nM for each primer, 1.5 mM MgCl2, 100 ng template and 1 U Taq polymerase
(Fermentas). To collect more information about the populations, the resulting haplotypes
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Figure 1 Location of Carassius gibelio sampling sites. 1:Siófok, 2:KWBPS II., 3:KWBPS I., 4:Hőgyész,
5:Siófok-Törek, 6: Őszödi-berek.

Full-size DOI: 10.7717/peerj.12441/fig-1

were analysed by using the same protocol with primers from the Cytochrome c oxidase I
gene (CoI): CO1_FF2d_F (5′-TTCTCCACCAACCACAARGAYATYGG-3′), CO1_FR1d_R
(5′-CACCTCAGGGTGTCCGAARAAYCARAA-3′) (Ivanova et al., 2007) and with primers
from the Cytochrome b (Cytb): Cytb_H_2_R (5′-GTTTGTTTTCTAACCCGATCAATG-
3′) Cytbas_F (5′-GAAGGCGGTCATCATAACTAG-3′) (Xiao, Zhang & Liu, 2001). PCR
temperature profiles were the following for all three markers: Denaturation at 95 ◦C for 2
min., then 30 s. at 94 ◦C, 20 s. at 52 ◦C and 1 min. at 72 ◦C for 35 cycles. Final elongation
was at 72 ◦C for 10 min. PCR product quality was assessed on a 1.5% agarose gel, then
purified by NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, Germany). The
purified product was sequenced from both ends using a Big Dye Terminator v. 3.1 Cycle
Sequencing kit (Applied Biosystem), based on the method of sanger sequencing with an
ABI 3130 Genetic Analyzer machine.

Bioinformatic and statistical analysis
Chromatograms were converted to FASTA file format with BioEdit Sequence Alignment
Editor (Hall, 1999). The 699 bp long sequences of the D-loop region were aligned and
analysed by the MegaX software (Kumar et al., 2018) with the ClustalW algorithm.
Haplotypes diversity was calculated based on the polymorphic sites and haplotypes by using
the DnaSP version 5 (Librado & Rozas, 2009) software. Pairwise FST values were calculated
by using the MegaX software (Kumar et al., 2018). Different haplotypes were checked
and compared with outgroup sequences from the National Centre for Biotechnology
Information (NCBI GenBank) standard database (https://www.ncbi.nlm.nih.gov/) by
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nucleotide BLAST (Basic Local Alignment Search Tools). CoI results were compared to the
sequences of the BOLD (Barcode of Life Data System) system (http://v3.boldsystems.org/).
The network of the D-loop haplotypes was built using a median joining algorithm by
using PopART software (Rohl, Bandelt & Forster, 1999; Clement et al., 2002). We used the
closest related species (C. auratus, C. a. buergeri, Carassius carassius, C. cuvieri, Cyprinus
carpio carpio) as reference sequences along with other C. gibelio haplotypes found in the
literature. In case of Cytb based on the genetic distance and the phylogenetic tree was
reconstructed byMegaX software with Neighbour Joining fitting with Kimura-2 parameter
and 1,000 bootstrap replication. The references were the haplotypes described in C. gibelio
neotypes by Kalous et al. (2012), as well as European sequences described by Takada et al.
in the Carassius auratus-complex, where a European clade was identified based on the Cytb
sequence (Takada et al., 2010).

RESULTS
D-loop
Based on the comparisons of 699 bp long sequences of theD-loop region, 22 haplotypeswere
identified in 132 individuals (Table 1). Three of these (HapDl_1, HapDl_7, HapDl_21)
were identified in more than 15 individuals while the others were less frequent. These
haplotypes were present in maximum 6 individuals. Within the haplotypes, the number of
polymorphic sites was 43 (Fig. 2). For each population, the highest haplotype diversity was
in Siófok 0,83 (HD) ± 0,04 (SD). The second was the KWBPS I with 0,80 (HD) ± 0,08
(SD). The lowest value was 0,19 (HD) ± 0,11 (SD) for the population of Őszödi-berek. In
the population of Hőgyész HD was 0,72 ± 0,05 (SD), in the population of Siófok-Törek
0,66 ± 0,07 and in the population of KWBPS II. HD was 0,63 ± 0,09 (SD). Thirty-
five sites were parsimony informative, based on the DnaSP analyses. Samples from all
locations represented a mixture of different haplotypes except those for the sequences from
Őszödi-berek, which separated into two individual groups (HapDl_21, HapDl_22) and
the HapDl_2 group with seven individuals from Lake Balaton. Twelve other haplotypes
were found (HapDl_3, HapDl_5, HapDl_6, HapDl_10, HapDl_11, HapDl_12, HapDl_14,
HapDl_15, HapDl_17, HapDl_18, HapDl_19, HapDl_20), of which each contained only
one or two samples from one location. The identified haplotypes were divided into three
major groups separated on the network figure (Fig. 3). Most of the haplotypes, included the
two largest groups (HapDl_1, HapDl_7), clustered together in the first group (Dl_Group
1.). The second group (Dl_Group 2.) contained five haplotypes (HapDl_3, HapDl_8,
HapDl_11, HapDl_14, HapDl_20) and the third group contained only one haplotype
(HapDl_4) closer to the Carassius auratus buergeri (AB377291.1) sequence, than the other
Carassius gibelio haplotypes did. The rest of the outgroup sequences (AC.: LC019787.1,
JN117597.1, JX122531.1, JQ390593.1) were separated according to the genetic distance.

Six groups (HapDl_3, HapDl_4, HapDl_8, HapDl_9, HapDl_11, HapDl_15) with the
total of 12 individuals were identified differently as gibel carp (Table 1). Two of them
(HapDl_11, HapDl_15) contained only samples from Hőgyész and were identified as
C. auratus. Samples from haplotype 8, 9, and 3 were identified as C. auratus too, along
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Table 1 Gibel carp populations and the number of haplotypes identified in them.

N (Sio) N (Hog) N (KWBPS II.) N (Ob) N (KWBPS I.) N (To) N (all)

HapDl_1 9 11 10 0 7 9 46
HapDl_2 7 0 0 0 0 0 7
HapDl_3 2 0 0 0 0 0 2
HapDl_4 1 0 0 0 0 2 3
HapDl_5 2 0 0 0 0 0 2
HapDl_6 1 0 0 0 0 0 1
HapDl_7 5 12 5 0 4 7 33
HapDl_8 1 0 0 0 1 0 2
HapDl_9 1 1 0 0 0 0 2
HapDl_10 0 0 0 0 0 1 1
HapDl_11 0 2 0 0 0 0 2
HapDl_12 0 1 0 0 0 0 1
HapDl_13 0 1 2 0 0 0 3
HapDl_14 0 1 0 0 0 0 1
HapDl_15 0 1 0 0 0 0 1
HapDl_16 0 0 1 0 1 0 2
HapDl_17 0 0 0 0 1 0 1
HapDl_18 0 0 0 0 1 0 1
HapDl_19 0 0 0 0 1 0 1
HapDl_20 0 0 0 0 1 0 1
HapDl_21 0 0 0 17 0 0 17
HapDl_22 0 0 0 2 0 0 2

Notes.
Sio, Siófok; Hog, Hőgyész; KBWPS II, Kis-Balaton Water Protecting System II; Stage, Ob, Őszödi-berek; KBWPS I, Kis-
Balaton Water Protecting System I; Stage, To, Törek and N; (HapDl), the number of D-loop haplotypes.

with samples from Lake Balaton and KBWPS Stage I. Haplotype 4 has shown the highest
similarity with C. a. buergeri instead of gibel carps. Samples in this group were from Lake
Balaton and the ponds of Siófok-Töreki. KBWPS Stage II. was the sole population with
only C. gibelio haplotypes (EF633617.1, MF083605.1, MF036180.1, MF036179.1). Lake
Balaton samples have the highest genetic diversity of nine haplotypes. This was followed
by the samples from KBWPS Stage I. with eight haplotypes (Table 1). Őszödi-berek had
only two haplotypes (HapDl_ 21, HapDl_22). The two D-loop sequence variants, detected
in the case of 19 individuals characterized only this population.

Pairwise FST value (Table 2) among the populations has shown a moderate difference
between each pair but most of the values were lower than 0.1, with the exception of one
population (Őszödi-berek) which resulted in higher values. The lowest difference (−0.015)
was identified between the populations of Hőgyész and KBWPS Stage I.

Cytochrome b
Cytb sequences were analysed to confirm the results of 22 D-loop haplotypes. Only six
Cytb haplotypes were identified. The complete length of the sequence region was 1057 bp.
Within the haplotypes the numbers of polymorphic sites were 27 (Fig. 4). NCBI database
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Figure 2 Hungarian Carasssius gibelioD-loop haplotypes and the polymorphic sites that define them.
Full-size DOI: 10.7717/peerj.12441/fig-2

was used to check the evolutionary origin of the sequences. All six haplotypes were detected
asCarassius gibelio (Table 3). None of the first 100 listed results are recognized asC. auratus,
C. a. buergeri or other CAC species. Based on the previous work of Kalous et al. (2012)Cytb
haplotypes were compared to the neotype sequences they described (AC: HM000009,
HM0000020, GU170378, FJ822041, FJ478019, Ab368700, HM000008, HM008678,
JN402305, HM008684, HM008685.1, DQ868924, DQ868925, DQ868926, HM008690)
and the sequences described by Takada et al. (2010) (DQ399926.1., DQ399929.1) and were
presented together on the phylogenetic tree (Fig. 5). Two of the six Hungarian haplotypes
(HapCb_1, HapCb_4) were integrated into the first neotype group with other European
sequences and two haplotypes to neotype II. (HapCb_3, HapCb_5) which contain only
reference sequences from Mongolia. The third group on the top of the three contained the
sequences described by Takada et al. (2010), and the Hungarian HapCb_6 and HapCb_2.
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Figure 3 D-loop haplotype network obtained with PopART software, showing relationship among
Hungarian Gibel carp populations. Black plots are the median vector inserted by PopART software and
HapDl_n are the Hungarian haplotype groups. Blue circles are (Dl_Group 1, Dl_Group 2, Dl_Group 3)
representing the haplotypes closest to eachother.

Full-size DOI: 10.7717/peerj.12441/fig-3

Cytochrome c oxidase 1
CoI gene sequences of the 22 D-loop haplotypes were also determined. The length of the
analysed fragment was 562 bp long. Four haplotypes (Fig. 6) were identified. Within the
haplotypes the number of polymorphic sites was three. Sequences were analysed by NCBI
BLAST and BOLD system. According to the BLAST standard nucleotide database two
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Table 2 Pairwise FST values between gibel carp populations created byMEGAX software.

Siófok-Töreki Törek Hőgyész KWBPS II KWBPS I

Siófok_Töreki
Törek 0.010
Hőgyész 0.034 0.018
KWBPS II 0.073 0.028 0.020
KWBPS I 0.012 0.002 −0.015 0.017
Őszödi-berek 0.485 0.423 0.616 0.751 0.556

Figure 4 Hungarian Gibel carp Cytochrome b haplotypes and the defining polymorphic sites, made by
DnaSp.

Full-size DOI: 10.7717/peerj.12441/fig-4

Table 3 Gibel carp Cytb haplotype identification results by BLAST system.

BLAST Query Identity Ac. number

HapCb_1 Carassius gibelio 100% 100% KX601122.1
HapCb_2 Carassius gibelio 100% 100% HM000019.1
HapCb_3 Carassius gibelio 100% 100% KX601124.1
HapCb_4 Carassius gibelio 100% 99% HQ689899.1
HapCb_5 Carassius gibelio 100% 100% MG281946.1
HapCb_6 Carassius gibelio 100% 99% LC337602.1

groups (HapCoI_2 and HapCoI_4) out of four showed the highest similarity with Tatia
intermedia, one with Cyprinus carpio haematopterus (HapCoI_1) and one with C. auratus
(HapCoI_3) (Table 4).

The group containingmost of the samples (HapCoI_2) had 100% of identity coverage of
the Tatia intermedia query sequence. Furthermore, based on the BOLD system HapCoI_2
and HapCoI_4 were identified as C. gibelio. HapCoI_1, as well as HapCoI_3 have shown
the highest similarity with C. a. auratus. In the case of HapCoI_3, not even the first 20 hits
contained C. gibelio sequences. The phylogenetic tree formed three clearly visible branches
(Fig. 7). The first branch included the HapCoI_1 and HapCoI_3. The second branch
contained the HapCoI_2 and the HapCoI_4 was in the third group.
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Figure 5 Cytb haplotypes compared to two gibel carp subgroups (C. gib. I and C. gib. II) defined by
Kalous et al. and the sequences of Czech origins marked and designated as European clade by Takada
et al. Phylogenetic tree was prepared with Neighbour-Joining fitting, taking into account the Kimura-2-
parameter model, using a bootstrap value of 1000 with MEGA-X software, rooted a common carp Cytb
sequence (AY347293. 1).

Full-size DOI: 10.7717/peerj.12441/fig-5

DISCUSSION
Sequence diversity of three mitochondrial loci (D-loop, Cytb, and CoI) was analysed
in six natural Carassius gibelio populations in Hungary. Among the 132 aligned D-loop
sequences 22 haplotypes were identified. The majority of the individuals belonged to
two haplotypes (HapDl_1 and HapDl_7), characterizing almost every sampling location.
These haplogroups contained samples also from the geographically distant fish ponds of
Hőgyész, which is attributed to be ancestral. These haplotypes are in a centroid position
among others in the network system (Fig. 3). The rest of the haplotypes were found only
in a small number of individuals.

The largest number of haplotypes of all three loci were found in Lake Balaton, which
corresponds to the size of the lake (the largest shallow lake in Central Europe Istvanovics
et al., 2007). Haplotype diversity is potentially corresponded with the diverse and
geographically isolated spawning habitats, situated in the inflows throughout the catchment.
Young fish usually stay in these habitats until they reach 1–3 years of age (Specziár, 2010).
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Figure 6 Hungarian gibel carp’s Cytochrome c. oxidase I haplotypes and the polymorphic sites de-
fined them, made by DnaSp ver. 6.

Full-size DOI: 10.7717/peerj.12441/fig-6

Figure 7 Gibel carp phylogenetic tree based on Cytochrome oxidase I haplotypes. Phylogenetic tree
was prepared with Neighbour-Joining fitting, taking into account the Kimura-2-parameter model, using a
bootstrap value of 1000 with MEGA-X software, rooted a common carp COI sequence (JX9832831).

Full-size DOI: 10.7717/peerj.12441/fig-7

Smaller populations contained less haplotypes, ranging from two (Őszödi-berek) to eight
(Hőgyész).

Based on the fixation index, the differences among populations are limited. This
indicates the presence of gene flow because of the migration and efficient reproduction
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Table 4 Gibel carp CoI haplotype identification results by BLAST and BOLD system.

CoI BLAST results Accession number BOLD results

HapCoI_1 (n= 1) Cyprinus carpio haematopterus MK726305.1 Carassius auratus
HapCoI_2 (n= 17) Tatia intermedia MK078120.1 Carassius gibelio
HapCoI_3 (n= 3) Carassius auratus auratus MT559523.1 Carassius auratus
HapCoI_4 (n= 1) Tatia intermedia MK078120.1 Carassius gibelio

among the populations. The only exception is the population of Őszödi-berek, which is a
completely closed water system, no fish can reach or escape from it. There, we identified
only two haplotypes and they were not present in other populations. This wetland was
disconnected from other water bodies during the water regulation period of the early
19th century (Zlinszky & Timar, 2013). Gibel carp was most possibly introduced to this
site unintentionally by coarse angels, which has been documented in other systems in
the earlier years (Docherty et al., 2017). The wetland suffered from multiple, at least
partial droughts in the last 20 years, which most possibly resulted in a population level
bottleneck (Ferincz et al., 2016a; Lennox et al., 2019). Similar observations were made in the
cases ofGadopsis marmoratus in Australia (Coleman et al., 2018) and Eupallasella percnurus
in Poland (Kaczmarczyk & Wolnicki, 2016), which reinforced that isolated populations are
more vulnerable to stochastic events.

Five C. a. auratus (HapDl_1, HapDl_3, HapDl_8, HapDl_14, HapDl_20) and one
C. a. buergeri (HapDl_4) haplotypes were identified in 5 different populations with
low frequency. The most distant haplotype (HapDl_4) was identified as C. a. buergeri
(Temminck & Schlegel, 1846) but contained only 3 individuals. The genetic detachment
of these individuals is clear. The presence of these haplotypes in the studied natural
‘‘gibel carp’’ populations clearly indicates interspecific hybridization among CAC species
in this region. The two ornamentally bred species (C. auratus and C. a. buergeri) are
not native in the European waters, but originated from different types of goldfish kept
commonly by aquarists. None of the previous European studies (Kalous et al., 2012;Rylkova
& Kalous, 2013;Kalous et al., 2007;Tsipas et al., 2009) revealed the presence ofC. a. buergeri
from natural waters outside of Asia (Ueda & Ojima, 1978; Ojima & Yamano, 1980;
Kobayasi, Ochi & Takeuchi, 1973). Our research did not find any sequence that could
originate from other nonindigenous species in CAC previously described from European
waters (e.g., Carassius langsdorfii) (Rylkova & Kalous, 2013; Kalous et al., 2007; Tsipas et al.,
2009) or hybrids with the native Carassius carassius (Zlinszky & Timar, 2013; Rylkova et al.,
2013). Nonetheless the hybridization between the members of the CAC cannot be ruled
out based solely on the mitochondrial regions. Because of their maternal inheritance, only
the female Carassius gibelio sequences are detectable and the paternal lines remains hidden.

To get a more comprehensive information, the sequences of Cytb and CoI loci of 22
haplotypes were examined. However, neither Cytb nor CoI has shown as many haplotypes
as the D-loop did. Rylkova & Kalous (2013) also reported that Cytb showed low genetic
diversity. The Cytb haplotypes supported the phenotypic identification but does not
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confirm the presence of C. auratus and the group, determined as C. a. buergeri. Comparing
to the D-loop BLAST results none of the first 100 scored Cytb hits contained sequences
from the species C. a. buergeri. The CoI was the less informative marker of the three tested
types. It has identified only four haplotypes. However, based on the BLAST analysis of
the standard nucleotide full database of GeneBank, all four showed unreliable results. The
highly scored overlapping with the driftwood catfish (Tatia intermedia) and the amur wild
carp (Cyprinus carpio haematopterus) in the database draws attention to the weakness of
using online databases, which could contain incorrectly uploaded data. For example Elgin,
Tunna & Jackson (2014) and Buhay (2009) both had similar experience with the CoI. The
benefits of the BOLD (barcode based) system were emphasized, but it did not help to
clarify our results. Based on our results, we agree with Tsipas et al. (2009) that in the future,
in order to determine the status of gibel carp in taxonomic studies, it will be necessary to
include nuclear markers in addition to mitochondrial markers. Nuclear genetic markers
are able to widen genetic identification and may be suitable for finding foreign sequence
pieces that can be used to explore the hybrid origin, which may be hidden due to maternal
inheritance in the analyses of the mitochondrial genome. However, more markers (from
4 to 70) should have to be used for the proper identification of hybrids in the later or
backcrossed generations (Boecklen & Howard, 1997).

The Cytb and CoI have the lowest mutation rate among the mitochondrial protein
coding genes in fish. The CoI is used in BOLD system for species identification but our
results are revealed that Cytb can be used more efficiently for identification the CAC
complex because of more reliable databases. This marker showed the highest agreement
with the phenotypes. While the D-loop showed the highest genetic variability. It is in
agreement with other studies and explained by the highest mutation rate of the only larger
non-coding mitochondrial region (Brown Wesley, Matthew Jr & Wilson, 1979; Parker et al.,
1998). It is much more informative, than the nuclear markers when used for the analysis
of closely related species, subspecies categories or populations (Brown Wesley, Matthew Jr
& Wilson, 1979; Lagouge & Larsson, 2013; Ballard & Whitlock, 2004). Our results also show
that this region can be efficiently used for intrapopulation analyses for identifying hybrids
in CAC.

CONCLUSIONS
This study is the first genetic diversity assessment for Hungarian gibel carp populations, in
which we reported the recent homogenous genetic background of the studied populations.
However, the potential hybrid origins of gibel carps were identified in the studied waters.
The origin of the introgressed C. auratus sequences is doubtful but denotes the unreliability
of morphological based identification of taxa within the genus Carassius and the hidden
presence of goldfish in natural waters of Hungary.
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