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Introduction

Neuroendocrine tumors (NETs) are considered a heterogeneous 
group of tumors, which make up 0.9% of all tumors affecting 
about 7 out of 100,000 people each year and also emanate from 

nerve and endocrine cells [1]. NETs are divided into functional and non-
functional groups, meaning that they produce hormones and symptoms 
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ABSTRACT
Background: Radiomics is the computation of quantitative image features  
extracted from medical imaging modalities to help clinical decision support systems, 
which could ultimately meliorate personalized management based on individual  
characteristics. 
Objective: This study aimed to create a predictive model of response to peptide 
receptor radionuclide therapy (PRRT) using radiomics computed tomography (CT) 
images to decrease the dose for patients if they are not a candidate for treatment.
Material and Methods: In the current retrospective study, 34 patients with 
neuroendocrine tumors whose disease is clinically confirmed participated. Effective 
factors in the treatment were selected by eXtreme gradient boosting (XGBoost) and 
minimum redundancy maximum relevance (mRMR). Classifiers of decision trees 
(DT), random forest (RF), and K-nearest neighbors (KNN) with selected quantitative 
and clinical features were used for modeling. A confusion matrix was used to evaluate 
the performance of the model. 
Results: Out of 866 quantitative and clinical features, nine features with the  
XGBoost method and ten features with the mRMR pattern were selected that had 
the most relevance in predicting response to treatment. Selected features of the XG-
Boost method in integration with the RF classifier provided the highest accuracy  
(accuracy: 89%), and features selected by the mRMR method in combination with the 
RF classifier showed satisfactory performance (accuracy: 74%).  
Conclusion: This exploratory analysis shows that radiomic features with high  
accuracy can effectively predict response to personalize treatment.
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or do not [2]. Several treatments are considered 
for neuroendocrine tumors, such as surgery, 
chemotherapy, and peptide receptor radionu-
clide therapy [3, 4]. Peptide receptor radionu-
clide therapy (PRRT) with 177Lu was approved 
by the U.S. Food and Drug Administration 
(FDA) and the European Medical Agency 
(EMA) is currently used for NETs treatment. 
Over the past few years, lutetium-177 (177Lu) 
radionuclide has been of great interest in re-
search and clinical fields [5-8] and can be used 
for both imaging and treatment purposes due 
to the emission of gamma and beta particles 
[6]. Many studies in recent years have been 
performed to evaluate the treatment of 177Lu-
DOTATATE in patients with NETs using  
clinical factors [7-9]. 

Experimental findings show that using 177Lu-
DOTATATE therapy for advanced, metastatic 
gastrointestinal NETs leads to a significant im-
provement in progression-free survival (PFS) 
and overall survival (OS) compared with high 
dose octreotide long-acting repeatable (LAR) 
60 mg [7]. In 2020, Casas et al. studied the 
treatment of 177Lu-DOTATATE in patients 
with metastatic neuroendocrine tumors and 
prognostic factors. PRRT was used to deter-
mine the quality of life of patients and overall 
survival, and the median overall survival was 
12.5 months (95% confidence interval range: 
9.8-15.2). Overall survival was inversely pro-
portional to previous tumor grade and the 
presence of bone metastasis [8]. 

Dromain et al. [10] evaluated tumor growth 
rates to predict the sequel of patients with 
neuroendocrine tumors and found the tumor 
growth rate at three months (TGR3m) was  
robust, and also early radiological features 
could predict progression-free survival (PFS). 

Medical imaging plays a fundamental role 
in evaluating the performance of NETs as 
an inseparable part of cancer care, resulting 
in transforming clinical decision-making in 
medicine [11]. Computed tomography (CT) 
is the most usual imaging technique used 
in patients with advanced cancer, assesses  

comprehensively tumor location, size, shape, 
margin, and metastasis, and plays a fundamen-
tal role in managing patients in PRRT therapy 
[12]. Based on some articles [7-9], PRRT treat-
ment has been evaluated without considering 
the radiomic features or that these features 
have only been used to predict the degree of 
neuroendocrine tumors. Radiomics can extract 
and analyze many attributes from the medical 
images that characterize the tumor phenotype 
[13]. Fave et al. [14] used delta-radiomics fea-
tures (i.e. original image features) to predict 
patient outcomes in non-small cell lung cancer 
and found that delta features had a statistically 
substantial effect on the overall probability 
of a model for overall survival compared to a 
model with clinical features. 

No study has been conducted to predict the 
response to 177Lu-DOTATATE radiopharma-
ceutical treatment using radiomic results of 
CT images [7-10]. This study aimed to show 
that injecting toxic radiopharmaceuticals is 
not necessary if the patient is not a candidate 
for PRRT treatment with 177Lu. Accordingly, 
the dose delivered to the patient is reduced by 
saving time and cost [15].

Material and Methods

Patients and ethical approval
The present study type is experimental and 

analytical. A total of 34 patients with meta-
static NETs who underwent PRRT treatment 
in the nuclear medicine section of Shohada  
Tajrish Hospital were included in the prospec-
tive study. Before treatment, consent was ob-
tained from all patients.

Seventeen patients were female, and the 
others were male. The mean ages of men and 
women were 55.47 and 56.13, respectively. 
The “Ki-67” index was measured for patients 
according to immunohistochemistry (IHC) 
[2]. Eleven, twelve, and two patients had  
Ki-67<3%, 3%<Ki-67<20%, and Ki-67>20%, 
respectively. The condition of seven patients 
was unknown, and six patients underwent four 
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cycles of treatment. Three patients stopped 
treatment due to inadequate response to treat-
ment, and six patients died in the middle of 
treatment. Moreover, two patients used mag-
netic resonance imaging (MRI) for follow-
up. Seventy-two CT images were obtained 
from these patients with NETs used for the 
radiomics procedure. Baseline information is 
listed in Table 1.

PRRT
Each patient with NETs received four to 

six courses of 177Lu-DOTATATE radiophar-
maceuticals with an interval of two to three 
months. Additionally, each patient was in-
jected with 7.4 GBq of the radiopharmaceu-
tical. In some patients (20 patients), due to 
their physical condition and the diagnosis of 
a nuclear specialist, the injected dose was less 
than (5.5-7.4 GBq) the mentioned amount. 

Four to six weeks after receiving each dose of 
radiopharmaceuticals for possible side effects, 
patients were tested based on blood tests, kid-
ney, and liver function parameters, such as 
“white blood cell count (WBC)”, “red blood 
cell count (RBC)”, “hemoglobin test (Hb)”, 
“creatinine blood test (Cr)”, “platelet count 
(PLT)”, “blood urea nitrogen (BUN)”, “biliru-
bin test (Bil)”, “alkaline phosphatase level test 
(ALP test)”, “alanine aminotransferase (ALT, 
or SGPT)”, and “aspartate aminotransferase 
(AST, or SGOT)”.

According to the “Working Group on Defini-
tions of Biomarkers of the National Institutes 
of Health”, the mentioned biomarkers are pre-
dictive [16]. Furthermore, the dose injected 
into each patient in each course of treatment 
and Ki-67 index was considered the other 
clinical features. The mean index of other pa-
tients was used for patients whose index was 
unknown.

Follow-up
After receiving the dose in each period, ten 

parameters were used as a questionnaire using 
the “Edmonton Symptom Assessment Sys-
tem” (ESAS-R) scale to evaluate the effect of 
177Lu-DOTATATE radiopharmaceutical on the 
quality of life of each patient. These parame-
ters included pain assessment, fatigue, drowsi-
ness, nausea, anorexia, shortness of breath, de-
pression, anxiety rate, overall improvement”, 
and maximum problem rate. Patients were 
asked to select a number between zero and ten 
for each assessment based on their condition 
that zero and ten indicated the least problem 
and the most problem, respectively. Eastern 
Cooperative Oncology Group (ECOG) per-
formance status assessment was also used for 
patients’ conditions. Further, CT images of 
each patient were taken before treatment and 
two stages after treatment (six months and 
twelve months after treatment) [17]. After re-
ceiving the second and fourth doses, the first 
and second, first, and fourth questionnaires 
were compared to determine the effect of  

Characteristic Patients Number
Gender

Male (Age average) 17 (55.47)
Female (Age average) 15 (56.13)

The range of patients' age 36-81
Dead patients 6

IHC result
Ki-67<3% 11

3%<Ki-67<20% 12
Ki-67≥20% 2

Unknown Ki-6 7
Site of metastasis

Pelvis 3
Liver 28

Lungs 6
Lymph nodes 8

Bone 6
Multiple subs cutaneous 1

Breast 1
IHC: Immunohistochemistry, Ki-67: The Ki-67 or mitotic  
index are ways of describing how many cells are dividing.

Table 1: The baseline of patients 
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radiopharmaceuticals on the patient’s body. 
The patients’ status was labeled for classifi-
cation problems and machine learning algo-
rithms. If only 25% of the patient’s condition 
improved compared to before receiving treat-
ment, it was considered as non-response to 
treatment and also labeled “1”. If the recovery 
was between 25-75%, i.e. relative recovery, 
in which case the patient was given a label of 
“2”, and label “3” was awarded for a recovery 
above 75%. Finally, the label was zero for pa-
tients without any therapeutic dose.

Radiomics process 
The radiomics process is as follows: a) im-

age acquisition, b) segmentation of the tumor 
area, c) feature extraction, d) feature selection, 
and e) model construction and evaluation [13].
CT acquisition and segmentation
CT images were taken of patients as the first 

step in the radiomics process that the first CT 
was taken from the whole body of the patients 
before injecting the first dose of 177Lu-DOT-
ATATE. The second and third CTs were taken 
three months after receiving the second and 
the last dose, respectively, to follow the pa-
tient’s condition. Depending on the treatment 
stage, two to three images were prepared for 
each patient. Since patients took images from 
different treatment centers, the dimensions and 
image spacing of the images were compared, 
and all of those had the same dimensions of 
512×512 with different voxel sizes. There-
fore, resampling was performed on all imag-
es, and the size of the voxels was changed to  
1×1×1 mm3. The regions of interest (ROI) in 
each CT image identified by a radiology spe-
cialist (primary tumor and its metastases) were 
segmented using 3D slicer software (version 
4.11, open-source software; https: //www.slic-
er.org/) [18].
Feature extraction
Feature extraction from ROI was performed 

using the “Radiomics” plugin by 3D slicer 
software. For each CT image, features were 
extracted slice-by-slice and combined with 

clinical biomarkers. The class or label was 
determined by the patient’s condition, accord-
ing to the labeling in the follow-up stage. The  
extracted features included morphological, 
first-order statistical, texture, and second-
order or higher statistical features. A total of 
14 morphological features, 18 first-order sta-
tistical features, and 75 tissue features were 
extracted [19]. Higher-order of statistical fea-
tures was obtained after using filters or apply-
ing mathematical transformations to images to 
identify repetitive or non-repetitive patterns, 
suppress noise, or highlight details using sta-
tistical methods [20]. Further, 744 wavelet-
based features were extracted using the 3D 
slicer software. The number of metastases and 
the size of two large metastases of each patient 
were added to the other features as imaging 
features.
Feature selection (FS)
From 72 CT images from patients, 854 and 

12 quantitative and clinical features were ex-
tracted, respectively. The number of features 
was reduced to a smaller number of samples 
to avoid the probability of the model overfit-
ting and also increase the performance speed 
of the model. There are generally three meth-
ods for selecting important features, such as 
the filter method, the wrapper method, and the 
embedded method. In the current study, Ex-
treme Gradient Boosting (XGBoost) [21] and 
minimum redundancy maximum relevance 
(mRMR) methods [22] were used to reduce 
the number of features and select the appropri-
ate attributes. XGBoost is an embedded meth-
od that can support classification and regres-
sion problems. XGBoost is in the category of 
boosted gradient decision tree algorithms with 
a very good performance in feature ranking. 
Due to the high computational speed and good 
performance of the model and its practice ef-
ficiency, it can be effective in academic circles 
[21]. mRMR is a popular filter method in med-
ical studies, used for classification problems. 
In this algorithm, mutual information is used 
to measure the level of similarity between the 
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two features, in which the features with the 
same behavior are excluded, and the few fea-
tures that are most relevant to the output are 
selected [22]. 

The t-test method was used after selecting 
the features in different ways to obtain the 
relationship of each feature with the output 
(response to treatment) based on the P-value. 
The t-test compares two averages and distin-
guishes if they are different from each other. 
A P-value of <0.05 was assumed statistically 
significant.
Classification
Decision trees with Gini coefficient (DT), 

random forest (RF), and K- nearest neighbors 
(KNN) classifiers were used and implemented 
using Python (version 3.8.4) to demonstrate 
the effect of the selected features [23-26]. A 
total of 9-fold cross-validations with 100 itera-
tions on the dataset were used to avoid overfit-
ting or underfitting of the model [12, 27].
Model validation
Since the present study is a multi-class clas-

sification problem with labels (0, 1, 2, 3), 
a confusion matrix was used to evaluate the 
performance of the model. The dimensions 
of this matrix were N×N (N: the number of 
target classes). The constituent parameters of 
this matrix included true positive (TP), true 
negative (TN), false positive (FP), and false-
negative (FN). From the confusion matrix  

created by the model, the performance of each 
class was measured individually with the cri-
teria of sensitivity (SN), specificity (SP), and 
accuracy (ACC). Finally, the performance of 
the entire model was obtained as a macro aver-
age by averaging the size of all classes in that 
particular criterion [28]. The critical metrics 
obtained from this matrix are as follows.

TPSN=
TP+FN

                                                 (1)

TNSP=
TN+FP

                                                (2)

2TPF1 value  
2TP FP FN

− =
+ +

                        (3)

TP+TNACC=
TP+TN+FP+FN

                              (4) 

Results
Clinical biomarkers were combined with the 

radiomic features and inputted XGBoost and 
mRMR feature selection algorithms. A total 
of 9 features were selected by the XGBoost 
method with a threshold of 0.03 (Figure 1). 

In the mRMR method, 15 top features were 
selected according to their importance, mod-
eled by the classifiers (RF, DT, KNN), and 
the accuracy of the models was obtained. In 
the next step, 8-14 features were modeled 
separately. The results showed that the top 10  

Figure 1: Obtained features by the eXtreme gradient boosting (XGB) algorithm 
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features performed better in terms of accuracy 
as shown as a box plot in Figure 2.

As shown in Figures 1 and 2, both the XG-
Boost and mRMR algorithms identify only 
one feature as a significant attribute among 
the twelve clinical biomarkers, called “Dose” 
in the dataset, which is the amount of injected 
dose into each patient during each course of 
treatment. Other vital features were selected 
from the quantitative features, which in the 
XGBoost method, five features were related to 
wavelet-based features, and two and one fea-
tures were selected from the morphologic and 
first-order statistical features, respectively. In 
the mRMR method, all selected image fea-
tures were wavelet-based features. Other than 
the “LLH_glcm_DifferenceVariance” feature 
with (P-value=0.2), the rest of the features 
with the P-value<0.01 showed a significant 
relationship with the response to treatment 
function.

These features were used in modeling with 
DT (Gini), RF, and KNN classifiers. The  
confusion matrices obtained in all three classi-
fiers are shown in Figures 3 and 4. 

In these matrices, the columns and rows 
show the predicted and actual values of the 
target variable, respectively. The actual values 
were compared with the values predicted by 
the machine learning model and measured the 
model’s performance.

According to the confusion matrices in  
Figures 3 and 4, sensitivity (SN), F1-Score, 
specificity (SP), and accuracy (ACC) pa-
rameters are calculated as the average of all  
classes in DT (Gini), RF, KNN. For each 
classifier based on the XGBoost and mRMR  
patterns, the total average of each metric was 
given in Tables 2 and 3.

Table 2 illustrates modeling based on the 
XGBoost algorithm, high accuracy of 89% 
was achieved by RF with SN 86%, SP 96%, 

Figure 3: Confusion matrices of decision tree (DT), random forest (RF), K-nearest neighbors 
(KNN) based on the eXtreme gradient boosting (XGB) algorithm 

Figure 2: The box plot of selected features with the minimum redundancy maximum relevance 
(mRMR) 
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and F1-score of 87%.

According to Table 3, the RF classifier based 
on mRMR has an accuracy of 74% with an 
SN of 65%, SP of 91%, and F1 score of 66%. 
The number of trees (n-estimator) in the RF  
algorithm was considered equal to 100. 

The low accuracy is based on both feature 
selection algorithms related to the KNN clas-
sifier. The number of neighbors (K) in the 
KNN algorithm for the features obtained from 
the XGBoost and mRMR patterns were set to 
5 and 7, respectively. The classifiers gained 

higher accuracy due to adjusting the men-
tioned parameters in these numbers.

Discussion
In medical imaging and oncology, tumor 

size and clinical biomarkers are used to as-
sess treatment response [29]. Many research-
ers have examined the relationship between  
imaging features, such as tumor size on CT 
images, and predicting response to treatment. 
A group of international researchers developed 
response assessment criteria in solid tumors 

Modeling based on XGBoost FS SN SP F1-value ACC
DT 0.81 0.95 0.80 0.83
RF 0.86 0.96 0.87 0.89

KNN 0.74 0.93 0.75 0.79
SN: Sensitivity, SP: Specificity, ACC: Accuracy, XGB: Extreme Gradient Boosting, FS: Feature Selection, DT: Decision Tree,  
RF: Random Forest, KNN: K-Nearest Neighbors

Table 2: Metric values obtained from the confusion matrices of different classifiers based on the 
XGBoost pattern.

Modeling based on mRMR FS SN SP F1-value ACC
DT 0.64 0.91 0.64 0.72
RF 0.65 0.91 0.66 0.74

KNN 0.54 0.64 0.52 0.67
SN: Sensitivity, SP: Specificity, ACC: Accuracy, XGB: Extreme Gradient Boosting, FS: Feature Selection, DT: Decision Tree,  
RF: Random Forest, KNN: K-Nearest Neighbors

Table 3: Metric values obtained from the confusion matrices of different classifiers based on the 
mRMR pattern.

Figure 4: Confusion matrices of decision tree (DT), random forest (RF), K-nearest neighbors 
(KNN) based on the minimum redundancy maximum relevance (mRMR) 
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to simplify treatment response using World 
Health Organization (WHO) criteria [30-32].

The Response Evaluation Criteria in Solid 
Tumors (RECIST) are summarized based 
on the evaluation of target lesions on CT by 
one-dimensional measurement of the longest 
diameter of each target lesion [33]. However, 
these criteria alone do not describe and sup-
port all tumor information, and the RECIST 
criterion has its limitations [34]. In addition 
to morphological features, radiomics can ad-
dress other features that characterize the tumor  
phenotype [35]. 

In this research, radiomic-based features 
were extracted from each CT image of pa-
tients and combined with clinical biomarkers 
(866 features). As mentioned before, because 
the dose injected into different patients varied 
according to the patient’s physical condition 
and test results, injection dose was considered 
a clinical feature. This biomarker (injection 
dose), identified as an important feature in both 
feature selection algorithms, is much more im-
portant than the quantitative features accord-
ing to Figures 1 and 2 (P-value=2.29×10-22). 
The present study was consistent with  
Coroller et al. [27] in correlations between 
clinical outcomes and quantitative imaging 
features. The relationship between features 
and response to treatment function was ex-
pressed based on the P-value (P<0.01). This 
means that the features obtained from different 
methods are more than 99.99% significantly 
related to the response to treatment. 

The sum of the numbers in each row of the 
confusion matrices represents the number of 
samples available for the corresponding label. 
As shown in Figures 3 and 4, the number of 
samples is not the same for all labels (0-3). 
Accordingly, in the present study, imbalanced 
data, affecting the accuracy and performance 
of the model, was investigated. There are sev-
eral ways to solve this problem to achieve a 
reliable result, the most important of which 
is the use of Decision Tree-based ensemble 
classifiers [36]. Therefore, in this study for  

modeling, the DT and RF classifiers were 
used, and the KNN classifier was also used 
because of the simplicity of its algorithm.

Confusion matrices were set up to repre-
sent the performance of the classifiers. In 
2020, Bethanney Janney [37] analyzed skin 
lesions using machine learning methods and 
used a confusion matrix to evaluate model  
performance. 

According to Tables 2 and 3, the KNN clas-
sifier performed weaker than the other clas-
sifiers in both feature selection methods due 
to imbalanced data. Therefore, this classifier 
is not a good predictor of response to treat-
ment. Amongst other machine learning tech-
niques, ensemble methods such as “RF” are 
premiere to solitary machine learning meth-
ods [21], and the results obtained from the 
classifiers used in this research indicate this  
(ACCin XGBoost FS+RF=89%, ACCin mRMR FS+RF=74%).

Some researchers have used receiver op-
erating characteristics (ROC) curves and 
the area under the curve (A.U.C) to evaluate 
the performance of the classification model 
[12, 38]. In 2020, Bian et al. [39] used a CT-
based radiomics score to distinguish between 
grade 1 and grade 2 nonfunctioning pancre-
atic neuroendocrine tumors and also used 
multivariate logistic regression models that 
the score showed high accuracy (AUC=0.86 
for all PNETs; AUC=0.81 for PNETs≤2 cm).  
Zhou et al. [38] conducted a study using CT-
based radiomic signatures for a potential bio-
marker to predict preoperative recurrence in 
hepatocellular carcinoma and used the least 
absolute shrinkage and selection operator lo-
gistic regression model for creating radiomics 
signature combined with the clinical model. 
Further, Zhou et al. reported the area under 
the curve of operating characteristics (ROC) 
(AUCs: 0.781 (95% CI: 0.719-0.834) and 
(0.836 (95% CI: 0.779-0.883)) to predict their 
performance to discriminate early recurrence. 

Based on the current study, the response to 
177Lu-DOTATATE treatment for patients with 
neuroendocrine tumors can be predicted using 
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radiomic features of CT images. The charac-
teristics of the XGBoost and mRMR patterns 
in combination with the RF classifier achieved 
high and moderate accuracy, respectively  
(Tables 2 and 3). Therefore, the XGBoost  
model performs better than mRMR in deter-
mining effective features. The features ob-
tained by the XGBoost pattern can be extract-
ed from the new patient’s CT image that these 
features are trained to the RF algorithm (due 
to their good performance), and the label of 
these features is predicted with high accuracy. 
Labels are predicted by coding in Python soft-
ware. Label “1” is no response to treatment 
and labels “2” and “3” are a partial and com-
plete response to treatment, respectively. The 
predicted label enables the specialist for a bet-
ter decision about the treatment process and 
uses alternative therapies. Accordingly, one of 
the goals of radiomics, which is the personal-
ization of treatment, is achieved [40].

One of the limitations of this study was CT 
images of patients taken at various medical 
centers. However, resampling was performed 
on all images and the voxels were the same 
size, different scans might cause potential 
noise in the image. The second challenge was 
the number of samples. Since these tumors 
are rare cancers, although several years have 
passed since the start of PRRT treatment in the 
hospital, the number of images obtained from 
patients for machine learning is less. It is sug-
gested that in the future, more patients and im-
ages will be used to study this disease as well 
as treatment methods and increase the accu-
racy of the model. However, manual segmen-
tation of the tumor is more accurate and robust 
than automatic and semi-automatic, it has less 
reproducibility [41]. Therefore, it is recom-
mended to use this segmentation method and 
other classifiers to measure the accuracy of 
the model in future studies. Considering that 
in this study, ESAS-R and ECOG scales were 
used to evaluate the response to treatment 
and label the classification models, the RE-
CIST scale can be used to predict response to  

treatment in future studies.

Conclusion
CT images of patients with NETs treated 

with PRRT were used to predict the response 
to 177Lu-DOTATATE treatment based on the 
radiomics process, which used XGBoost and 
mRMR algorithms to decrease the number of 
features. In both methods, quantitative fea-
tures in response to treatment took precedence 
over clinical biomarkers. Studies have shown 
that XGBoost is a more efficient algorithm 
than mRMR. The features obtained from the 
XGBoost method in combination with DT, 
RF, and KNN classifiers showed a much bet-
ter and more satisfying performance in terms 
of the accuracy than mRMR algorithm. This 
study also showed that radiomics as a non-in-
vasive and effective method could predict the 
response to the mentioned radiopharmaceuti-
cal treatment for patients with NETs, leading 
the specialist to decide easier whether or not 
to continue PRRT treatment for each patient.
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