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A B S T R A C T

This study investigated mixed microalgae consortia cultivation in a fed batch reactor using textile
wastewater. The results showed 95% of total phosphorus (TP) and 70% of total nitrogen (TN) depletion
during the operational period. Algal biomass growth, pollutant removal, and biomass constituents were
examined for five cycles of the fed batch operation. The length of the cycles decreased from 30 days to 10
days as the cycle repeated, which implied gradual adaptation of microalgae to textile wastewater. Color of
textile wastewater was removed in the range of 68–72% in all the cycles experimented. Microbial algal
cultivation with textile wastewater would be a feasible approach for remediation and resource recovery
purpose.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Energy consumption and demands for the new and efficient
technologies that utilize plenty of energy are growing simulta-
neously. This scenario led to various environmental issues along
with pollution urge the environmentalists for the immediate
action for the remediation of polluted sites, especially for the
wastewater treatment [1]. Wastewater is an immediate and
abundant source of plenty of nutrients and macro elements
necessary for the cultivation and growth of microalgae. This could
be an alternative to reduce the cost of the overall price of the
microalgae biofuel [2,3].

Microalgae bioremediation have been proved as an efficient
method for the treatment of various kinds of wastewater along
with the generation of biomass, which could be subsequently
utilized for the production of biofuels and bio products [1,4,5].
Previously, some investigations have been carried out photoauto-
trophic, heterotrophic and/or mixotrophic cultivation of micro-
algae biomass with the simultaneous treatment of municipal,
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brackish, secondary and industrial wastewater as a cheaper
nutrient medium (to replace the commercial/expensive bold’s
medium) and also renewable approach towards the resource
recovery [3,6,7].

In spite of the sustainable tackling of the win-win situation of
treatment and biomass production for energy production of
microalgae cultivation, prospecting cost-effective, nutrient abun-
dant growth medium is still a big challenge [1,3]. Exploration of
textile wastewater (TWW) for the microalgae cultivation is not
well studied in the literature, especially in the continuous
operation. Recently, the authors showed the feasibility of using
TWW in cycle conditions and reported that biomass productivity
could reach up to 0.419d�1 [3].

Fed batch reactor (FBR) has been successfully adapted for the
contaminant and organic wastewater treatment due to the benefits
including the easy adaptation, less space occupancy, and relatively
low-cost maintenance [7,8]. Revamping FBR technology for the
microalgae cultivation has been proposed with the main theme of
biomass cultivation in some earlier studies [9,10]. However, not
much attention has been paid to the effluent quality regulations of
effluent quality (Nitrogen, phosphorous and COD removal) along
with the various bio-components (carbohydrate, protein) formation.

Owing to the lack of microalgae studies relevant to the textile
wastewater treatment, this investigation studied an efficient
operation strategy of the FBR as a sturdy process towards the
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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treatment and also decolorization to be considered as a cost-
effective medium for the proficient eco-friendly and environmen-
tally friendly cultivation strategies. Furthermore, limitation in the
adaptation of continuous operation of 5 cycles has been performed
for the nutrient removal and also biomass accumulation.

2. Materials and methods

2.1. Isolation and cultivation of mixed microalgae consortia

Mixed microalgae consortia were collected and isolated
from Geumho River in Yeongcheon, Republic of Korea. The
collected culture was observed under microscope to check the
available microalgae. Before used in the real experiment,
preliminary cultivation was carried out with Basal Bold’s
Medium which was commonly used for freshwater microalgae.
The cultivation was conducted inside growth chamber under
light cycle of 12 h light/dark cycle with 212.21 � 22.22 mol.m�2.
s-1 light intensity. Four subcultures were continuously per-
formed resulted in Chlorella species was mostly dominated
followed by Scenedesmus species.

2.2. Growth/nutrient medium

Textile wastewater (TWW) was used for the fed batch micro-
algal growth [3]. No extra nutrients were added during the entire
operation. It was obtained from a textile industry located in Daegu,
Republic of Korea. Table 1 shows the physical/chemical character-
istics.

2.3. Experimental setup and operating procedures

In fed batch operation, the mixed microalgae consortia were
cultivated inside transparent plastic tube which is allowed light to
easily penetrate inside photo-bioreactor with a dimension of 14 cm
diameter and 43 cm height (39 cm working height). 500 mL of
microalgae consortia was mixed with 4000 mL of TWW to make up
the final volume (4500 mL working volume) at the start of the
experiment. The 3D design of the experimental configuration was
shown in Supplementary information. Photo-bioreactors frame
was designed with the stainless steel frame of 36 cm length, 30 cm
width, and 60 cm height with disposable cardboard covered the
whole structure as walls preventing light escaping. The light source
was provided with LED lights (model 5630-60SMD cool white,
Samsung, South Korea) fixed with a timer and dimer to control the
light cycle and light intensity. Light cycle was set as 12 h dark and
12 h light. As well as, the Light intensity was measured at the
photo-bioreactor outside the surface area by digital portable light
lux meter (UYIGAO, model UA1010B, China) resulted in 170.21 �
22.22 mmol.m�2.s-1. Aeration pump (AMAZONPET, model SH-A2,
China) was installed with stone sparger at fixed flowrate of 0.2 vvm
in order to provide CO2 needed for microalgae photosynthesis. As
Table 1
Physical/chemical characteristic of textile wastewater used in this study.

Description Unit 

pH 

Total solid (TS) g/l 

Volatile solid (VS) g/l 

Total suspended solid (TS) mg/l 

Volatile suspended solid (VS) mg/l 

Total chemical oxygen demand (T-COD) g/l 

Soluble chemical oxygen demand (S-COD) g/l 

Total nitrogen (TN) mg/l 

Total phosphorus (TP) mg/l 
well as, pH was maintained in the range of 8.2–9.0. The study has
been carried out in 5 cycles for 95 days (30 days for the 1st cycle, 22
days for the 2nd cycle, 20 days for the 3rd cycle, 13 days for the 4th
cycle, and 10 days for the 5th cycle). Each cycle of the experiment
was decided when 50% of COD, 95% of TP, and 70% of TN were
depleted. After each cycle finish, 2.5 L of the old culture suspension
was collected and then 2.5 L of fresh textile wastewater was added
for the next cycle to begin with.

2.4. Analytical procedures and calculation

Total solds (TS), volatile solids (VS), Total Nitrogen (TN) and
Total Phosphorous (TP), total suspended solids (TSS), volatile
suspended solids (VSS) and chemical oxygen demands (COD) were
analyzed by following Standard Methods [11]. Optical density (OD)
for microalgal growth was measured using UV-Spectrophotometer
(SHIMADZU, UV-VIS mini 1240, Japan) at 680 and 750 nm.

Total sugar and protein were measured by using the Phenol-
sulfuric acid method and Lowry method, respectively [3].

The growth rate was evaluated by Eq. (1):

m0 ¼ Ln ODf
� �� LnðODiÞ

tf � ti
ð1Þ

where, ODi = initial optical density at 680 nm, and ODf = final
optical density at 680 nm, tf = final time (days), and ti = initial time
(days).

Decolorization was evaluated by following Daneshvar et al.
(2007). Before checking the color concentration, microalgae
sample was filtered using 0.2 mm Watman filter paper in order
to separate microalgae from the wastewater. Wavelength detection
was run under UV-spectrum mode from 200 to 800 nm wavelength
resulted in maximum absorbance (lmax) was found at 519 nm.
Decolorization efficiency was calculated using Eq. (2):

Decolorization ð%Þ ¼ ABSi � ABSf
ABSi

� 100 ð2Þ

where, ABSi = initial absorbance at 519 nm and ABSf = final
absorbance at 519 nm.

CO2 fixation was estimated by Eq. (3) [12]:

RCO2 ¼ P�CCO2 �MCO2

MC
ð3Þ

where, RCO2 is the rate of CO2 fixation (g.L�1.day�1), P is the biomass
productivity (g.L�1.day�1), MCO2

is the molecular weight of carbon
dioxide, MC is the molecular weight of carbon. CCO2 is the carbon
content of microalgae biomass. Microalgae typically consist 50%
carbon of the total biomass [13].

The experiment in this study was carried out at least duplicate
and results were shown as mean value � standard deviation. The
statistical analyses were conducted using Microsoft Excel 2013 and
SigmaPlot 10.0.
Mean value Standard deviation

8.7 0.10
3.11 0.14
2.34 0.21
1.8 0.20
1.61 0.18
2.2 0.15
1.75 0.12
380.5 12
94 3
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3. Results and discussions

3.1. Growth of the microalgae consortia using TWW

Growth estimation by OD is well known to be used in
microbiology community since it indicate to measure the
suspended biomass inside the liquid sample [14]. The variation
of the OD values according to each cycle was shown in Fig. 1. It was
illustrated that OD was slightly changed in the first 5 days as lag
phase. Log-growth phase started until highest OD value at the 30th
day of cultivation of 2.66 and 1.48 for 680 and 750 nm, respectively
for the 1st cycle. The 2nd cycle was started with initial optical
density of 0.69 and 0.73 and ended with 2.72 and 1.55 for 680 and
750 nm with 22 cultivation days, for the 3rd cycle, dramatically
increase of the OD value was observed at the 6 days of cultivation,
respectively. This occurred because nutrients of the medium
(TWW) are mostly consumed within the log phase period (where
the major heterotrophic growth pattern has been observed). TS and
VS were obtained at 3.77 g/L and 2.86 g/L. On the 22nd day,
OD680nm and OD750nm were raised up 1.083–1.915, respectively.

From the 7th cultivation day, the cultivation was carried on in
order to observe the changes and resulted as slightly increased OD
value was observed until the 20th day of cultivation as the values of
3.07 and 1.69 were recorded for 680 and 750 nm at the end of the
cycle. For the 4th cycle, the cultivation stopped at 13th day (the
start of log phase) of cultivation, where 3.11 and 1.65 were noted
for OD 680 and 750 nm at the end of the experiment. The 5th cycle
was finished in 10 days of cultivation, where 2.57 and 1.95 were
marked for OD 680 and 750 nm, respectively. Due to optical
density, the peak exponential growth rates were estimated to be
1.24, 0.67, 0.56, 0.45 and 0.51 d�1 for the 1st, 2nd, 3rd, 4th and 5th
cycle, respectively.

3.2. Dynamics of T-N and T-P and organic removal during the FBR
operation

Fig. 2 illustrates the reduction of TN, TP and COD through
cultivation time by each cycle. In the 1st cycle, microalgae culture
consumed nutrient rapidly in the log phase, where TN and TP were
depleted at 12 days of cultivation and COD remained 1.86 g/L. At
the end of the 1st cycle, COD remained 1.46 g/L. Due to low
concentration of TN (194.8 mg/L) and TP (53 mg/L), TN and TP in
the 2nd cycle were dramatically decreased from 95.6 and 25.8 mg/L
Fig. 1. Variation of optical density d
in 10th day of cultivation. By the end of cycle, 1.76 g/L of COD,
56.8 mg/L of TN and 1 mg/L of TP were only remained inside the
growth medium. For the 3rd cycle, rapidly nutrient consumption
was observed in the first 8 days of cultivation were 112 and 12 mg/L
were remained for TN and TP. Similar results were found as TN and
TP were almost depleted after 5th day of the operation [15].

As shown in Table 2. organic removal efficiency was obtained as
52% for COD, 71% for TN and 98% for TP, respectively. TS and VS
were noted as 4.16 g/L and 2.97 g/L at the end of the 1st cycle. The
2nd cycle showed the OD680nm and OD750nm were raised up to
3.491 to 1.921 for first 12days. Organic removal efficiency was
obtained as 50% for COD, 68.56% for TN and 68.56% for TP. 4.92 g/L
and 2.93 g/L were gathered as TS and VS. After 30days of
cultivation, the 2nd cycle was conducted. At the end of the cycle
at 20th day of cultivation, TP was completely depleted and TN was
remained as1 mg/L as well as COD concentration prevailed as
0.96 g/L. At the similar pattern with the previous cycles, microalgae
utilized most of the nutrient where it’s reached stationary phase at
the 13th day of cultivation. Likewise, 5th cycle started and ended in
10 days, where 2.12 g/L of COD, 51 mg/L of TN and 5 mg/L of TP were
noted. Overall organic removal values can be seen in Table 2.

3.3. Composition analysis of mixed microalgae consortia on each cycle
of FBR operation

The biomass productivity by means of TS, VS, TSS and VSS of
each cycle has been evaluated. At the 1st cycle of the experiment,
initial TS and VS concentration of microalgae consortia was found
to be 1.46 g/L and increased to 3.77 g/L at the end of the cycle of 30
days cultivation. For the 2nd cycle, TS and VS were increased
rapidly to 4.14 g/L in 22 days of cultivation. Likewise, TS and VS of 5
and 2.95, 4.84 and 3.99, and 4.85 and 2.37 g/L were noted at the end
of each cycle for 3rd, 4th and 5th cycle, respectively.

Protein and carbohydrate accumulated indicated the quality of
microalgae grown biomass alongside with remediation as well
[19]. The accumulation of protein and carbohydrate are shown in
Supplementary information. At the end of the experiment, the
accumulated protein and carbohydrate were achieved 2.28 and
3.72, 1.76 and 3.22, 2.63 and 4.57, 1.57 and 4.87, and 1.49 and 4.95 g/
L, respectively,

Microalgae have a great potential where it can achieve very high
CO2 fixation through photosynthesis and give rapid biomass
concentrations compared to terrestrial plants [20–22]. As shown in
uring 95 days operation of SBR.
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Fig. 2. Organic removal for each cycle of FBR operation.

Table 2
Organic and nutrient removal and decolorization of each cycle during FBR operation.

Harvesting
Cycles

Initial concentration Final concentration Removal Efficiency Decolorization
efficiency

COD TN TP COD TN TP COD TN TP

g/L mg/L mg/L g/L mg/L mg/L % % % %
1st (30 days) 3.24 � 0.1 252 � 1.2 93 � 0.6 1.46 � 0.1 0 0 54.9 � 2.0 100 100 68.0
2nd (22 days) 3.66 � 0.1 194.8 � 2.3 53 � 1.3 1.76 � 0.1 56.8 � 0.9 1 � 0.3 51.9 � 1.5 70.8 � 1.6 98.1 � 0.6 68.6
3rd (20 days) 3.28 � 0.1 264 � 2.5 32 � 0.8 0.96 � 0.1 1 � 0.7 0 70.7 � 0.8 99.6 � 0.3 100 70.1
4th (13 days) 4.16 � 0.1 284 � 1.8 36 � 0.6 2.08 � 0.2 47 � 1.2 2 � 0.5 50 � 1.4 83.4 � 1.4 94.4 � 0.5 71.6
5th (10 days) 4.24 � 0.2 276 � 1.4 35 � 0.9 2.12 � 0.1 51 � 0.08 4 � 0.2 50.2 � 0.9 81.5 � 0.9 88.5 � 0.5 72.0
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Fig. 3, highest CO2 fixation by microalgae was achieved at 0.89,
0.61, 0.73, 0.70 and 0.88 g.L�1.d�1 with highest biomass productiv-
ity of 0.49, 0.33, 0.4, 0.38 and 0.48 g.L�1.d�1 for 1st to 5th cycle,
respectively. Mean value of CO2 fixation by microalgae was
estimated to be 0.33, 0.38, 0.46, 0.49 and 0.51 g.L�1.d�1 for 1st
to 5th cycle, respectively.

Decolorization was determined at the end of each cycle of the
experiment. According to [23], decolorization generally related to
the structural modifications of dye molecules in the sample and
could be done by adsorption to biomass or biodegradation [24].
Color removal at the 1st to 5th cycle was achieved 68.0, 68.6, 70.1,
71.6 and 72.0%, respectively. The overall result of decolorization
could be seen in Table 2.

3.4. Prominence of this investigation: discussion

It is one of the critical factors to prospect and select cost-effective
growth/nutrient medium towards efficient growth of microalgae for
the biofuel/biochemical generation along with the remediation of
toxic/nutrient removal such as nitrogen and phosphorous [19]. Over
the previous literature survey, Lee et al. [18] reported that using
semi-continuous reactor with livestock wastewater as growth
medium achieved 0.2 g.L�1.d�1 of biomass productivity where Yu
and Kim et al. (2017) sequencing batch reactor operated achieved
0.315 g.L�1.d�1 as shown in Table 3. In this study, 0.49 g.L�1.d�1 of
biomass productivity was obtained [7,18]. Increasing biomass
concentration inside the reactor would lead to the deprivation of
light availability. Thus a balance should be maintained between the
generated biomass and the newly growing biomass for the efficient
Fig. 3. CO2 fixation by microalgae for each cycle based on the biomass production.

Table 3
Comparative table with previous studies reported in the literature.

Operation Substrate Microalgae species Biom
d�1)

Batch Institutional wastewater Chlorella sp. – 

Batch Institutional wastewater Scenedesmus sp. – 

Batch Anaerobic digested dairy
manure

Chlorella sp. – 

Batch Textile waster Mixed microalgae
species

– 

Semi-continuous Livestock wastewater Botyococcus braunii 0.2 

Sequencing batch
reactor

Livestock wastewater Botyococcus braunii 0.315

Fed batch reactor Textile wastewater Mixed microalgae
species

0.49 
utilization of the nutrient and light towards mass production during
the mixotrophic cultivation [25].

Some earlier reports mentioned that microalgae concentration
at the range of 1.0–1.5 g TS/L cutback nearly 99% of the light to the
cell [26]. Thus fed batch operation could avoid such conditions and
favor the specific growth rate due to the dilution of the biomass
with the addition of fresh feed and also limits the nutrient starving
conditions. In this report also authors performed fed batch
operation for 5 cycles to ensure the light and nutrient availability
to the cells inside the reactor while the biomass concentration
reaches nearly 1.0–1.5 g TS/L.

Mixed microalgae consortia consumed most of the T-N from the
TWW source within 7–8 days of operation in each cycle while
exponential growth occurred, except the adaptation at 1st cycle
(more than 10 days). The removal values obtained in this study are
quite similar and comparable with the other studies [7,18]. For T-P,
it was observed that only 4–5 days were needed to achieve more
than 90% of the removal efficiency since the initial concentration is
slightly lower than T-N, as approximately 50 mg/L. These values are
comparatively higher than the values reported by Yu and Kim,
2017, in that study authors studied only 70 and 0.3 mg/L of T-N and
T-P [7] and also reported the deficiency of P throughout their
experiment. However, in this report, enough P and N concen-
trations (250 and 50 mg/L) were provided for the better utilization
of micro algal cells. Over the literature review, Wang et al. (2017)
achieved 75.7, 62.5 and 38.4% for TN, TP and COD removal
efficiency by running under batch condition [17]. With the similar
pattern, Ansari et al. [16] studied two different species of
microalgae using institutional wastewater achieved 98.2 and
99.7, 70.5 and 80.5, and 84.86 and 95% of TN, TP and COD removal
efficiency for Chlorella sp. and Scenedesmus sp. [16]. Moreover, Huy
et al. [3] showed 93.3, 100 and 78.78% for TN, TP and COD removal
efficiency for textile wastewater [3].

On the other hand, with the semi-continuous reactor operation
by Botyococcus braunii with livestock wastewater, Lee et al., [18]
reported that they obtained 96 and 85% of TN and TP removal
efficiency [18]. In addition, Yu and Kim et al., (2017) operated
sequencing batch with the same condition of Lee et al., [18], 83.2
and 94.1% were TN and TP removal efficiency were achieved [7].
According the average on the TN and TP consumption rate per day
was shown in Fig. 2, switched from one batch to another led to the
augmentation in nutrient consumption rate where 6.27 and 0.26 g.
L�1.d�1 were found for the average TN and TP removal rate at the
2nd batch of the operation, respectively. Further operation, average
TN and TP removal rate were to 13.15 and 0.12, 18.23 and 0.12, 22.5
and 0.11 g.L�1.d�1 for 3rd, 4th and 5th cycles respectively. This
attributes to the fact that fed batch mode for cultivation of
microalgae is preferable for efficient nutrient removal as well as
mass cultivation.
ass productivity (g.L�1. Growth rate
(d�1)

Removal efficiency Reference

COD (%) TN
(%)

TP (%)

0.29 84.86 98.2 70.5 [16]
0.33 95 99.7 80.5 [16]
0.41 38.4 75.7 62.5 [17]

0.42 78.78 93.3 100 [3]

– – 96 85 [18]
 0.2 – 83.2 94.1 [7]

1.24 70.7 99.62 100 This study
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pH will increase during the photosynthesis due to the uptake of
CO2 in aqueous phase which would be converted to HCO3

�,
however, in our study only ambient air has been used as aeration
revealed the lower pH values. pH value change during the entire
operation of 95 days is depicted in Fig. 1. pH changed during the
entire operation was maintained between 8.0–9.0, which is also in
accordance with other researchers reported than microalgae was
generally cultivated within pH 7–9 in the literature [27].

Textile pollutants are mainly in the form of colorants added
during the dying/phosphating process in the industries. Remedia-
tion of TWW via biological agents (bacteria, fungi and microalgae)
involve mainly follow the mechanisms of bioaccumulation, bio-
adsorption, bio-coagulation and bio-conversion as explained by
the previous studies [28,29], This can be explained as that algal cell
walls contains various functional groups viz SO4

�, PO4
�, amino,

carboxyl and proteins, which are the acting as adhesive to the
pollutants present in the TWW by anyone of the mechanisms
proposed above. However, more detailed mechanism/pathway for
the removal (adsorption/degradation) of the pollutants is not well
documents and demand more advanced analysis to deepen the
knowledge on this aspect [28]. Based on the above mentioned
factors, this study provided the novel insights about the fed batch
operation of microalgae cultivation using the TWW towards
competent cost-effective strategy for the mass generation of
biomass which could be subsequently converted to biofuels and
value added chemicals via bio refinery aspect.

4. Conclusions

Gradual adaptation of microalgae biomass to TWW as nutrient/
growth medium has been demonstrated in this research showed
that peak growth rate was achieved as 1.24 d�1. Continuous
cultivation at a periodic interval aided to improve nutrient
consumption rate of TN and TP, respectively. FBR operation
performed for the resource recovery showed the selection of
cost-effective medium and also operational mode is an essential
step towards microalgae cultivation.
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