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Abstract The aim is to describe the distribution of immune status (as captured by
antibody level) on the basis of a within-host submodel for continuous waning and
occasional boosting. Inspired by Feller’s fundamental work and the more recent delay
equation formulation of models for the dynamics of physiologically structured popu-
lations, we derive, for given force of infection, a linear renewal equation. The solution
is obtained by generation expansion, with the generation number corresponding to the
number of times the individual became infected. Our main result provides a precise
characterization of the stable distribution of immune status.
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1 Introduction

The immune system defends an individual host against pathogens. After infec-
tion with a specific species of pathogen has been cleared, some memory remains,
providing protection against future attacks of that same pathogen. Over time the
memory wanes, until it is boosted by a new encounter. Thus the immune status
is shaped by a combination of the exogenous process of exposure and endogenous
processes (fighting the invader to achieve clearance of the infection and subsequent
waning).

In practice the immune status of an individual is often quantified by measuring
the concentration of specific antibodies in serum. Distributions of such serological
measurements are used to assess the immune status of a population, for example in
the context of vaccination programs (Wilson et al. 2012). The immune status of a pop-
ulation impacts the risk of outbreaks of an infection and can provide information on
incidence of infection, including asymptomatic infection (Metcalf et al. 2016). Longi-
tudinal changes of antibody titers of individuals may show the effects of boosting and
waning over time, e.g., for pertussis (Versteegh et al. 2005). In mathematical models
for vaccine preventable diseases, immunity is often represented by a dichotomous
variable -individuals are either susceptible or immune- even though this distinction is
not straightforward in reality. Therefore, it is useful to have a mathematical modeling
framework that is capable of describing immunity as a continuous variable subject to
waning and boosting over time. Our aim here is to provide a first step towards such a
framework. We neglect all subtleties of specific infectious diseases and focus on the
processes of waning and boosting in their simplest form.

So we ignore much of the subtlety and complexity of the immune system by pos-
tulating that the immune status is fully described by a positive quantity y (antibody
titer against pertussis toxin is what we have in mind as a concrete example). Wan-
ing is described by the ordinary differential equation dy/dt = g(y) for the decline
of y between encounters with the pathogen. Such encounters occur at rate �. So �

is the constant force of infection and is considered a parameter (in Sect. 5 we shall
briefly indicate how to formulate a feedback consistency condition for �; this con-
dition involves assumptions about infectiousness and thus increases the number of
parameters). We assume that, on the time scale set by g and �, the time it takes the
immune system to clear infection is negligible. This assumption allows us to introduce
as a third model ingredient the instantaneous boosting map f that sends the immune
status y just before the infection, to the immune status f (y) just after clearance of
infection. In De Graaf et al. (2014) an explicit expression for f was derived from a
submodel for the struggle between the pathogen and the immune system; see (Teunis
et al. 2016) for a follow-up.
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The three ingredients g,� and f define a Piecewise Deterministic Markov Process
(Davis 1993; Rudnicki and Tyran-Kamińska 2015). Indeed, waning and boosting are
both deterministic, the only randomness is in the hitting times of the Poisson process
with rate�. Let the random variable Y (a), with Y (0) = yb, correspond to the immune
status at age a of an immortal individual. Here yb, the immune status at birth, is another
parameter (heterogeneity can of course be captured by an assumed distribution of yb).
Provided the pathogen under consideration does not contribute to mortality, we can
later on introduce an independent age-specific survival probability.

Having established this mathematical framework, we now want to answer the fol-
lowing questions:

(a) Can we compute the distribution of an individual’s immune status at age a, given
that it starts life with an immune level yb?

(b) If we let the process run for a long time, will the distribution of immune status
converge to a stable distribution? Since feedback through � on the transmission
process is ignored, the stable distribution will describe the distribution of immu-
nity in a population in steady state, if everybody is born with immune status
yb.

Let y be an element of (0,∞) and let � be a measurable subset of (0,∞). Devel-
opment over time of the distribution of immune status is described by the kernel

Qt (y, �) = P(Y (a + t) ∈ �|Y (a) = y) (1.1)

which, by assumption, does not depend on a. In Sect. 2 we formulate a Renewal
Equation (RE) for Q and solve it by generation expansion (using the techniques of
Sect. 4 of Diekmann et al. (1998) one can show that Q does have, as it should,
the Chapman–Kolmogorov property; in the “Appendix A1” we formulate the more
traditional Kolmogorov backward and forward PDE that are associated with Q). In
Sect. 3 we introduce the corresponding next-generation operator and construct its
fixed point that describes the stable distribution at the generation level. A general
result from (Diekmann et al. 1998) relates the stable distribution at the generation
level to the stable distribution of the process itself. This result is formulated in Sect. 4.

2 The RE and its solution by generation expansion

Concerning the three model ingredients, g, � and f we assume the following

H�: � > 0, to ensure that exposure actually occurs.
H f : f : (0,∞) → (0,∞) is continuously differentiable and there exists yc ∈ (0,∞)

such that f ′(y) < 0 for 0 < y < yc, f ′(yc) = 0, f ′(y) > 0 for yc < y < ∞.
In addition, lim

y↓0 f (y) = ∞, f (y) > y on (0,∞) and for some δ ≥ 0

f (y) = y + δ + o(1) for y → ∞

Moreover, f ′(y) = 1+ o(1) for y → ∞. See Fig. 1. See “Appendix A2” for an
alternative.
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Fig. 1 The graph of f
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This form of f (y) is motivated by De Graaf et al. (2014) and implies that for an
exposure occurring in an individual with immune status y < yc a large jump of
immune level occurs during infection, while the increase in immune level is small
if the immune status is higher than yc at exposure. We interpret the threshold yc
as the immune level that distinguishes symptomatic and asymptomatic infection.
In other words, an immune level y > yc provides protection against symptoms
but nevertheless the encounter with the pathogen leads to a slight increase in
immune level, whilst y < yc does not provide much protection and leads to a
large boost of the immune level.

Hg: The function g describes the rate of waning of immunity between exposures
and should therefore ensure that y(a) is a monotone decreasing (but positive)
function. So let g : (0,∞) → (−∞, 0) be such that the initial value problem

dy

da
= g(y), y(a0) = y0 > 0

has a unique solution

y(a) = π(a − a0, y0), −∞ < a < ∞ (2.1)

and lima→∞ y(a) = 0, lima→−∞ y(a) = ∞.

An alternative formulation of this assumption is that 1
g has a primitive T , say

T (y) :=
∫ y

yc

dη

g(η)
(2.2)
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such that T (y) → ∞ for y ↓ 0 and T (y) → −∞ for y → ∞. The relationship
between π and T is given by

π(a − a0, y0) = T−1(a − a0 + T (y0)) (2.3)

For later use we observe that

∂π

∂y
(t, y) = ∂π

∂t
(t, y)

1

g(y)
= g(π(t, y))

g(y)
(2.4)

An example is provided by

g(y) = −wy (2.5)

withw > 0 a parameter. This choice for g(y)models an exponential decline in immune
level between boosting events. In that case

π(a, y0) = e−wa y0 (2.6)

and

T (y) = 1

w
log

(
yc
y

)
, T−1(a) = e−wa yc (2.7)

In the generation expansion, we distinguish according to the number of hits of the
Poisson process. So we start with the possibility of no hit at all.

Definition 2.1

Q0
t (y, �) := e−�tδπ(t,y)(�)

= P (no infection in [a, a + t] and Y (a + t) ∈ �|Y (a) = y) (2.8)

So Q0
t (y, �) describes the probability that an individual who has immune level y at

age a and survives up to age a + t has had no exposures in the time interval [a, a + t]
and has now an immune level in the set � (e.g. within a given range [ylow, yhigh]). Of
course, in this case we know exactly what the individual’s immune level is, but as soon
as an exposure does occur, the immune level at a + t has a range of possible values
depending on when exactly the exposure occurred. Therefore, we now formulate an
equation for the probability Qt (y, �), which is the probability that the individual has
an immune state y in the set � at age a + t given that it had immune status y at age a
and without any restriction on the number of exposures since then.

If an infection does occur in [a, a + t], there has to be a first infection in this time
window. The probability per unit of time that it occurs after exactly time σ equals
�e−�σ . In that case, the immune status jumps to f (π(σ, y)) and there is time t − σ

left before the clock reaches t . Accordingly Q should satisfy the RE

Qt (y, �) = Q0
t (y, �) +

∫ t

0
�e−�σ Qt−σ ( f (π(σ, y)), �)dσ (2.9)
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In order to rewrite (2.9) in a more condensed symbolic form we introduce another
kernel. The kernel B1

t (y, �) describes the “position” on the y-axis immediately after
the first jump (infection). Since it may happen that no jump occurs in the time interval
of length t under consideration, this is not described by a probability distribution,
but by a measure of total size less than one (this is sometimes called a “defective
probability distribution”). The precise definition reads

Definition 2.2

B1
t (y, �) :=

∫ t

0
�e−�σ δ f (π(σ,y))(�)dσ

= P (infection does occur in [a, a + t] and Y immediately

after the first infection belongs to �|Y (a) = y) (2.10)

In addition we define the product of two kernels as follows

Definition 2.3

(	 ⊗ 
)t (y, �) :=
∫

[0,t]×(0,∞)

	ds(y, dz)
t−s(z, �) (2.11)

These definitions allow us to write (2.9) as

Q = Q0 + B1 ⊗ Q (2.12)

Successive approximation amounts to substituting the right hand side for Q at the
right hand side, yielding

Q = Q0 + B1 ⊗ Q0 + B1 ⊗ B1 ⊗ Q (2.13)

and then repeat this procedure again and again. By induction we define kernels Bk for
k ≥ 2:

Bk+1 := B1 ⊗ Bk, k ≥ 1 (2.14)

Explicitly we have

B2
t (y, �) = �2

∫ t

0

∫ t−σ1

0
e−(σ1+σ2)�δ f (π(σ2, f (π(σ1,y))))(�)dσ2dσ1 (2.15)

and in general

Bk
t (y, �) = �k

∫
�k,t

e−|σ |�δFk (t,σ,y)(�)dσ (2.16)

with

�k,t = {σ ∈ R
k : 0 ≤ σi ≤ t − �i−1

j=1σ j , i = 1, 2 . . . , k}
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|σ | := σ1 + σ2 + · · · + σk

F1(t, σ1, y) := f (π(σ1, y)), 0 ≤ σ1 ≤ t

Fk(t, σ, y) := Fk−1(t − σ1, Tkσ, f (π(σ1, y)))

Tk

⎛
⎜⎝

σ1
...

σk

⎞
⎟⎠ =

⎛
⎜⎝

σ2
...

σk

⎞
⎟⎠ (2.17)

The interpretation reads

Bk
t (y, �) = P (at least k infections do occur in [a, a + t] and Y immediately

after the k-th infection belongs to �|Y (a) = y)

The formulas (2.15) and (2.16) clearly show that all randomness derives from the
hitting times of the Poisson process.

Returning to (2.13) and its “successors” obtained by repeating the approximation
procedure, we are led to introduce, for k ≥ 1

Qk := Bk ⊗ Q0 (2.18)

and to observe that

Qk
t (y, �) = P (exactly k infections in [a, a + t] and Y (a + t) ∈ �|Y (a) = y)

The upshot is that we define

Q =
∞∑
k=0

Qk (2.19)

Cautionary note on notation: Q differs from Q1.
Thus we constructed Qa(yb, ·), the distribution of the random variable Y (a), given

its value yb at birth, on the basis of the three model ingredients π , � and f .

3 The next-generation operator and its fixed point

In this section we define an operator, which maps the distribution of immune status
right after an infection event to the distribution right after the next such event. We call
this the next-generation operator and we will show that, under certain conditions, this
operator has a unique fixed point (and that the fixed point has a density). In the next
section we shall use these results to derive the existence and uniqueness of a stationary
distribution of immunity to which, under the influence of repeated episodes of waning
interrupted by boosting events, a general distribution converges for t tending to infinity.
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If we consider the limit t → ∞ for the kernel Bt , the probability that no infection
occurs vanishes. So

B1∞(y, ·) :=
∫ ∞

0
�e−�σ δ f (π(σ,y))(·)dσ (3.1)

describes the probability distribution immediately after the next infection, given that
the current immune status equals y, when we do not restrict the length of the time
interval under consideration. Note that indeed for all y we have B1∞(y, (0,∞)) = 1,
reflecting what was stated above: in an infinite time interval infection occurs with
probability 1. With this kernel we associate the map K defined by

(Kb)(�) :=
∫

(0,∞)

B1∞(η, �)b(dη) (3.2)

The measure b describes the probability distribution of immune status of an individual
directly after an infection event. The support of b is contained in the range of f , i.e. in
[ f (yc),∞), since infection results in a new immune status obtained by applying f to
the old immune status. Note that b is a probabilitymeasure, i.e., is positive and has total
measure one. The map K preserves these properties. We call K the next-generation
operator. Our aim in this section is to derive conditions on f and g that guarantee that
K has a unique fixed point.

In order to derive a more handsome representation of K , we need some definitions.
Since for every point in the range of f there are two points in the domain that are
mapped to it, the inverse of f is double valued and we need notation to distinguish
these two values from each other.

Definition 3.1

f −1− is the inverse of f taking values less than yc

f −1+ is the inverse of f taking values bigger than yc (3.3)

Both of these functions are defined on [ f (yc),∞). Both take the value yc in f (yc).
For y1 > y2, let τ̂ (y1, y2) be the time involved in decreasing, by waning, from

immune level y1 to y2. As it is convenient to have τ̂ also defined when y1 > y2 does
not hold, we extend by zero.

Definition 3.2

τ̂ (y1, y2) :=
{
0 if y2 ≥ y1
solution of π(τ, y1) = y2 if y2 ≤ y1

(3.4)

Hence [cf. (2.2) and (2.3)]

τ̂ (y1, y2) = T (y2) − T (y1) if y2 ≤ y1 (3.5)
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We also introduce the notation

�y := [ f (yc), y) (3.6)

The motivation for our special interest in sets of this form is the following. Measures
in the range of K have their support in [ f (yc),∞). As our interest is in iterating K ,
we might as well restrict the domain of K to probability measures concentrated on
[ f (yc),∞). The values that such measures take on sets of the form (3.6), for arbitrary
y > 0, provide full information about the measure.

Next note that

(Kb)(�y) =
∫∫

�(y)
�e−�σb(dη)dσ (3.7)

with

�(y) = {(σ, η) : σ ≥ 0, η ≥ f (yc), f (π(σ, η)) < y} (3.8)

Since (recall Fig. 1 and Definitions 3.1 and 3.2)

f (π(σ, η)) < y ⇐⇒ f −1− (y) < π(σ, η) < f −1+ (y)

⇐⇒ τ̂ (η, f −1+ (y)) < σ < τ̂(η, f −1− (y))

we can perform the integration with respect to σ and rewrite (3.7) in the form

(Kb)(�y) =
∫

[ f (yc),∞)

[
e−�τ̂(η, f −1+ (y)) − e−�τ̂(η, f −1− (y))

]
b(dη) (3.9)

The first term at the right hand side limits starting points for jumps to the right of
yc, the second limits starting points to the left of yc. As the distinction is helpful, we
emphasize it by defining

K = K+ + K− (3.10)

with

(K+b)(�y) :=
∫

[ f (yc),∞)

[
e−�τ̂(η, f −1+ (y)) − e−�τ̂(η,yc)

]
b(dη) (3.11)

and

(K−b)(�y) :=
∫

[ f (yc),∞)

[
e−�τ̂(η,yc) − e−�τ̂(η, f −1− (y))

]
b(dη)

= c
(
1 − e−�T ( f −1− (y))

)
(3.12)
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with

c :=
∫

[ f (yc),∞)

e�T (η)b(dη) (3.13)

Note that T (η) < 0 for η ≥ f (yc), cf. (2.2), so c is well-defined. The range of K− is
one-dimensional and spanned by an absolutely continuous measure. This reflects that,
in order to have immune status less than yc when the next infection hits, the immune
status must first wane to yc without any hit (the probability that this happens is e�T (η)

and determines the contribution to c). But once yc is “safely” reached, any information
about η is irrelevant. After arrival in yc, the waiting time till being hit is exponentially
distributed with parameter� and the waiting time translates to an arrival position after
the infection, as detailed in (3.12).

Now, let us focus attention on K+. For y ≤ f (2)(yc) := f ( f (yc)) we have
f −1+ (y) ≤ f (yc) and hence τ̂ (η, f −1+ (y)) = T ( f −1+ (y)) − T (η) for all η ≥ f (yc).
Consequently

(K+b)(�y) = c
(
e−�T ( f −1+ (y)) − 1

)
for y ≤ f (2)(yc) (3.14)

For y > f (2)(yc), on the other hand, we have τ̂ (η, f −1+ (y)) = 0 for f (yc) ≤ η ≤
f −1+ (y) and consequently

(K+b)(�y) =
∫

[ f (yc), f −1+ (y))
b(dη) + e−�T ( f −1+ (y))

×
∫

[ f −1+ (y),∞)

e�T (η)b(dη) − c for y > f (2)(yc) (3.15)

Combining (3.12) and (3.14) we see that a measure in the range of K has a density
on [ f (yc), f (2)(yc)]. The reason is similar as given above concerning K−: in order
to lead to an arrival position in [ f (yc), f (2)(yc)], the immune status has to wane to
below f (yc) and information about η becomes irrelevant upon passing f (yc). We can
subsequently use the explicit representation (3.15) to conclude that a measure in the
range of K 2 has a density on [ f (yc), f (3)(yc)]. Etcetera. It follows that a fixed point
of K necessarily has a density.

Our aim is now to construct a fixed point of K . Apart from amultiplicative constant
c, the fixed point is known when we restrict attention to the interval [ f (yc), f (2)(yc)],
cf. (3.12) and (3.14). The idea is to use (3.15) to extend the interval on which we know
the fixed point and in the very end use the condition that the construction should yield
a probability measure to determine the free constant c.

Assuming that b has a density φ we can, using (3.12) and (3.15), write the fixed
point problem Kb = b in the form

∫ y

f (yc)
φ(η)dη =

∫ f −1+ (y)

f (yc)
φ(η)dη + e−�T ( f −1+ (y))

∫ ∞

f −1+ (y)
e�T (η)φ(η)dη

−e−�T ( f −1− (y))c for y > f (2)(yc) (3.16)
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and with φ for f (yc) ≤ y ≤ f (2)(yc) defined by

φ(y) = d

dy
c
(
e−�T ( f −1+ (y)) − e−�T ( f −1− (y))

)
(3.17)

The factor
∫ ∞
f −1+ (y) e

�T (η)φ(η)dη at the right hand side of (3.16) involves values of

φ beyond y and this makes the use of (3.16) for extending the fixed point from the
explicit (apart from an as yet unknown constant c) expressions provided by the right
hand sides of (3.12) and (3.14) to larger values of y problematic. The solution is to
differentiate (3.16) with respect to y and next combine the two identities to eliminate
the factor. This is just a formulamanipulation trick that has no biological interpretation
whatsoever. We realize that unpleasant technical details are involved, but are not able
to avoid these. To facilitate the formulation, we introduce some notation.

Definition 3.3

α(y) := −�
d

dy
T ( f −1+ (y)) = −�

1

g( f −1+ (y))

1

f ′( f −1+ (y))
> 0 (3.18)

β(y) := �
d

dy
T ( f −1− (y)) = �

1

g( f −1− (y))

1

f ′( f −1− (y))
> 0 (3.19)

Differentation of (3.16) yields1

φ(y) = α(y)e−�T ( f −1+ (y))
∫ ∞

f −1+ (y)
e�T (η)φ(η)dη + β(y)e−�T ( f −1− (y))c

which in combination with (3.16) itself leads to

φ(y) = α(y)
∫ y

f −1+ (y)
φ(η)dη + (α(y) + β(y))e−�T ( f −1− (y))c (3.20)

Equation (3.20) should hold for y > f (2)(yc) and is supplemented by (3.17), which
we rewrite as

φ(y) =
(
α(y)e−�T ( f −1+ (y)) + β(y)e−�T ( f −1− (y))

)
c for f (yc) ≤ y ≤ f (2)(yc)

(3.21)

Before analysing (3.20), let us check that no information was lost when deriving
(3.20) from (3.16).

Lemma 3.4 Assume that φ is integrable over [ f (yc),∞), satisfies (3.20) for y >

f (2)(yc) and (3.21) for y ∈ [ f (yc), f (2)(yc)]. Then (3.16) holds.

1 Note that the two terms corresponding to f −1+ (y) as boundary of the integration interval annihilate each
other.

123



2034 O. Diekmann et al.

Proof We write (3.20) in the form

d

dy

∫ y

f (yc)
φ(η)dη = α(y)

(∫ y

f (yc)
φ(η)dη −

∫ f −1+ (y)

f (yc)
φ(η)dη + e−�T ( f −1− (y))c

)

− d

dy
e−�T ( f −1− (y))c

Now observe that for any integrable φ and for y ≥ f (2)(yc)

i.

d

dy

∫ ∞

f (yc)
e−�τ̂(η, f −1+ (y))φ(η)dη = α(y)e−�T ( f −1+ (y))

∫ ∞

f −1+ (y)
e�T (η)φ(η)dη

ii.

∫ ∞

f (yc)
e−�τ̂(η, f −1+ (y))φ(η)dη =

∫ f −1+ (y)

f (yc)
φ(η)dη

+ e−�T ( f −1+ (y))
∫ ∞

f −1+ (y)
e�T (η)φ(η)dη

Combining these two identities we deduce

iii.

α(y)
∫ f −1+ (y)

f (yc)
φ(η)dη = − d

dy

∫ ∞

f (yc)
e−�τ̂(η, f −1+ (y))φ(η)dη

+ α(y)
∫ ∞

f (yc)
e−�τ̂(η, f −1+ (y))φ(η)dη

Identity iii. allows us to rewrite the rewritten (3.20) as

d

dy

[∫ y

f (yc)
φ(η)dη −

∫ ∞

f (yc)
e−�τ̂(η, f −1+ (y))φ(η)dη + e−�T ( f −1− (y))c

]

= α(y)

[∫ y

f (yc)
φ(η)dη −

∫ ∞

f (yc)
e−�τ̂(η, f −1+ (y))φ(η)dη + e−�T ( f −1− (y))c

]

Integrating the initial condition, see (3.17), we find that for y = f (2)(yc) the quantity
in the square brackets equals zero. By uniqueness, it equals zero for all y ≥ f (2)(yc).
Using identity ii. above we see that this amounts to (3.16). �


Standard contraction arguments (or, alternatively, monotone iteration arguments)
guarantee that φ defined by (3.21) on [ f (yc), f (2)(yc)] can be extended via (3.20) to
an interval having f (2)(yc) as its left end point. By continuation we obtain a maximal
existence interval. Provided α is non-singular, this interval is [ f (yc),∞), since the
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equation is linear. A key point for us, however, is that φ should in fact be integrable
over [ f (yc),∞). In other words, we want an a priori bound on the L1-norm.

To derive some intuition, let us briefly look at the constant coefficient homogeneous
version

φ(y) = α

∫ y

y−δ

φ(η)dη (3.22)

This equation has a solution of the form φ(y) = eλy provided λ is a root of the
characteristic equation

1 = α
1 − e−λδ

λ
(3.23)

(where the right hand side should be interpreted as αδ for λ = 0). Whenever αδ < 1,
all roots of (3.23) have negative real part (see e.g. Chapter XI of Diekmann et al.
(1995)). If αδ > 1, a positive real root exists. Clearly the corresponding solution is
not integrable over the positive real axis.

This example illustrates that we need some kind of condition on the behaviour of
α(y) and f −1+ (y) for y → ∞. The probabilistic formulation is that we need tightness,
meaning that mass is prevented frommoving ever higher up the y-axis when we iterate
K . The following consideration serves to build up intuition.

On average, the time in between successive jumps equals 1
�
. The condition

f (π(1/�, y)) < y for large y (3.24)

states that high-up the y-axis we lose immunity if we jump after the expected time.
As applying a nonlinear map and taking an expectation do not commute, this provides
an idea, not a workable argument. Moreover, as we can also end up high on the y-axis
by first waning to a very low y-level, we might need an additional and rather different
condition to control this route to high immune levels. We now return to (3.20) and
present sufficient conditions.

Lemma 3.5 Assume that ρ and z exist, with 0 < ρ < 1 and z ≥ f (2)(yc), such that

f (π(ρ/�, y)) < y for y ≥ f −1+ (z) (3.25)

and
∫ y

z
α(ξ)e−�T ( f −1− (ξ))dξ is bounded for y ∈ [z,∞) (3.26)

Then the unique solution of (3.20), (3.21) is integrable over [ f (yc),∞).

Proof Integrating (3.20) from z to y > z we obtain

∫ y

z
φ(ξ)dξ =

∫ y

z
α(ξ)

∫ ξ

f −1+ (ξ)

φ(η)dηdξ +
∫ y

z
(α(ξ) + β(ξ))e−�T ( f −1− (ξ))c dξ
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Interchanging the two integrals in the first term at the right hand side leads to

∫ y

f −1+ (z)

(∫ min{ f (η),y}

max{z,η}
α(ξ)dξ

)
φ(η)dη

Since α is positive and, moreover, a derivative (cf. (3.18))

∫ min{ f (η),y}

max{z,η}
α(ξ)dξ ≤

∫ f (η)

η

α(ξ)dξ = −�T (η) + �T ( f −1+ (η))

We claim that (3.25) implies that the right hand side is bounded by ρ. To verify this
claim, we first write (3.25) as π(ρ/�, y) < f −1+ (y) and next use (2.3) to reformulate
this inequality as

T−1
( ρ

�
+ T (y)

)
< f −1+ (y)

Since T and T−1 are decreasing, it follows that
ρ

�
+ T (y) > T ( f −1+ (y))

and, finally

−�T (y) + �T ( f −1+ (y)) < ρ

Returning to the identity at the start of the proof, we conclude that
∫ y

z
φ(ξ)dξ ≤ ρ

∫ y

f −1+ (z)
φ(η)dη +

∫ y

z
(α(ξ) + β(ξ))e−�T ( f −1− (ξ))c dξ

and hence

(1 − ρ)

∫ y

z
φ(ξ)dξ ≤ ρ

∫ z

f −1+ (z)
φ(ξ)dξ +

∫ y

z
(α(ξ) + β(ξ))e−�T ( f −1− (ξ))c dξ

Now note that, on account of (3.19),

∫ y

z
β(ξ)e−�T ( f −1− (ξ))dξ = − e−�T ( f −1− (ξ))

∣∣∣y
z

= e−�T ( f −1− (z)) − e−�T ( f −1− (y))

≤ e−�T ( f −1− (z)) ≤ 1

since T is positive on (0, yc), cf. (2.2). Assumption (3.26) therefore guarantees that
a constant C exists such that the right hand side, and hence the left hand side, is
bounded by C for y ∈ [z,∞). It follows that

∫ y
z φ(ξ)dξ converges to a finite number

for y → ∞. �

The conditions (3.25) and (3.26) are somewhat implicit, so let us formulate more

explicit conditions that imply them.

123



Waning and boosting: on the dynamics of immune status 2037

Lemma 3.6 Assume that ρ, v and z exist, with 0 < ρ < 1, v < 0 and z ≥ f (2)(yc),
such that

g(y) < v < 0 for y ≥ z (3.27)

and

v
ρ

�
+ δ < 0 (3.28)

with δ as introduced in H f , then (3.25) holds.

Proof Let ε > 0 be such that

v
ρ

�
+ δ + ε < 0

Increasing z if necessary, we may assume that

f (y) < δ + ε + y for y ≥ z

From (3.27) it follows that

π(ρ/�, y) < y + v
ρ

�

Hence

f (π(ρ/�, y)) < δ + ε + v
ρ

�
+ y < y

�

Corollary 3.7 If g(y) = −wy we can satisfy (3.25) for any δ ≥ 0 in H f and any
choice of ρ ∈ (0, 1).

For condition (3.26), the behaviour of f for y ↓ 0 matters too. We therefore focus
on

f (y) = y

(
1 + σ2

y

)σ1

, with σ1 > 1, σ2 > 0 (3.29)

which was derived in De Graaf et al. (2014).

Lemma 3.8 Let f be given by (3.29).

i. If g(y) = −wy, condition (3.26) is fulfilled.
ii. If, for some ys > 0, g(y) = −wy for y ≤ ys and

� > w(σ1 − 1) (3.30)

condition (3.26) is fulfilled.
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Proof For f given by (3.29) we have

f (y) = σ
σ1
2 y1−σ1(1 + o(1)) for y ↓ 0

It follows that

f −1− (y) = σ

σ1
σ1−1

2 y
1

1−σ1 (1 + o(1)) for y → ∞

For small enough y we have

T (y) = − 1

w
log y + O(1)

and consequently

e−�T ( f −1− (ξ)) = ξ
�

w(1−σ1) O(1)

If (3.30) holds, the exponent is less than −1 and boundedness of α suffices to fulfil
(3.26). If g(y) = −wy for all y, α(ξ) = �

wξ
(1 + o(1)) for ξ → ∞ and the fact that

the exponent �
w(1−σ1)

is negative guarantees that (3.26) holds. �

Before summarizing the results of this section, let us elucidate the role of the

constant c in (3.20), (3.21). To compute the density of the fixed point of K , first solve
(3.20) and (3.21) with c = 1. When (3.25) and (3.26) hold, the integral

∫ ∞

f (yc)
φ(η)dη

is well-defined. The renormalized function

(∫ ∞

f (yc)
φ(η)dη

)−1

φ (3.31)

is the object of interest. The above analysis leads to the following conclusion:

Theorem 3.9 Provided the conditions (3.25) and (3.26) are satisfied, the next-
generation operator K has a unique fixed point. This fixed point has a density (3.31),
where φ is the solution of (3.20), (3.21) corresponding to the choice c = 1, or any
other choice. Hence φ(y) > 0 for f (yc) < y < ∞.

4 The stationary distribution

Throughout this section we assume that the conditions (3.25) and (3.26) appearing in
Lemma 3.5 are satisfied.

As demonstrated in Theorem 6.1 of Diekmann et al. (1998) (and likewise in
Lemma’s 3.7 and 3.8 of Diekmann et al. (2003)), there is a one-to-one correspondence
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between fixed points of the next-generation operator and stationary distributions of
the process itself. Here the relationship is rather simple, since the jump rate does not
depend on the position in the state space (or, in another jargon, the risk of encountering
the pathogen does not depend on the immune level). In fact we have

Theorem 4.1 If m is a stationary distribution then b defined by

b(�) = m( f −1(�)) (4.1)

is a fixed point of the next-generation operator and, conversely, if b is a fixed point of
the next-generation operator then m defined by

m(�) = b( f (�)) (4.2)

is a stationary distribution.

The intuitive argument underlying Theorem 4.1 is that a steady distribution yields
a steady stream of jumps with uniform departure rate� and that f −1 relates the point
of arrival to the point of departure. So the probability per unit of time of “landing” in�

after a jump equals �m( f −1(�)) and, with b the fixed point of K , this equals cb(�).
Since both b andm are probability measures, cmust be equal to�. For a formal proof
see (Diekmann et al. 1998, 2003) and take the limit t ↓ 0 in (6.10) of Diekmann et al.
(1998) or (3.27) of Diekmann et al. (2003).

Corollary 4.2 There exists a unique normalized stationary distribution. This distri-
bution has a density and the density takes strictly positive values on (0,∞).

Our next aim is to establish the asymptotic stability of the stationary distribution
by invoking results of Pichór and Rudnicki (2000). To do so, we need to make some
preparations.

In the followingwe use the symbolm again to denote an arbitrary (so not necessarily
a stationary) measure on (0,∞). We define

(Qt × m)(�) =
∫

(0,∞)

Qt (z, �)m(dz) (4.3)

If m is a positive measure, so is Qt ×m. In order to show that Qt ×m is a probability
measure if m is a probability measure, we need the following observation.

Lemma 4.3 Qt (z, (0,∞)) = 1, ∀z ∈ (0,∞).

Proof We claim that

Qk
t (z, (0,∞)) = (�t)k

k! e−�t (4.4)

Clearly (4.4) is true for k = 0. Suppose (4.4) has been verified for k = n. Then

Qn+1
t (z, (0,∞)) =

∫
[0,t)×(0,∞)

B1
ds(z, dx)Q

n
t−s(x, (0,∞))

123



2040 O. Diekmann et al.

=
∫ t

0
�e−�s Qn

t−s( f (π(s, z)), (0,∞))ds

=
∫ t

0
�e−�s (�(t − s))n

n! e−�(t−s)ds = �e−�t
∫ t

0

(�σ)n

n! dσ

= �e−�t �ntn+1

(n + 1)! = (�t)n+1

(n + 1)! e
−�t

and the claim is verified. Finally,

Qt (z, (0,∞)) =
∞∑
k=0

Qk
t (z, (0,∞)) = e−�t

∞∑
k=0

(�t)k

k! = 1

�

If m has a density, does Qt × m have a density? Or, in other words, does the

semigroup of operators associated with the kernel Qt leave the subspace of absolutely
continuousmeasures invariant, so that we can associate with this kernel a semigroup of
operators on L1(0,∞)? The answer is probably affirmative without severe conditions
on g and f . Below we shall derive a stronger result under a condition that guarantees
the monotonicity of

s �→ π(t − s, f (π(s, z)))

so of the position at time t when starting in z, given that precisely one jump occurs,
as a function of the time s at which the jump occurs. But first we pay attention to the
situation with no jump at all.

Lemma 4.4 If m has a density φ, then Q0
t × m has a density T0(t)φ defined by

(T0(t)φ)(y) = e−�t g(π(−t, y))

g(y)
φ(π(−t, y)) (4.5)

Proof

(Q0
t × m)(�) =

∫
(0,∞)

Q0
t (z, �)φ(z)dz = e−�t

∫
(0,∞)

δπ(t,z)(�)φ(z)dz

= e−�t
∫

π(−t,�)

φ(z)dz = e−�t
∫

�

φ(π(−t, η))
g(π(−t, η))

g(η)
dη

where in the last step we used the identity (2.4). �

The condition alluded to above reads

f ′(y)g(y)
g( f (y))

< 1, ∀y ∈ (0,∞) (4.6)

(We provide the biological interpretation of (4.6) after the next lemma.)
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Lemma 4.5 If (4.6) holds, the function

s �→ π(t − s, f (π(s, z)))

is, for every given z ∈ (0,∞) and t > 0, an increasing function on [0, t].
Proof

π(t − s, f (π(s, z))) = T−1(t − s + T ( f (π(s, z))))

and T−1 is decreasing, so it suffices to prove that

s �→ t − s + T ( f (π(s, z)))

is decreasing as well. The derivative with respect to s is

−1 + 1

g( f (π(s, z)))
f ′(π(s, z))g(π(s, z))

and (4.6) guarantees that this is negative. �

The interpretation is that, by postponing the jump, you end up higher on the y-axis.

And (4.6) is indeed an infinitesimal version of exactly this condition:

f (y) + g( f (y))dt < f (y + g(y)dt) = f (y) + f ′(y)g(y)dt + o(dt)

Our motivation for this assumption derives from

Lemma 4.6 With

f (y) = y

(
1 + σ2

y

)σ1

, σ2 > 0, σ1 > 1,

and

g(y) = −wy, w > 0,

condition (4.6) holds.

Proof A straightforward calculation reveals that

f ′(y)g(y) − g( f (y)) = −w

(
1 + σ2

y

)σ1−1

(−σ2σ1) > 0

�
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Lemma 4.7 Assume that (4.6) holds. Denote the inverse function of

η = η(s) = π(t − s, f (π(s, y)))

by S = S(η) (where we have suppressed the dependence of S on t and y in the
notation). Then

Q1
t (y, �) = �e−�t

∫
�

q1(t, y, η)dη (4.7)

with

q1(t, y, η) := 1[π(t, f (y)), f (π(t,y))](η)
dS

dη
(η) (4.8)

Proof

Q1
t (y, �) =

∫
[0,t)×(0,∞)

�e−�sδ f (π(s,y))(dx)e
−�(t−s)δπ(t−s,x)(�)ds

= �e−�t
∫ t

0
δπ(t−s, f (π(s,y)))(�)ds = �e−�t

∫ f (π(t,y))

π(t, f (y))
δη(�)

dS

dη
(η)dη

= �e−�t
∫

[π(t, f (y)), f (π(t,y))]∩�

dS

dη
(η)dη

= �e−�t
∫

�

1[π(t, f (y)), f (π(t,y))](η)
dS

dη
(η)dη

�

Note that q1(t, y, η) ≥ 0 and in fact is strictly positive for

π(t, f (y)) < η < f (π(t, y))

which in the limit t → ∞ amounts to η ∈ (0,∞).

Corollary 4.8 Assume (4.6) holds. Q1
t × m has density

y �→ �e−�t
∫

(0,∞)

q1(t, z, y)m(dz)

In particular, if m has a density φ, then Q1
t × m has density T1(t)φ defined by

(T1(t)φ)(y) = �e−�t
∫

(0,∞)

q1(t, z, y)φ(z)dz (4.9)

(we say that T1(t) : L1 → L1 is a kernel operator).
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Lemma 4.9 If Q1
t (y, �) = �e−�t

∫
�
q1(t, y, η)dη then for n ≥ 1

Qn
t (y, �) = �ne−�t

n!
∫

�

qn(t, y, η)dη (4.10)

where qn is inductively defined by

qn+1(t, y, η) = (n + 1)
∫ t

0
qn(t − s, f (π(s, y)), η)ds

Proof

Qn+1
t (y, �) =

∫
[0,t)×(0,∞)

�e−�sδ f (π(s,y))(dx)Q
n
t−s(x, �)ds

=
∫ t

0
�e−�s Qn

t−s( f (π(s, y)), �)ds

So if (4.10) holds, then

Qn+1
t (y, �) =

∫ t

0
�e−�s �ne−�(t−s)

n!
∫

�

qn(t − s, f (π(s, y)), η)dηds

= �n+1e−�t

(n + 1)!
∫

�

(n + 1)
∫ t

0
qn(t − s, f (π(s, y)), η)dsdη

= �n+1e−�t

(n + 1)!
∫

�

qn+1(t, y, η)dη

�

By comparing (4.10) and (4.4) we deduce that

∫
(0,∞)

qn(t, y, η)dη = tn (4.11)

Corollary 4.10 Assume (4.6) holds. Ifm has a densityφ, then Qt×m has a density, say
T (t)φ. Moreover, for each φ ∈ L1(0,∞) the map t �→ T (t)φ from R+ to L1(0,∞)

is continuous and T (t) − T0(t) (recall (4.5)) is a kernel operator.

Proof Since translation is continuous in L1, we deduce from (4.5) that ||T0(t)φ −
φ|| → 0 as t ↓ 0. Combining (4.10) and (4.11) we find that ||T (t)φ − T0(t)φ|| → 0
as t ↓ 0 (in fact the stronger result ||T (t) − T0(t)|| → 0 as t ↓ 0 holds). Since {T (t)}
is a semigroup, continuity at t = 0 implies continuity. �


In the terminology of Pichór and Rudnicki (2000) {T (t)} is a Markov semigroup.
From Corollary 4.2 we know that {T (t)} has a unique invariant densityψ and thatψ is
positive. The fact that T (t) ≥ T1(t) and ||T1(t)|| = �te−�t > 0 for t > 0 guarantees
that {T (t)} is partially integral as defined in Pichór and Rudnicki (2000). Thus we

123



2044 O. Diekmann et al.

verified all assumptions of Theorem 2 in Pichór and Rudnicki (2000) (and in fact also
of Theorem 2 in the preprint (Gerlach and Glück 2017)) and we obtain

Theorem 4.11 Assume (4.6) holds and assume m has a density φ. Let T (t)φ be the
density of Qt × m. Then

lim
t→∞ ||T (t)φ − ψ ||L1 = 0 (4.12)

where ψ is the density corresponding to the normalized stationary distribution.

But what happens if m does not have a density? The fact that the singular part of
Qt × m converges to zero guarantees that in that case Qt × m converges to m̄ in the
total variation norm, where m̄ is the unique normalized stationary distribution. Indeed,
we can write

Qt+s × m = Qt × Qs × m = Qt × (mac
s + msing

s )

where mac
s is the absolutely continuous part of Qs × m and msing

s the singular part.

Then ||msing
s || ≤ e−�s and hence ||Qt × msing

s || ≤ e−�s . Moreover, ||Qt × mac
s −

||mac
s ||m̄|| → 0 for t → ∞. Hence

||Qt+s × m − m̄|| = ||Qt × mac
s − ||mac

s ||m̄ + ||mac
s ||m̄ − m̄ + Qt × msing

s ||
≤ ||Qt × mac

s − ||mac
s ||m̄|| + (1 − ||mac

s ||) + e−�s

and by choosing s sufficiently large the last two terms can be made arbitrarily small,
while the first term can be made arbitrarily small by choosing t sufficiently large.

5 Discussion

On the basis of a given force of infection�, a given waning rate g and a given boosting
map f , we derived a constructive description of how the distribution of immune status
of an individual changes in time. Under the not-so-very-restrictive conditions (3.25),
(3.26) and (4.6) we established that the distribution converges to a unique stationary
distribution that has an (almost) everywhere positive density.

Our approach builds on a long tradition as exposed in the seminal work (Lasota
and Mackey 1994) of Lasota and Mackey. See (Rudnicki and Tyran-Kamińska 2015;
Mackey et al. 2013; Lasota et al. 1992; Banasiak et al. 2012; Hille et al. 2016; Pichór
and Rudnicki 2016). Also see the recent (Gerlach and Glück 2017), which builds on
(and simplifies) work of Greiner (1982) and the somewhat older work of Heijmans
(1986a, b) who uses spectral methods.

It might be interesting to explore yet another approach. Define

S(y) := expected time till arrival in yc when starting from y > yc (5.1)
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Then S should satisfy the equation

S(y) = τ̂ (y, yc)e
−�τ̂(y,yc) +

∫ τ̂ (y,yc)

0
�e−σ�(σ + S( f (π(σ, y))))dσ (5.2)

The point is that one needs S in order to compute the expected time between two
passages of yc (indeed, the time till the first jump after passing yc is exponentially
distributed and the time of the jump determines from which y > yc the waning back
towards yc starts). If onemanages to prove that the expected time between twopassages
of yc is finite, a general result, viz. Theorem V.1.2, page 126, of Asmussen (1987)
guarantees existence, uniqueness and asymptotic stability (with respect to the weak ∗
topology) of a stationary distribution.

So far we considered the force of infection � as a parameter. We now formulate a
consistency condition that� should satisfy. It involves three newmodeling ingredients:

μ: the probability distribution of immune status at birth
F(a): the probability to survive till at least age a
ξ(y): the contribution to the force of infection when becoming infected while having

immune status y

In a stationary population the stable age distribution has density F̃ given by

F̃(a) = F(a)∫ ∞
0 F(α)dα

The parameter � should satisfy

� = �

∫ ∞

0
ξ(y)

∫ ∞

0

∫ ∞

0
F̃(a)Qa(yb, dy)μ(dyb)da

and, since we are interested in � > 0,

1 =
∫ ∞

0
ξ(y)

∫ ∞

0

∫ ∞

0
F̃(a)Qa(yb, dy)μ(dyb)da

where the dependence of the right hand side on� is hidden in the notation, but derives
from the fact that Q depends on �.

The modeling approach presented here provides a basis for refining sero-
epidemiological methods. These methods exploit serum antibodies as biomarkers for
infection and yield powerful tools for inferring the frequency of asymptomatic infec-
tions, those that cannot be observed directly (DeMelker et al. 2006; Kretzschmar et al.
2010). Our work was motivated by questions arising in the epidemiology of pertussis,
where serological data suggest that exposure to pertussis occurs muchmore frequently
than documented in notification data of national surveillance systems. Whether this is
due to underascertainment and underreporting, or to the fact that many infections are
asymptomatic or mild and therefore not diagnosed, is unclear. To design vaccination
strategies that protect young infants, it would be very useful to understand better how
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the boosting andwaning of immunity in a population is reflected in serological surveys
of the population and what the distribution of serological markers can tell us about the
risk of exposure to the pathogen.

Current estimates of incidence of seroconversions only account for backward recur-
rence time of the most recent infection, ignoring any previous history of infections
(Teunis et al. 2012). Carry-over from prior infections, leading to elevated baseline
antibody levels, influence the current seroconversion, through the function f . The
function f also determines whether infection causes a “small” or a “large” jump in
antibody level, putatively corresponding to asymptomatic or symptomatic infection,
respectively (De Graaf et al. 2014).

Thus, the relation between an infection-history dependent degree of protection
against symptomatic infection and the incidence with which infection events occur
may be exploited to better characterize transmission in the population, not only for
pertussis but for any infectious pathogen with a measurable serum antibody response.

The statistical methods that have been developed to estimate the incidence of infec-
tion from serological data might be adapted and extended in order to incorporate a
continuum immunity status as in the current paper. While thinking about the possibili-
ties, one quickly realizes that our assumption of an age-independent force of infection
is doubtful. And although incorporation of an age-specific force of infection in the
formalism does not lead to great difficulties, such an extension of course leads tomajor
complications when it comes to parametrization and identification.
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A1 Kolmogorov’s partial differential equations

The backward equation reads

∂u

∂t
(t, y) − g(y)

∂u

∂y
(t, y) = −�u(t, y) + �u(t, f (y)) (A1.1)

while the forward equation is given by

∂m

∂t
(t, y) + ∂

∂y
(g(y)m(t, y)) = −�m(t, y) + (Sm)(t, y) (A1.2)

with S defined by

(Sφ)(y) =
{
0, y < f (yc)
�φ( f −1− (y)) 1

f ′( f −1− (y))
+ �φ( f −1+ (y)) 1

f ′( f −1+ (y))
, y > f (yc)
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Fig. 2 An alternative graph of f

y

z

yc

z=y

z=f(y)

(A1.3)

Here u(t, ·) is a continuous function of the form u(t, ·) = ∫
(0,∞)

Qt (·, dz)ψ(z), while
m(t, ·) is a density such that

∫
�
m(t, y)dy = ∫

(0,∞)
φ(z)Qt (z, �)dz for all � ⊂

(0,∞). One derives (A1.2) from (A1.1) by taking adjoints and restricting to absolutely
continuous measures. This entails the assumption that one starts at t = 0 with a
density. Indeed, as the Q0

t (y, �) contribution to Qt (y, �) shows, the solution has a
(diminishing) Dirac component when one starts with a Dirac initial condition.

A2 An alternative type of function f

The motivation for a graph of f as depicted in Fig. 1 derives from the within-host
submodel introducted in De Graaf et al. (2014). The behaviour for y ↓ 0 and for
y ↑ ∞ is questionable. We conclude with a graphical representation, Fig. 2, of an
alternative. Actually the proofs given above remain valid when f (0) < ∞ but the
behaviour of f (y) for y → ∞ is as described in H f .
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