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Abstract
Background: The lack of standardized delineation of lymph node station in lung
cancer radiotherapy leads to nonstandard clinical target volume (CTV) contouring,
especially in patients with bulky lump gross target volume lymph nodes (GTVnd).
This study defines lymph node region boundaries in radiotherapy for lung cancer and
automatically contours lymph node stations based on the International Association
for the Study of Lung Cancer (IASLC) lymph node map.
Methods: Computed tomography (CT) scans of 200 patients with small cell lung can-
cer were collected. The lymph node zone boundaries were defined based on the IASLC
lymph node map, with adjustments to meet radiotherapy requirements. Contours of
lymph node stations were confirmed by two experienced oncologists. A model
(DiUNet) was constructed by incorporating the contours of GTVnd to precisely con-
tour the boundaries. Quantitative evaluation metrics and clinical evaluations were
conducted.
Results: The mean 3D Dice similarity coefficient (Dice similarity coefficient) values of
DiUNet in most lymph node stations was greater than 0.7, 98.87% of the lymph node
station slices are accepted. The mean DiUNet score was not significantly different
from that of the man contoured in the evaluation of lymph node stations and CTV.
Conclusion: This is the first study to propose a method that automatically contours
lymph node regions station by station based on the IASLC lymph node map with
bulky lump GTVnd. Delineation of lymph node stations based on the DiUNet model
is a promising strategy to obtain accuracy and efficiency for CTV delineation in lung
cancer patients, especially for bulky lump GTVnd.
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gross target volume lymph nodes (GTVnd), lung cancer, lymph node, lymph node clinical target
volume (CTV)

INTRODUCTION

Precise delineation of the clinical target volume (CTV) is essen-
tial for accurate, individualized radiotherapy (RT). This task is
time-consuming and relies largely on the experience of oncolo-
gists. Intra- and interobserver variations exist despite following

the same contouring guidelines.1–3 Metastasis in lymph nodes
(LNs) is very common in lung cancers, especially in patients
who are inoperable. Treatment guidelines for lung cancer rec-
ommend including the entire pathologically affected LN station
in contouring the CTV4,5 in accordance with the Radiation
Therapy Oncology Group (RTOG) regulations.6 Thus, accurate
contouring of the involved thoracic regional LN is a necessary
step in the accurate definition of a CTV in RT for lung cancer;Mingyi Di and Jing Shen contributed equally to this article.
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however, this accuracy is not usually achieved as clinical delin-
eation of a CTV usually depends on the experience of the
oncologist and results in great heterogeneity. Furthermore, no
previous studies have defined the boundary of the mediastinal
LN region in RT or the delineation range of the involved LNs.
When we contour a certain lymph node region, there is no rel-
atively reasonable evaluation system for the accuracy of its
boundaries. This problem is present in both small cell lung
cancer (SCLC) and non-small cell lung cancer (NSCLC).

Convolutional neural network (CNN)-based methods
have been successfully applied to identify organ structures
and CTVs for contouring several cancers. Deep learning-
related published data for lung cancer have predominantly
focused on organs at risk (OAR),7–10 GTV of primary tumors,11

and CTV in postoperative radiation therapy (PORT).12 Bi et al.
built a deep learning model12 for PORT-CTV delineation;
however, it could only be used in RT for non-small cell lung
cancer (NSCLC) patients after complete resection, and the
CTV contouring mostly depended on the experience of the
oncologists. Zhang et al. proposed a modified ResNet model
for auto-segmentation of the GTV of NSCLC,11 but only the
primary tumor mass was assessed for patients with LN
involvement. To date, a machine learning model of auto-
matic contouring of LN stations or CTV in patients with
bulky lump gross target volume LNs (GTVnd) has not been
reported. Therefore, we cannot currently accurately identify
the LN region contained in a CTV and whether it was fully
included in the CTV.

Since the radiographic imaging of the lymph node parti-
tion is based on the anatomical structure, which is also asso-
ciated with the site of lymph node metastasis in lung cancer,
the LN region boundaries in RT for lung cancer were rede-
fined in this study for accuracy, using classifications from
the International Association for the Study of Lung Cancer
(IASLC). Based on this, a previously proposed CNN model,
which has been successfully used in cervical cancer in our
center,13 was employed to automatically contour 1–11 LN
stations in 200 patients. The GTVnd was added to the CT
slice as a second input to improve the accuracy of LN region
delineation for bulky lump GTVnd cases. This is the first
study to define LN region boundaries for lung cancer in RT
and propose automatic segmentation of the LN stations,
which can assist in consistently and automatically contour-
ing the CTVs of lung cancer with involved LN stations. This
work also allowed different oncologists to uniformly and
accurately regulate the inclusion range of lymph nodes in
CTV delineation.

METHODS

Data and preprocessing

CT data from 200 patients with stage III–IV small cell lung
cancer (SCLC) were collected from November 2010 to
January 2021. The total slice number was 16 676, data were
512 � 512 p, pixel spacing ranged from 0.89 � 0.89 to

1.32 � 1.32 mm, and a 5 mm thickness was acquired with a
Brilliance CT Big Bore (Philips Healthcare).

GTVnd, defined as enlarged regional LNs (>1 cm in the
short axis), were delineated according to the International
Commission on Radiation Units and Measurements Report
50 guidelines. GTVnd were outlined on mediastinal and
lung windows with no expansion for potential microscopic
disease. A CTV was defined according to the RTOG guide-
lines.14,15 The LN stations, GTVnd, and CTV manually
delineated by trained radiation oncologists were used as the
segmentation man contouring (MC). The LN stations were
contoured based on the widely accepted anatomic defini-
tions of the nodal stations in the IASLC16 (Table S1,
Figure S1); examples of the contouring of each LN station
are shown in Figure 1.

During the contouring process, corrections were made
to the boundaries of the LN regions to ensure CTV coher-
ence. For example, the blood vessels were not avoided in the
contouring of the supraclavicular zone (station 1R/L), as
required by the guidelines in the IASLC. Another example is
the perivascular LNs (station 3A), where the posterior bor-
der in the IASLC was located in front of the anterior border
of the superior vena cava and left carotid artery. Here, blood
vessels were included in stations 2 and 3A. Involved LNs
were defined as metabolically avid in positron emission
tomography or abnormally enlarged regional LNs measuring
over 1.0 cm along their short axis in CT scans. Additionally,
the CTV contained the entire LN station defined by the
IASLC LN map, according to the RTOG regulations. More-
over, the CTV was restrained to avoid extending beyond
anatomic boundaries, such as the chest wall, vertebral body,
great vessels, heart, and esophagus, except for sufficient veri-
fiable evidence of the invasion.

The boundary was extended as far as possible in con-
touring because bulky lump GTVnd in LN stations caused
boundary deformation. The GTVnd crossed the 10R and
seven stations (contoured independently, Figure 2a,b) and
spread beyond the boundary of station 4R (Figure 2c,d).
This pattern is common in centrally located lung cancers
and greatly increased the heterogeneity of the training sets.
The LN stations contained all the GTVnd to confirm the
anatomical boundaries defined by the IASCL.

All delineations were reviewed and modified by two
oncologists with more than 10 years of experience in RT for
lung tumors to ensure quality.

Network architectures of DiUnet

It was difficult for existing AI algorithms to accurately
define the LN stations because their boundaries varied
widely as the characteristics of the GTVnd changed. The
previous machine learning model for GTV aimed at NSCLC
patients’ primary tumors and failed to define accurate
boundaries of GTVnd. To incorporate the GTV boundary
into the LN stations, prior expert GTV knowledge was
encoded into the model by adding a GTV mask as an
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additional input. A U-Net backbone architecture was used
in the detailed CNN architecture, consisting of two encoding
paths and a decoding path (Figure S2). The encoding part
aggregated semantic information from the GTV masks and
original CT slices by reducing the spatial information to
learn features from part to whole. The extracted feature
maps were summed and input to the decoding part, which

received semantic information from the bottom. The decod-
ing path was combined with the two encoding paths using
skip connections, which concatenated features at multiple
levels and recovered the image details passed from the convo-
lutional layers in the encoding paths. The dual-path network
architecture was used in the encoders to improve feature
extraction. Four micro-blocks that combined residual17 and

F I G U R E 1 Examples of each LN station of the oncologists’ contours. (a1) RGB1286465: Station 1L; RGB1286368: Station 1R; (a2) Station 1R/L upper
border; (a3) Station 1R/L lower border. (b1) RGB2380238: Station 2L; RGB255204204: Station 2R; (b2) Station 2R/L upper border; (b3) Station 2R/L lower
border. (c1) RGB255144144: Station 3A; RGB2551500: Station 3P; (c2) Station 3A/P upper border; (c3) Station 3A/P lower border. (d1) RGB240240128:
Station 4L; Dark green: Station 4R; (d2) Station 4R/L upper border; (d3) Station 4R/L lower border. (e1) RGB0200255: Station 6; RGB164255164: Station 5;
(e2) Station 6 upper border; (e3) Station 5 upper border; Station 6 lower border; (e4) Station 5 lower border. (f1, f2) Orange: Station 7; (f3) Station 7 upper
border; (f4) Station 7 lower border. (g1, g2) RGB192255: Station 8; (g3) Station 8 upper border; (g4) Station 8 lower border. (h1) RGB00253: Station 10L;
Pink: Station 10R; (h2) Station 10R/L upper border; (h3) Station 10R/L lower border. (i1) RGB2307676: Station 11L; RGB0254254: Station 11R; (i2) Station
11R/L upper border; (i3) Station 11R/L lower border

F I G U R E 2 Contouring of GTVnd (blue) and LN stations 10R (pink), 7 (orange), and 4R (dark green)
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dense blocks18 into a dual path architecture were embedded
into the decoder to replace the standard convolution operations.
As a 2.5D architecture, the input to the model was three adja-
cent 2D CT slices, and the output was the corresponding seg-
mentation result of the middle CT slice. The number of channel
outputs was the same as the desired number of structures.

This model combined the information of the CT slices
and GTV masks. The output mask boundaries were con-
strained by the spatial features extracted from the GTV
boundaries, leading to greater accuracy.

Quantitative evaluation metrics

The Dice similarity coefficient (DSC)19 and 95th percentile
Hausdorff distance (95HD)20 were used to quantify the con-
touring accuracy. The DSC measured the relative volumetric
overlap between two segmented masks, with a higher value
indicating a higher overlap ratio; one means the two masks
are identical. The 95HD reflected the alignment between
two contours, with a higher value indicating a larger differ-
ence. The DSC and 95HD were calculated at a 3D level, and
mean � standard deviation (SD) values were calculated by
averaging the values.

Clinical evaluation

Oncologist evaluation

Two oncologists who did not participate in the LN stations
and GTVnd contouring performed the subject evaluation on

20 randomly selected patients. The manual reference con-
tours were separated into the MC group, whereas the corre-
sponding contours generated by the proposed model were
placed in the artificial intelligence (AI) group. Then, 10% of
the AI and GT results were randomly selected for each LN sta-
tion (485) and CTV evaluation (46) and randomly labeled as
1 or 2. If AI was labeled 1, then MC was 2. Two oncologists
were asked to blindly evaluate these results slice-by-slice and
grade each automatic contouring result together based on the
curative effect with a 4-grade criterion (Table S2).

Consistency test

Another 10% of the slices from each LN zone and CTV in
each case were randomly selected to simultaneously mark
the contours of the AI and MC, of which only one structure
was presented for each slice, the colors were randomly
swapped, and one was blindly selected by each oncologist
that was better for clinical applications. If the AI group was
better, it was recorded as a positive result; otherwise, it was
negative.

Time cost

The processing time was measured for AI, pre-, and post-AI
assistance in the delineation of LN stations and formation of
CTV for post-modified radical mastectomy RT.

Statistical analysis

An independent sample t-test was performed to determine if
the differences in the scores provided by the oncologists were
statistically significant between AI and MC. Furthermore,
McNemar’s and consistency tests were performed for consis-
tency evaluation.

RESULTS

The full CT image dataset was randomly divided into
training-validation (180 patients) and test (20 patients) data-
sets at a ratio of 9:1. Statistical analysis of significant differ-
ences in the location of the primary tumor, anatomic tumor
site, and GTVnd cases between the training-validation and
test datasets was performed using the chi-square test. Age
was tested using an independent sample t-test with statistical
significance set at a two-tailed p < 0.05. The general charac-
teristics of the patients in the training and test datasets
showed no significant differences (Table S3). The average
DSC and 95HD results for each LN region of the DiUNet
are shown in Table 1.

In the test dataset, DiUNet provided a suitable CTV for
clinical application. The LN station boundaries were accu-
rate even for bulky lump GTVnd (Figure 3).

T A B L E 1 DSC and 95HD values of proposed model in each LN
station

Lymph node station

DiUNet

DSC � STD 95HD � STD (mm)

1R 0.79 � 0.18 4.04 � 6.40

1L 0.83 � 0.14 2.72 � 3.12

2R 0.88 � 0.06 2.36 � 1.43

2L 0.89 � 0.04 1.92 � 0.99

3A 0.86 � 0.04 2.36 � 0.87

3P 0.75 � 0.11 4.02 � 3.95

4R 0.92 � 0.04 1.61 � 0.55

4L 0.81 � 0.08 2.86 � 1.59

5 0.78 � 0.15 2.21 � 1.48

6 0.78 � 0.08 2.40 � 1.06

7 0.79 � 0.09 3.35 � 2.44

8 0.65 � 0.13 4.68 � 3.44

10R 0.86 � 0.08 2.35 � 0.99

10L 0.89 � 0.05 2.00 � 0.92

11R 0.72 � 0.12 3.50 � 2.06

11L 0.77 � 0.13 3.17 � 2.04

2900 SHEN ET AL.



The oncologist evaluation results of contouring 418 slices
of LN stations are listed in Table 2. Using the scoring cri-
teria for contour evaluation, most LN station contours were
deemed clinically acceptable (≥2) by both oncologists. The
percentages of clinically acceptable scores for AI and MC,
respectively, were 99.18% (481/485) and 98.35% (477/485)
for oncologist A; and 98.56% (478/485) and 97.94%
(475/485) for oncologist B. The total percentage of clinically
acceptable scores for both oncologists was 98.87% (959/970)
in the AI group.

The overall average scores were 2.914 and 2.899 for AI
and MC, respectively, which showed no significant differ-
ence (p > 0.05). However, a significant difference was
observed in the evaluations of both oncologists (p < 0.05).

To build the CTV for the deep learning model, a total of
46 (10%) of the CTV slices in the test dataset were randomly
selected to simultaneously mark the contours of AI and
MC. The graded oncologist evaluations for AI contours were
compared to those of MC in CTV (Table 3); there were no
significant differences in the evaluations of both oncolo-
gists (p>0.05).

The merits of the DiUNet model were separately com-
pared with those of the MC group. The overall positivity
rates for oncologists A and B were 53.20% (258/485) and
52.37% (254/485), respectively. This demonstrated that the
proposed DiUNet performed equally as well as human delinea-
tion. McNemar’s test was statistically significant (p < 0.05), and
the kappa consistency index was 0.276 (p < 0.05), which indi-
cated that the oncologists had different positivity rates and
poor consistency, respectively (Table S4).

The CTV with involved LN stations was contoured
using DiUNet, and the oncologists (slice-by-slice) in the test
dataset. The positivity rates produced by the two oncologists
were 50% (23/46) and 54.35% (25/46) (Table S5). McNe-
mar’s test was statistically significant (p < 0.05), and the
kappa consistency index was 0.261 (p < 0.05), which indi-
cated that the oncologists had different positivity rates and
poor consistency, respectively.

The proposed method took approximately 5 min per test
case from DICOM file parsing to contour generation. It took
an oncologist more than 80 min to completely delineate the
CTV, but with the assistance of AI, that was reduced to
25 min. Therefore, the proposed model can efficiently
shorten the contouring time for oncologists.

DISCUSSION

Currently, there is no accurate definition of LN station
boundaries, and oncologists mainly delineate CTV in lung
cancer based on their clinical experience, resulting in great
heterogeneity. When the CTV region is described, neither

F I G U R E 3 Example of accurate boundary delineation in cases with
large GTVnd presented in the LN regions. (a) and (b) Station 4R contoured
by oncologists (dark green) and DiUNet (RBG240240128). (c) and
(d) Station 10R contoured by oncologists (pink) and DiUNet (cyan), and
station 7 contoured by oncologists (orange) and DiUNet (purple)

TAB L E 2 Graded oncologist evaluations for AI and MC LN station
contours

Oncologist
A B

Score AI MC AI MC

0 0 0 0 0

1 4 8 7 10

2 35 36 27 26

3 446 441 451 449

Mean score 2.911 2.893 2.916 2.905

p-valuea 0.541 0.338

aTested by an independent sample t test.
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the specific LN regions contained within nor their range
boundaries can be accurately determined. Many studies have
found this problem, but none have found an effective solu-
tion. Guangying and his colleagues investigated the consen-
sus and controversies on the delineation of radiotherapy
target volume for patients with NSCLC in 10 radiation
departments in China and two departments in the US. The
delineation of the CTV in mediastinal lymph nodes varied
greatly.23 In the study by Spoelstra et al. in 2010, 17 thoracic
radiation oncologists were invited to contour their routine
CTV for two representative NSCLC patients, and it was
found that the delineation of the CTV varied greatly
between different oncologists at different times.21 Another
study in 2019 also confirmed the view that image interpreta-
tional differences can lead to large interobserver variation,
particularly when delineating the gross tumor volume lymph
node.22 In other words, even though the CTV contains same
lymph node zones, the boundaries of each region vary
greatly among different oncologists. The heterogeneity in
the CTV is particularly evident when there is bulky lump
GTVnd in the LN stations. Although automatic segmenta-
tion models for CTV in lung cancer have been proposed,
they failed in cases involving bulky lump GTVnd. In this
study, the boundaries of each LN region were accurately
defined for the first time in RT, and a CNN-based model
was trained to auto contour LN stations for accurate and
consistent CTV formation, which is an important innova-
tion point of this study.

The boundaries of LN stations vary widely in shape,
location, and size of GTVnd changes. Therefore, the prior
GTVnd expert knowledge was incorporated as an additional
training condition of the proposed DiUnet model, which
constrained the output mask boundaries using the spatial
features extracted from the GTVnd boundaries, leading to
more accurate results.

Examples of the LN stations contoured using DiU-
Net are shown in Figure 3, in which LN boundaries were
contoured accurately even for bulky lump GTVnd. This
has great value in CTV contouring, especially for central
lung carcinoma patients. Therefore, it was first applied
to auto-contouring with machine learning models for
lung cancer.

The DSC values of DiUNet in each LN station were
greater than 0.7, except for station 8 (Figure 4). The inaccu-
racy of contouring the esophagus may explain this lower
value.

The percentage of clinically acceptable scores was greater
than 98% and the average score was higher than 2.91 in the
DiUNet model (Table 2). LN stations contoured by AI were
acceptable compared with human-generated structures. The
CTV evaluation results are presented in Table 3. Despite the
differences in the evaluation systems among physicians, it is
believed that the CTV contoured by DiUNet can be clini-
cally acceptable. DiUNet passed the consistency test with an
overall positivity rate higher than 50% in the comparison of
LN stations and CTV. The concordance of data between the
two oncologists was poor, but they both considered that LN
stations and the CTV contoured with AI models were not
inferior to those of MC (Tables S4 and S5).

Accurate definition and complete delineation of lymph
node station boundaries are an important basis for the for-
mation of standardized CTV. This is the first study to delin-
eate lymph node stations to promote CTV standardization.

It should be noted that most slices that required correc-
tions were located at the edges adjacent to the blood vessel
or at the border of the LN station. This may be because
accurate delineation needs to integrate information from

F I G UR E 4 Example of inaccurate contouring for station 8:
(a) RGB1922550 contoured by oncologists and (b) RGB196255255
contoured by DiUNet

T A B L E 3 Graded oncologist evaluations for CTV contours in AI
and MC

Oncologist
A B

Score AI MC AI MC

0 0 0 0 0

1 0 0 1 0

2 8 7 13 11

3 38 39 32 35

Mean score 2.826 2.848 2.674 2.761

p-valuea 0.577 0.069

aTested by an independent sample t test.
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multiple upper and lower slices, but the information avail-
able at the boundary is limited. In the future, we are plan-
ning to explore the impact of CTV on survival prognoses
that are comprised of intact partially involved LN regions,
local recurrence, and rate of nodal failures.

In conclusion, the purpose of this study was to define LN
region boundaries in RT for lung cancer and automatically
contour LN stations based on the IASLC LN map. This is the
first study to propose this approach, and qualitative and quan-
titative experiments demonstrated the effectiveness and effi-
ciency of the proposed DiUNet model for CTV consisting of
involved LN stations, especially for bulky lump GTVnd cases.
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