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Abstract

Given the uncertain population status of low-density, widely-occurring raptors, monitoring

changes in abundance and distribution is critical to conserving populations. Nest-based moni-

toring is a common, useful approach, but the difficulty and expense of monitoring raptor nests

and importance of reliable trend data to conservation requires that limited resources are allo-

cated efficiently. Power analyses offer a helpful tool to ensure that monitoring programs have

the ability to detect trends and to optimize financial resources devoted to monitoring. We eval-

uated alternative monitoring designs for raptors to identify appropriate survey effort to detect

population trends. We used data collected from a territory-occupancy study of ferruginous

hawks throughout Wyoming to guide simulations and evaluate the ability to detect trends in

occupancy rates. Results suggest that greater gains in precision of trend estimation may be

achieved through the addition of more sites and not more visits; statistical power was�80%

when monitoring lasted 20 years and population declines were 20%; and probability of detec-

tion affected statistical power less than rates of population decline. Monitoring at least 150

sites for 20 years would provide reasonable estimates of trend in occupancy given certain

rates of detection and occupancy, but only for population declines of 20%. Removal sampling

did not result in substantial changes of any metrics used to evaluate simulations, providing

little justification for employing the standard design if territory occupancy is the variable of

interest. Initial rates of territory occupancy may be biased high, a problem inherent to many

studies that monitor territory occupancy. We explored the effects of lower rates of initial occu-

pancy on the ability to detect trends. Although we present data from a study of ferruginous

hawks, our simulations can be applied to other raptor species with similar life history and pop-

ulation dynamics to provide guidance for future trend estimation of territory occupancy.
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Introduction

Anthropogenic transformation of natural systems is currently a primary driver of species

abundance and distribution patterns, leading to population declines for many species [1, 2].

Consequences are of particular concern for species that are already rare, especially those that

occupy a high trophic position, restricted geographic ranges, and narrow environmental gradi-

ents [3]. Apex predators, such as raptors, often meet criteria for rarity and consequently, many

species are of conservation concern. Presently, the International Union for Conservation of

Nature (IUCN) reports 86 species within Order: Accipitriformes (34%) as either Critically

Endangered, Endangered, Vulnerable, or Near Threatened [4]. In the United States, ten raptor

species (45%) within the same order have been designated as species of conservation concern

in the last decade [5]. Raptors fill unique ecosystem roles as indicators of environmental pol-

lutants [6, 7], flagship species [8], and apex predators responsible for trophic cascades [9, 10].

Given the implications of their loss from ecological communities to ecosystem functioning, it

follows that there is substantial interest in their conservation and management from regional

to global scales (e.g., Hawks Aloft, Inc., Hawk Mountain Sanctuary, Hawkwatch International,

The Peregrine Fund, and many others).

Human alteration of landscapes is a primary threat to many raptor species. Direct mortality

results from collisions with human infrastructure and electrocution [11–14], and reproductive

success can be reduced by changes in land-use or climate that alter prey availability or preda-

tion risk of young [15]. In the western U.S., some populations of raptors have experienced

declines since the 1990s [15]. In particular, raptors occupying sagebrush steppe and grasslands

have experienced extensive landscape changes from accelerated habitat conversion driven by

agriculture, urban, rural, and energy sprawl, and altered fire regimes [16–18]. For species like

ferruginous hawks (Buteo regalis) whose geographic distribution occurs entirely within west-

ern North America, these landscape alterations affect the majority of the population [19, 15].

Given the uncertain population status of low-density, widely occurring species, monitoring

changes in both the abundance and distribution of raptors will be critical to conserving their

populations. Bald eagles (Haliaeetus leucocephalus) and golden eagles (Aquila chrysaetos),
along with northern goshawks (Accipiter gentilis), each have rigorous monitoring programs in

the U.S. [20–22]. However, other special-status species such as ferruginous hawks lack stan-

dardized monitoring programs; this is likely affected by their broad range and varying conser-

vation designations across multiple management entities. Further, many raptor species are not

well-captured by multi-species monitoring programs such as the North American Breeding

Bird Survey or Integrated Monitoring in Bird Conservation Regions because surveys used by

such programs typically yield relatively few observations of raptors, making precise or accurate

abundance or trend estimation difficult [23, 24]. Thus, there is a need for the development of

standardized monitoring for ferruginous hawks and similar species.

The low density of many raptor populations, combined with their high fidelity to territories

and nest sites, and the conspicuousness of their large stick nests, has resulted in monitoring

focused on known (historic) nests or territories e.g., [25–28]. Nest-based monitoring may also

be preferred over alternative approaches, like counting individuals, because of the additional

benefit of acquiring information on reproductive success [29]. However, nest monitoring for

rare species across broad scales poses unique challenges. For extensive and remote survey

areas, nest monitoring is commonly conducted using aircraft [24, 30], but permitting (for

eagles), airspace regulations, seasonal weather patterns, safety, and cost must be accounted for.

Further, apparent occupancy of nests or territories can vary dramatically among years, either

caused by variable detection rates [27, 31], or variability in true nest site occupancy and repro-

ductive output, often in response to climatic conditions or fluctuating prey populations [32].
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Thus, sample sizes must be large enough to detect trends despite potentially high interannual

variability, and appropriate methods must be used to account for imperfect detection.

Methods for estimating site occupancy rates, for example proportion of nests or territories

occupied for breeding, are employed when there is interest in occurrence-based indices of spe-

cies but imperfect detection of individuals [33]. MacKenzie et al. [34, 33] described a method

of modeling site occupancy that allows estimation of occupancy rates when occupancy status

of a nest changes among seasons during a study period (i.e., colonization or local extinction).

Given the difficulty and expense of monitoring raptor nests and the importance of representa-

tive trend data for management and conservation of raptor populations, power analyses offer a

valuable tool to ensure that monitoring programs have the ability to detect trends and to opti-

mize financial resources devoted to monitoring. Power analyses are especially useful in guiding

the development of monitoring programs for rare animals [35–37], but only recently have they

been extended to include an occupancy framework [38–43]. Although occupancy estimation

has been used for raptor monitoring programs (e.g., northern goshawk [20]; Mexican spotted

owl (Strix occidentalis lucida; [44]), use of power analysis to guide the development of such

programs is lacking for most raptor species (but see [36]), even though the financial and bio-

logical cost of conducting a program with inadequate power could be high.

Here, our objective is to provide practical guidance on effort and sample designs based on

simulations of population parameters and multiple aspects of a territory-occupancy based

monitoring program. We use ferruginous hawks as a case study because this species is depen-

dent on sagebrush-dominated ecosystems that are increasingly impacted by anthropogenic

change. Furthermore, we lack standardized monitoring protocols for this species given the dif-

ficulty in assessing its population status, and we have available a dataset of territory occupancy

for ferruginous hawks across Wyoming, U.S.A. that provided an ideal framework to evaluate

power analyses as they relate to guiding the development of raptor monitoring programs. We

use simulations to evaluate alternative designs for monitoring given a range of values for sur-

vey effort and population-level parameters that may influence the power to detect population

trends. We consider multiple aspects of survey effort in order to achieve specific monitoring

objectives, including: the number of sites to be monitored, how many surveys per site to

conduct within a season, and total duration of the monitoring program. We examine two

approaches to multi-season occupancy estimation: a standard site-occupancy design which

includes an equal number of visits among all sampling units (e.g., nesting territories) through-

out the breeding season, and a removal design in which surveys are discontinued (within the

respective breeding season only) after detection of the target species. A removal design may

improve efficiency and reduce cost through fewer visits to some sites within a season. The

analysis presented here was facilitated by a need for guidance on the development of a terri-

tory-occupancy monitoring program for ferruginous hawks throughout the state of Wyoming,

but the simulations and other considerations we present can provide guidance for monitoring

other raptors for which estimation of territory-occupancy is of interest at broad scales. Based

on these simulations, we offer recommendations on sample design and effort while consider-

ing logistical constraints.

Materials and methods

Briefly, we used data presented in [27] to guide simulations allowing us to evaluate the ability

to detect trends in occupancy rates for ferruginous hawks. We evaluated trends in occupancy

over a time period of 10 or 20 years given various characteristics of the ferruginous hawk pop-

ulation and survey effort. Wallace et al. [27] reported data collected from territory-based detec-

tion-non detection surveys in Wyoming during the ferruginous hawk breeding season from
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2011–2013. The authors present rates of re-occupancy of known territories estimated from sin-

gle-season models and related to environmental covariates including oil and gas infrastructure,

sagebrush cover, nest substrate, and prey populations. Using the same data presented in Wal-

lace et al. [27], we simulated trends in territory occupancy for ferruginous hawks using a

multi-season site-occupancy approach [33]. We identified distributions for initial probability

of occupancy, probability of detection, and probability of colonization and extinction, and

evaluated the ability to detect trends using multiple statistical metrics described below.

Study area

The study area at which data were collected that formed the basis for simulations included

1,230 townships comprising the range of ferruginous hawks in Wyoming [45, 27]. Townships

were delineated by the U.S. Public Land Survey System and are approximately square with

sides 9.66 km in length [46]. The sample units were putative breeding territories within the

townships, defined as circular buffers with a 1.5-km radius around nest sites historically

occupied by ferruginous hawk that were located during systematic aerial surveys of townships

[45, 27].

Simulation design

To evaluate the ability to detect trends in occupancy of ferruginous hawks under different sce-

narios we developed simulations that varied: 1) survey effort, including number of monitored

territories, number of visits to a territory within a breeding season, and total duration of moni-

toring (i.e., number of years), 2) the observation process (probability of detection; p), and 3)

parameters associated with territory occupancy, including initial proportion of sites occupied

[ψ1], and annual rates of decline in regional ferruginous hawk occupancy. We conducted sim-

ulations using a standard sampling design in which all sampling units are visited an equal

number of times, and a removal sampling design in which visits to sampling units cease

(within the current breeding season) once presence is confirmed. We arrived at the values

used for simulations (Table 1) with the approach described below.

The range of values for survey effort was based on exploratory simulations and logistical

and financial constraints identified during previous survey efforts [27]. Initial simulations

Table 1. Parameters and simulated values used in simulations of territory-occupancy monitoring of ferruginous

hawks.

Parameter Simulated values

Survey effort
Number of sites 100–200

Number of visits 2–6 per seasona

Total duration 10 yrs; 20 yrs

Observation process
Probability of detection 0.44; 0.67; 0.79

Occupancy
Probability of extinction 0.33 (fixed)

Initial probability of occupancy 0.42; 0.57; 0.72

Annual population decline 1.12%; 0.55%b

a For the standard sampling design, this value represents the total number of visits to a given site per season. For the

removal sampling design, this value represents the maximum number of visits to a given site per season.
b Annual decreases represent a 20% and 10% decline over 20 years, respectively.

https://doi.org/10.1371/journal.pone.0213654.t001
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suggested that dropping the minimum number of sites to 75 (below that used in Wallace et al.

[27]) would not provide adequate statistical power. Thus, the number of sampled sites we

chose was simulated to range from 100–200, 100 representing the approximate sample size

used in [27] and 200 representing the maximum number of sites that can be sampled within

one breeding season using aerial survey methods given similar budget constraints. The num-

ber of visits we simulated ranged from two to six, two representing the minimum number of

visits required to estimate detection probability when detection is imperfect [33] and six repre-

senting the maximum number of visits that could reasonably be conducted within one season

using the removal design, assuming detection rates within the range of those reported in [27];

see below; [33] and a trade-off with number of sampled sites.

The range of values we used for probability of detection (p) was reported in [27]. In 2011,

2012, and 2013, p̂ was 0.79, 0.78, and 0.44, respectively [27]. We assumed the highest and low-

est values of p̂ (i.e., 0.79 and 0.44) within the simulation to evaluate the influence of high and

low detection rates on the power to detect trends in occupancy. Additionally, we used the

medium value for p̂ of 0.67 (average of 2011, 2012, and 2013). We simulated probability of

extinction (ε) at a fixed value of 0.33, which we estimated from a multi-season occupancy

model fit to the data presented in [27].

Managers tasked with monitoring ferruginous hawks may want the ability to detect rela-

tively small declines in occupancy to prepare management or mitigation responses should the

trend continue. Thus, we explored the ability to detect relatively small annual decreases in the

ferruginous hawk population (π) of 0.55% and 1.12% (π = 0.0055 and 0.0112, respectively) rep-

resenting a 10% or a 20% decline over 20 years, respectively.

To explore the effect that the initial probability of occupancy (ψ1) would have on the power

to detect trends in occupancy over time, we chose three values of ψ1. Because we were inter-

ested in the effect of lower values of ψ1 than were observed by Wallace et al. [27], we chose

their reported mean of ĉ1 = 0.72 (95% CI: 0.57–0.83) for 2011 as the highest value for our sim-

ulations. We chose the lower limit of the 95% CI of ĉ1 in 2011 of 0.57 as a middle value for ψ1.

The lowest value for ψ1 we selected was 0.42, which represented the same distance from the

lower limit of the 95% CI of ψ in 2011 (i.e., 0.57–0.15 = 0.42) as the lower limit was from the

mean (i.e., 0.72–0.57 = 0.15).

We estimated the average probability of colonization for season i (γi) as:

gi ¼
ðpþ εÞ � ci

ð1 � ciÞ
:

The probability that a site was occupied in the first season (ψ1) was a parameter defined for

a simulation. The probability that a site was occupied in subsequent seasons was given as:

ci ¼ ci� 1 � ð1 � εÞ þ ð1 � ci� 1Þ � gi� 1

For season i we determined if a site was occupied using a random Bernoulli draw with

probability ψi. If the site was determined to be occupied based on the Bernoulli draw, we deter-

mined if occupancy was detected using random additional draws from a binomial distribution

with probability p and the number of trials equal to the number of visits. In each simulation

run, we fit a multi-season occupancy model to the simulated data to estimate the average

annual percent decline in the population. During preliminary simulations we used program

GENPRES [38] and PRESENCE [47] but determined that it did not provide the flexibility or

full suite of metrics we used to evaluate trends (description below). We used the unmarked
package [48] in the R language and environment (v3.2.1; R Development Core Team 2015) to

fit a multi-season occupancy model to the simulated data. We estimated a trend parameter for
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probability of colonization while initial probabilities of occupancy, detection, and extinction

were estimated without covariates. We used Markov model smoothing to estimate annual

occupancy, which obtained predictions from the multi-season occupancy model conditional

on the observed data [48]. Finally, we regressed annual smoothed occupancy estimates from

the multi-season occupancy model on year using log-linear regression, and then used the slope

parameter from the regression model as an estimate of trend (i.e., annual change in occupancy

rate).

Reliable trend estimation may require monitoring to extend for a relatively long time

period. Long-lived species that have high site fidelity, like ferruginous hawks, might require

longer time periods for changes in occupancy to manifest in obvious trends. Furthermore, a

long-term data set might be required to separate true population trends from inter-annual var-

iation inherent to populations [49]. To evaluate the ability of a monitoring program to detect

population declines with respect to the total duration of monitoring, we simulated monitoring

for 10 and 20 years. Although understanding trends in occupancy in fewer years would be

desirable, the number of years provides the number of data points from which a trend may be

estimated; thus, we evaluated the minimum number of years we expected may provide enough

information for a robust trend estimation.

Metrics to evaluate simulations. We used four metrics to evaluate how sampling effort

and occupancy parameters affected the ability to detect trends in site occupancy: relative bias

(RBIAS), coefficient of variation (CV), confidence interval (CI) coverage, and statistical power.

Using multiple metrics is preferable because evaluating a single metric can be misleading;

when selecting an appropriate monitoring design, understanding the precision and bias associ-

ated with the monitoring effort are as important as understanding statistical power.

We measured RBIAS as the difference between the estimated trend and the true trend stan-

dardized by the true trend:

RBIAS ¼
P
ðT̂ � TÞ=T

I
� 100

where T̂ was the estimated trend and T was the true simulated trend, and I = 1,000 (number

of iterations in the simulation). Relative bias is interpreted as the magnitude of the difference

between the estimated and actual trend, in terms of the true trend [50]. We measured CV as

the median of the ratio of the standard deviation of the estimated trend to the mean of the esti-

mated trend over 1,000 iterations in each simulation. We evaluated CI coverage as the percent-

age of 1,000 simulations resulting in 90% CIs that contained the true trend (T). Finally, we

evaluated statistical power, or the proportion of times the analyses correctly detected a trend

when one existed (i.e., correct rejection of a null hypothesis of no trend).

Strict guidelines on acceptable benchmarks for these metrics are not available, but a goal for

this analysis was to evaluate the performance of particular monitoring scenarios to provide

guidance on a monitoring program for ferruginous hawks. Thus, we selected conservative

benchmark values for each metric to help identify monitoring effort appropriate for this spe-

cies (Table 2). Any non-zero value of relative bias indicates a biased estimate, so we chose a

low absolute value of�5% as acceptable. A lower CV percentage indicates higher precision

of the estimated population trend; thus, we considered CVs� 20% as an acceptable level of

uncertainty. Ideally, a 90% CI should contain the true trend at least 90% of the time, so we

selected a benchmark of 90% as a reference value for CI coverage. For statistical power, we

used the conventional value of 80% as an acceptable benchmark [51–53]. However, our choice

of benchmarks for all metrics are not meant to be prescriptive, and the desired levels of relative

bias, CV, CI coverage, and power for a particular monitoring program should be decided
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upon after evaluating the context within which the program takes place, and weighing the rela-

tive costs and benefits of either detecting a trend when one does not exist or not detecting a

trend when one exists [51].

Results

The plausibility of a removal design was of primary interest given the logistical and financial

difficulties of monitoring raptors at broad spatial scales. Thus, we present results from the

removal design first, followed by results from a standard sampling design for comparison.

Furthermore, we concentrate on results from 20 years of monitoring, assuming the long-

term data would provide the most robust estimates of occupancy trend, followed by results

from 10 years of monitoring to address whether trends could be detected in a shorter time

frame.

Survey effort

Using the removal sampling design, our simulations suggested that increasing the number of

sites from 100 to 200 resulted in largest improvements of metrics related to precision and sta-

tistical power, but the magnitude of improvement was dependent on rates of occupancy and

size of population decline. Relative bias remained < 20% as the number of sites increased

regardless of initial occupancy rate and rate of population decline. When occupancy was high

(0.72), improvements in RBIAS were larger as number of sites increased but was outside our

acceptable benchmark of 5% even at the greatest number of sites (200; Fig 1). At lower occu-

pancy rates, as the number of sites increased, RBIAS remained <10%, and in many cases�5%

(Fig 1). Precision increased for all rates of occupancy and population decline as the number of

sites increased from 100 to 200 (Fig 1). Confidence interval coverage ranged from 78–86%

depending on rates of occupancy and population decline but was relatively constant with

increasing number of sites (Table 3). Statistical power ranged from 44.3–99.9% and improved

as the number of sites increased from 100 to 200 (Table 3).

Using the removal sampling design, our simulations suggested that increasing the number

of visits resulted primarily in improvements of bias and precision. As the maximum number

of visits increased from two to six, RBIAS decreased (Fig 2). Relative bias was acceptable at two

or three visits, generally under conditions of high detection rate (0.79). We did not observe

changes in CV as the maximum number of visits increased from two to six, and CV was>20%

when number of sites was held to 150, suggesting greater gains in precision of trend estimation

would be achieved through the addition of more sites and not more visits (Fig 2). Similarly, CI

coverage was sensitive to increasing number of visits but remained below our acceptable

threshold (90%) when detection was low (0.44; Table 4), suggesting more sites would need to

be monitored to improve precision in trend estimation under these conditions. When detec-

tion was high (0.79), confidence interval coverage was generally near our acceptable level of

Table 2. Metrics and associated benchmark values used to evaluate simulations of territory-occupancy monitor-

ing for ferruginous hawks.

Metric to evaluate simulation Benchmark valuea

Relative bias � 5%

Coefficient of variation � 20%

Confidence interval coverage 90%

Statistical power 80%

a See text for justification of benchmark values.

https://doi.org/10.1371/journal.pone.0213654.t002
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90%, but only when population declines were larger (20%; Table 4). Power was acceptable at

�80% at two visits regardless of detection rate, but only when population decline was larger

(20%; Table 4).

For the standard sampling design, increasing number of sites resulted in greatest improve-

ment of precision and statistical power. Relative bias was < 10% and often < 5%; increasing

the number of sites from 100 to 200 did not improve RBIAS under scenarios we evaluated (Fig

3). Increasing the number of sites decreased CV; however, CV did not approach the 20%

benchmark until there were ~150 sites monitored, and only under conditions of high initial

occupancy rate (0.72) and larger population decline (20%; Fig 3). Increasing the number of

sites did not improve CI coverage, which was close to 90% under most conditions (Table 3).

Increasing the number of sites increased statistical power to varying degrees depending on the

Fig 1. Mean relative bias and coefficient of variation for simulations increasing number of sites (removal design; 20 years). Mean relative bias (A: 10% decline; B:

20% decline) and coefficient of variation (C) for 100–200 sites, three initial occupancy rates, and two rates of population decline following a 20-yr period, assuming a

maximum of three visits and a probability of detection = 0.67. These results reflect removal sampling in which territories are not visited after they are confirmed to be

occupied within a given breeding season. Gray lines indicate benchmark values for respective metrics (Table 2).

https://doi.org/10.1371/journal.pone.0213654.g001
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scenario (Table 3). When population decline was larger (20%), 100 sites provided > 80%

power, but when population decline was smaller (10%), 80% power was only achieved at rela-

tively high initial occupancy (0.57 and 0.72; Table 3).

For the standard sampling design, increasing number of visits resulted in greatest improve-

ment of bias and precision. Increasing from two to six visits reduced RBIAS most when the

Table 3. Evaluation metrics for simulations increasing number of sites monitored.

Monitoring

design; total

duration

Metric Number of

sites

Probability of

occupancy = 0.42

Probability of

occupancy = 0.57

Probability of

occupancy = 0.72

10%

decline

20%

decline

10%

decline

20%

decline

10%

decline

20%

decline

Removal; 20 yrs Confidence

interval coverage

(%)

100 87.9 88.1 88.3 87.7 79.7 77.7

125 87.6 89.0 88.9 88.8 76.6 80.8

150 89.4 88.7 87.4 89.1 70.5 83.9

175 88.6 88.6 88.4 87.1 73.6 87.2

200 87.4 89.2 87.9 87.5 87.3 86.7

Statistical power

(%)

100 44.3 83.0 59.9 95.6 69.2 97.9

125 50.1 89.7 63.7 98.0 78.5 99.5

150 57.4 92.2 72.0 98.9 78.0 99.7

175 58.1 95.6 72.2 99.6 84.4 99.4

200 61.8 97.1 79.2 99.9 92.3 99.6

Standard; 20 yrs Confidence

interval coverage

(%)

100 90.1 86.3 88.6 88.8 86.9 88.1

125 89.4 89.1 88.2 87.2 89.0 87.3

150 89.3 89.8 87.1 87.0 87.1 85.9

175 90.0 89.2 88.2 88.7 88.2 87.7

200 90.9 88.6 87.3 88.5 86.2 86.5

Statistical power

(%)

100 43.8 82.0 58.6 94.3 73.0 99.3

125 51.1 89.0 65.8 97.6 84.1 99.9

150 53.9 91.0 71.0 99.1 87.3 99.9

175 57.9 96.6 74.9 99.8 90.8 100.0

200 63.3 97.6 80.7 99.8 91.3 100.0

Standard; 10 yrs Confidence

interval coverage

(%)

100 88.3 87.3 89.1 85.5 84.6 86.7

125 86.3 88.4 87.3 86.5 86.7 86.3

150 87.7 86.9 87.3 88.7 85.3 85.8

175 86.1 87.0 85.9 87.3 87.3 86.3

200 88.1 87.2 88.4 87.7 87.3 88.1

Statistical power

(%)

100 19.1 34.4 23.4 43.7 34.4 61.1

125 24.0 41.3 28.3 51.2 35.5 63.9

150 27.3 40.7 25.9 55.8 38.9 71.5

175 26.3 43.0 29.8 58.5 37.5 78.3

200 25.0 46.2 33.6 60.7 41.2 80.6

Confidence interval coverage (%) and statistical power (%) for 100–200 sites, three initial occupancy rates, and two

rates of population decline following 20-yr and 10-yr monitoring periods, and assuming a maximum of three visits/

breeding season and probability of detection = 0.67. Results from the removal design reflect monitoring for which

territories are not visited after they are confirmed to be occupied within a given breeding season; results from the

standard design reflect monitoring for which all territories are visited an equal number of times within a season. Bold

font indicates values that met or exceeded benchmarks used to evaluate simulations (i.e.,�90% confidence interval

coverage and�80% statistical power; Table 2).

https://doi.org/10.1371/journal.pone.0213654.t003
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rate of detection was lower (0.44; Fig 4). Increasing number of visits did not influence CV (Fig

4) but did improve CI coverage when rate of detection was low (although our 90% benchmark

was not achieved unless detection was higher; Table 4). Increasing number of visits improved

statistical power most when detection was low and population decline small (10%), but power

was>80% only when population decline was larger (20%; Table 4).

Total duration of monitoring

For the standard sampling design, the number of years of monitoring (10 vs. 20) had the larg-

est effect on precision and statistical power. There was no clear difference in patterns of RBIAS

(Figs 3–6). Coefficient of variation was generally lower when monitoring extended 20 years

(Figs 3–6), but did not approach our benchmark of 25% unless population declines were larger

Fig 2. Mean relative bias and coefficient of variation for simulations increasing number of visits (removal design; 20 years). Mean relative bias (A: 10% decline; B:

20% decline) and coefficient of variation (C) for a maximum of two to six visits, two detection rates, and two rates of population decline following a 20-yr monitoring

period assuming 150 sites, and initial probability of occupancy = 0.57. These results reflect removal sampling in which territories are not visited after they are

confirmed to be occupied within a given breeding season. Gray lines indicate benchmark values for respective metrics (Table 2).

https://doi.org/10.1371/journal.pone.0213654.g002
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(20%). Confidence interval coverage was not affected by duration of monitoring (Tables 3 and

4). There were large reductions in the power to detect a trend when monitoring occurred for

only 10 years; 80% power was only reached when rate of occupancy was high (0.72), popula-

tion declines were larger (20%), and the number of sites was at the highest value (200; Table 3).

The 80% threshold was not reached by increasing the number of visits from two to six and was

not improved when the probability of detection was high (0.79; Table 4). However, statistical

power was� 80% when monitoring extended for 20 years and population declines were larger

(20%; Tables 3 and 4).

Table 4. Evaluation metrics for simulations increasing number of visits to sites.

Monitoring design; total duration Metric Number of visits per season Probability of

detection = 0.44

Probability of

detection = 0.79

10% decline 20% decline 10% Decline 20% Decline

Removal; 20 yrs Confidence interval coverage (%) 2 69.5 63.7 82.1 89.0

3 79.6 79.1 88.4 91.5

4 85.0 83.8 90.1 90.4

5 88.6 88.3 89.5 89.3

6 88.8 88.6 89.3 91.6

Statistical power (%) 2 70.4 96.3 65.5 98.8

3 68.2 97.6 71.2 99.6

4 70.4 98.9 73.7 99.5

5 73.2 98.7 72.6 99.0

6 70.6 99.0 71.3 98.9

Standard; 20 yrs Confidence interval coverage (%) 2 66.7 66.3 87.7 87.3

3 80.5 78.3 89.8 89.0

4 82.8 85.1 89.9 86.9

5 88.7 85.9 90.3 90.0

6 86.9 88.6 88.9 89.2

Statistical power (%) 2 65.1 96.4 72.8 98.7

3 72.8 98.6 73.7 99.2

4 70.8 97.7 72.2 99.4

5 68.8 98.3 69.5 99.0

6 73.0 98.6 74.5 99.5

Standard; 10 yrs Confidence interval coverage (%) 2 68.5 67.7 87.6 86.8

3 80.3 81.4 87.5 87.8

4 85.5 84.2 89.6 86.2

5 86.6 87.5 89.9 88.7

6 87.8 87.2 87.0 88.5

Statistical power (%) 2 39.2 54.2 30.7 54.2

3 33.4 53.9 26.5 54.2

4 32.6 53.0 28.1 55.3

5 27.6 52.7 28.7 53.2

6 31.0 53.0 28.4 54.7

Confidence interval coverage (%) and statistical power (%) for a two to six visits per site, two detection rates, and two rates of population decline following 20-yr and

10-yr monitoring periods, assuming 150 sites and initial probability of occupancy = 0.57. Results from the removal design reflect monitoring for which territories are

not visited after they are confirmed to be occupied within a given breeding season; results from the standard design reflect monitoring for which all territories are visited

an equal number of times within a season. Bold font indicates values that met or exceeded benchmarks used to evaluate simulations (i.e.,�90% confidence interval

coverage and�80% statistical power; Table 2).

https://doi.org/10.1371/journal.pone.0213654.t004
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Observation process

Probability of detection. For the removal design, lower probability of detection (0.44)

generally resulted in higher values of RBIAS (Fig 2). Probability of detection did not influence

CV across the range of number of visits (Fig 2) but did affect CI coverage (Table 4). Probability

of detection affected statistical power less than rates of population decline, and power was

acceptable (�80%) when rate of population decline was greater (20%) at both detection rates

(Table 4).

For the standard sampling design, detection probability had similar effects as the removal

design on all four evaluation metrics. Lower detection probability (0.44) resulted in higher

RBIAS, but RBIAS approached our acceptable level of 5% at 4–5 visits (Figs 4 and 6). Higher

detection probability (0.79) resulted in acceptable levels of RBIAS at two visits. Probability of

detection did not influence CV when number of visits increased for 20 years of monitoring

Fig 3. Mean relative bias and coefficient of variation for simulations increasing number of sites (standard design; 20 years). Mean relative bias (A: 10% decline; B:

20% decline) and coefficient of variation (C) for 100–200 sites, three initial occupancy rates, and two rates of population decline following a 20-yr monitoring period,

assuming three visits and a probability of detection = 0.67. These results reflect a standard sampling design in which all territories are visited an equal number of times

within a season. Gray lines indicate benchmark values for respective metrics (Table 2).

https://doi.org/10.1371/journal.pone.0213654.g003
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(Fig 4), but for 10 years, CV was affected by number of visits when detection rate was lower

(Fig 6). Probability of detection affected CI coverage; when detection was high (0.79), fewer

visits were required to meet the acceptable level of 90% (Table 4). Probability of detection

affected statistical power less than rates of population decline (Table 4).

Occupancy parameters

Initial occupancy. For the removal sampling scheme, initial occupancy primarily affected

measures of precision and statistical power. Initial occupancy influenced RBIAS but only

when occupancy was high (Fig 1). For all occupancy rates, RBIAS approached our benchmark

value (�5%) once 150 sites were sampled when population decline was larger (Fig 1). Gener-

ally, higher initial occupancy resulted in lower CV, and CV decreased with the addition of

more sites regardless of occupancy probability. However, the acceptable threshold for CV

Fig 4. Mean relative bias and coefficient of variation for simulations increasing number of visits (standard design; 20 years). Mean relative bias (A: 10% decline;

B: 20% decline) and coefficient of variation (C) for two to six visits to each site, two detection rates, and two rates of population decline following a 20-yr monitoring

period, assuming 150 sites and initial probability of occupancy = 0.57. These results reflect a standard sampling design in which all territories are visited an equal

number of times within a season. Gray lines indicate benchmark values for respective metrics (Table 2).

https://doi.org/10.1371/journal.pone.0213654.g004
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Fig 5. Mean relative bias and coefficient of variation for simulations increasing number of sites (standard design; 10 years). Mean relative bias (A: 10% decline; B:

20% decline) and coefficient of variation (C) for 100–200 sites, three occupancy rates, and two rates of population decline following a 10-yr monitoring period,

assuming three visits and a probability of detection = 0.67. These results reflect a standard sampling design in which all territories are visited an equal number of times

within a season. Gray lines indicate benchmark values for respective metrics (Table 2).

https://doi.org/10.1371/journal.pone.0213654.g005
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(20%) was not met unless occupancy was high (0.72; Fig 1). Lower occupancy probabilities

(0.42 and 0.57) had better CI coverage than high occupancy (0.72; Table 3). Initial occupancy

affected the power to detect a trend at 100 sites and affected gains in power as the number of

sites increased (Table 3).

For the standard sampling scheme, initial probability of occupancy primarily affected preci-

sion and statistical power. Initial probability of occupancy had almost no effect on RBIAS for

20 years of monitoring, which remained acceptable at all three occupancy probabilities (Fig 3)

but did influence RBIAS under the 10-year scenario (Fig 5). Higher occupancy resulted in

lower CV, and CV decreased with the addition of more sites regardless of occupancy. How-

ever, the acceptable level for CV (20%) was not met unless occupancy was high (0.72) and

monitoring extended for 20 years (Fig 3). Initial probability of occupancy did not strongly

affect CI coverage, which approached the 90% benchmark (>85%) for all occupancy probabili-

ties (Table 3). Initial occupancy probability affected the power to detect a trend at 100 sites and

affected gains in power as the number of sites increased (Table 3).

Fig 6. Mean relative bias and coefficient of variation for simulations increasing number of visits (standard design; 10 years). Mean relative bias (A: 10% decline;

B: 20% decline) and coefficient of variation (C) for two to six visits to each site, two detection rates, and two rates of population decline following a 10-yr monitoring

period, assuming 150 sites and initial probability of occupancy = 0.57. These results reflect a standard sampling design in which all territories are visited an equal

number of times within a season. Gray lines indicate benchmark values for respective metrics (Table 2).

https://doi.org/10.1371/journal.pone.0213654.g006
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Population decline. Under the removal sampling design, rate of population decline had

the greatest effect on precision and statistical power. Population decline had less influence on

RBIAS than the probability of occupancy (Fig 1). However, higher rates of population decline

resulted in lower RBIAS when occupancy was high (0.72; Fig 1). Coefficient of variation was

strongly affected by rate of population decline (Figs 1 and 2). Greater (20%) population decline

resulted in smaller CV than smaller (10%) population decline. Rate of population decline influ-

enced CI coverage when occupancy rates were high (0.72; Table 3) and when maximum num-

ber of visits was low (2; Table 4). The statistical power to detect a trend in occupancy was up to

1.5 times better when population decline was greater (20%) but the 80% benchmark was rarely

met under any sampling condition when population decline was lower (10%; Tables 3 and 4).

For the standard sampling design, rate of population decline had little effect on changes in

RBIAS when increasing the number of sites (Figs 3 and 5). Patterns were similar for estimates

of CV as for the removal design, and greater population declines (20%) resulted in greater pre-

cision (Figs 3–6). Rate of population decline influenced CI coverage even less than it did under

the removal sampling design (Tables 3 and 4). The statistical power to detect a trend in occu-

pancy was better when population decline was greater (20%) and was consistently at or above

our benchmark value of 80% for 20 years of monitoring but not 10 years (Tables 3 and 4).

Discussion

We demonstrated through simulation that a site-occupancy framework for monitoring ferru-

ginous hawks or other territorial, low-density raptors has the power to detect population

declines as small as 10% after a 20-year period under certain conditions of site occupancy and

detection rates, many of which have empirical justification. Our results further the science of

species monitoring by demonstrating the impact of decisions regarding trade-offs between

number of sites and number of visits, and how these trade-offs are influenced by demographic

parameters. Similar to Barata et al. [54], our simulations suggest that even when a survey

design provides reasonable precision and statistical power, only moderate to large declines in

occupancy will be detected, and smaller declines may require up to twice as many years of data

to detect.

Any site-based monitoring program will be affected by three general types of influence:

survey effort, such as the number of sites to be monitored, number of visits to a site, and total

duration of the monitoring program; the observation process, which is affected by the proba-

bility of detection, and demographic parameters related to occupancy such as change in

regional population size and associated population dynamics, and initial occupancy rates.

We have shown that demographic rates influence the ability of a particular suite of sampling

parameters to detect changes in occupancy. Thus, over the course of a 20-yr monitoring

period, a monitoring program with fixed sampling parameters will vary in its ability to detect

population trends.

Survey effort

The trade-off between number of sites and number of visits should be evaluated when deciding

on the structure of a monitoring program for raptors. In our study, increasing the number of

sites improved nearly every metric we used to evaluate trend estimation, whereas increasing

the number of visits primarily improved CI coverage and RBIAS (but not after 3–4 visits

within a season). This was not surprising: increasing replication of sites has previously been

reported to improve the ability to detect population trends [55]. Including at least 150 sites

would provide reasonable estimates of trend in occupancy given the levels of other variables

we simulated, but only for population declines of�20%. Sampling designs often lack the
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power to detect small changes in estimated parameters, but even a 20% population decline was

not detectable with 80% power unless 200 sites were monitored for ten years (assuming high

initial occupancy rates), or 100 sites for 20 years. If there is a need to offset the cost of addi-

tional sites, a removal sampling design that allows for up to four visits to a site within a season

could be used without a loss of statistical power while providing acceptable levels of precision

and bias. In fact, removal sampling did not result in substantial changes of any metrics we

used to evaluate simulations, providing little justification for employing the standard design if

occupancy is the sole variable of interest. In previous evaluations removal designs have been

suggested to be less robust than standard designs because of limitations on evaluating variation

in detection probability [47]. Although continued visits after occupancy is confirmed provide

additional information on detection probability, removal designs may be beneficial because

they reduce effort and associated cost of surveys as the total number of visits are fewer relative

to a standard sample design and reduced mean effort per site might allow for a greater number

of total sites to be surveyed within a given season [47]. However, the logistics of a removal-

based survey may be more complicated as the actual number of visits to each site is unknown a
priori, although the maximum number of visits to a given site may be pre-determined based

on cost or other constraints. In years with lower occupancy and detection rates, costs could be

greater than expected because more visits would be required, potentially approaching the effort

for a standard design. Also, the logistics of adapting schedules and routes during the season to

re-survey only sites without detections requires more planning than a standard survey design.

If occupancy or detection rates are expected to be low, or if reproductive success is an addi-

tional variable of interest (thus requiring visits to a territory later in the breeding season), then

a standard survey design is likely the most appropriate.

The total duration of monitoring influenced the power to detect trends in occupancy more

strongly than any other variable related to survey effort, with a 20-yr monitoring program

resulting in much more reliable trend estimates. The effect of temporal scale that we observed

on the ability to detect a trend is not unusual; 10–20 years has been identified in other studies

as the minimum duration of monitoring required to detect population trends for many species

with any reasonable statistical power and depending on the amount of variation in the sample

[56–58]. However, the total duration of monitoring required for reliable trend estimation is

sensitive to sudden shifts in the data, which can occur when there are abrupt changes to the

local environment (e.g., exceptional weather events, or habitat conversion near a territory). If

raptor populations experience these “level shifts”, it may increase the number of years required

to detect a trend by 50% or more [57].

Observation process

Probability of detection is an important consideration when designing monitoring programs

because of its influence on accuracy of estimates of population parameters [47]. Our simula-

tions suggested higher detection probability resulted in improvements of trend detection;

therefore, any monitoring program for raptors should benefit from designs that maximize the

probability of detection. The probability of detection for nest or territory occupancy by raptors

is usually < 1, and is influenced by factors including species, nesting phenology, nest charac-

teristics, weather, observer experience, survey speed and duration, and aircraft type [30, 59, 27,

31]. Detection probability is also expected to vary depending on how sites are defined and

selected; for example, detection rates may be lower for larger sites because they are more diffi-

cult to search thoroughly. As was the case with Wallace et al., [27] surveys should target time

periods when detection probabilities are likely to be at their highest, which can vary among

species because of differences in life history (e.g., long-distance migrants may initiate breeding
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activities later in the season than residents or short-distance migrants; e.g., [60]). In the study

upon which our simulations were based, nest height was positively related to detection proba-

bility, and the relationship was especially strong in the first year of the study when observers

had less knowledge of nest site locations [27]. It is likely that detection probabilities to deter-

mine raptor occupancy could be increased in similar studies by using experienced observers

with knowledge of species-specific nest characteristics and breeding behavior.

Occupancy parameters

Higher initial occupancy improved precision and power, a pattern observed in previous power

analyses [61, 54]. It is possible that estimates of initial occupancy in our simulations are biased

high because of the method used to build the sample of nests monitored by [27]. The locations

of all stick nests were identified and mapped during an initial 2010–2011 stick nest survey, and

a sample of these locations were subsequently evaluated for occupancy. This approach to mon-

itoring raptor nests is not unusual: the low density of many raptor populations results in nest

monitoring that is often focused on known (historic) nests or territories (e.g., [62, 63, 25–27,

31]), which ultimately restricts inference to patterns of re-use and does not allow evaluation of

changes in distribution (specifically, colonization of previously unoccupied areas; 27]. Further-

more, the sample that represents a collection of previously-used sites potentially inflates the

proportion of sites occupied in the sample relative to the proportion of sites occupied in the

population, which can result in an estimated declining trend in occupancy when no such

trend exists [33]. Thus, the data we have evaluated in our simulations likely represents a biased

estimate of initial occupancy, but we do not know to what extent the sample may be biased.

For this reason, quantifying the bias in the estimate of initial occupancy is not possible because

we do not have “baseline” (i.e., true) occupancy rates to which we could compare. Evaluating

bias using a method such as censoring the initial year of sampling from the data and subse-

quently estimating trends in occupancy may not address the effect of biased initial occupancy

on trend estimation; we could not know if removing the first year, or the first and second

year, etc. were effective at removing the bias. Furthermore, in practice, censoring initial years

of data would reduce the number of years of data available for trend estimation, and would

therefore only be feasible for retrospective analyses of longer-term monitoring data. We have

addressed biased estimates of initial occupancy in our analysis by evaluating three different

levels of initial site occupancy and its effect on the ability to detect trends in occupancy. By

considering different values of initial probability of occupancy we have demonstrated how

metrics change in cases where initial probability of occupancy is lower, so we have accounted

for the potential effects of lower initial occupancy on a monitoring program.

Estimating site occupancy status over multiple breeding seasons allows estimation of local

extinction and colonization, vital demographic rates by which species respond to changes in

environmental conditions. Extinction and colonization rates may reflect changes in population

size or may reflect changes in the spatial distribution of raptors (i.e., local immigration or emi-

gration). Altered geographic distribution may be particularly important to consider in light of

effects that changing landscapes and climate may impose upon raptor populations. As habitat

continues to be converted and prey populations respond to changing environmental condi-

tions, it is possible that raptors could colonize previously unused portions of their geographic

ranges and shift their local and regional distributions. Some nest-based studies have addressed

this issue by adding new nest sites or territories to samples as they are discovered [64, 27];

however, adding occupied sites to the sample population over the course of a study may intro-

duce an unknown bias in trends. The spatial distribution of breeding raptors presumably is

affected by the factors that drive productivity, in particular the abundance of prey [19, 27].

Survey design for occupancy monitoring of raptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0213654 March 22, 2019 18 / 22

https://doi.org/10.1371/journal.pone.0213654


Human disturbance may also be a factor that influences extinction or colonization of breeding

sites [65]. Thus, activities such as encroaching urban development, natural resource extraction,

or other situations that result in increased human or vehicle activity or infrastructure in the

vicinity of territories could influence colonization or extinction rates. These factors could be

important habitat covariates that affect breeding site occupancy dynamics and should be con-

sidered when designing and implementing a monitoring program.

Although we present data from a study of ferruginous hawks, our simulations can be

applied to other raptor species that may have similar life history and population dynamics to

provide guidance for future surveys of territory occupancy rates and trend estimation. How-

ever, simulations are rarely complete (i.e., every possible combination of scenarios cannot

reasonably be simulated), and multiple assumptions regarding initial probability of occu-

pancy, detection, extinction, and annual rates of population change must be made. Thus,

these simulations are meant to be a guide for developing monitoring programs and may

need to be refined following additional data collection.
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