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Molecular hosts with functional cavities can emulate enzymatic
behavior through selective encapsulation of substrates, resulting in high chemo-,
regio-, and stereoselective product formation. It is still challenging to synthesize

L _ o
enzyme-mimicking hosts that exhibit a narrow substrate scope that relies upon the 0,
recognition of substrates based on the molecular size. Herein, we introduce a Pd, } .

self-assembled water-soluble molecular capsule [M,L,] (MC) that was formed

through the self-assembly of a ligand L (4,4”’-(1,4-phenylene)bis(1’,4’'-dihydro-
[4,2:6',4"-terpyridine]-3’,5'-dicarbonitrile)) with the acceptor cis-[(en)Pd(NO;),] ﬁ&i & \ﬁi
[en = ethane-1,2-diamine] (M). The molecular capsule MC showed size-selective

recognition towards xylene isomers. The redox property of MC was explored for

efficient and selective oxidation of one of the alkyl groups of m-xylene and p-xylene to v Size-selective photocatalysis

¥ Homogeneous-selective oxidation of xylene isomers in water

their corresponding toluic acids using molecular O, as an oxidant upon
photoirradiation. Employing host—guest chemistry, we demonstrate the homoge-
neous catalysis of alkyl aromatics to the corresponding monocarboxylic acids in water under mild conditions. Despite homogeneous
catalysis, the products were separated from the reaction mixtures by simple filtration/extraction, and the catalyst was reused. The
larger analogues of the alkyl aromatics failed to bind within the MC’s hydrophobic cavity, resulting in a lower/negligible reaction
outcome. The present study represents a facile approach for selective photo-oxidation of xylene isomers to their corresponding toluic
acids in an aqueous medium under mild conditions.

v 0,as an oxidant

self-assembly, host—guest, size-selective catalysis, xylene oxidation, coordination chemistry

Enzymes facilitate various biochemical transformations with designing reactions that would otherwise be challenging to
extraordinary catalytic power. The catalytic activity of enzymes achieve with traditional catalysts.

arises from the targeted binding of substrate in the active sites, The oxidation of alkyl aromatics is an important class of
which ar are isolated microenvironments that stabilize transition organic reactions that generates valuable feedstocks for
states.' ™ Several artificial molecular analogues of enzymes for pesticides, perfumes, and fine chemical synthesis. Alkyl
catalysis have been developed.*”” Coordination-driven self- aromatics are primarily obtained as byproducts of the
assembly is a technique for constructing various metal organic petrochemical industry.”®”” The interest in oxidizing such
architectures with defined geometry and cavities."*™"* Beyond volatile organic compounds to specific oxidized products is
establishing diverse topologies, such functionalized molecular growing worldwide due to the conversion of hazardous
hosts have been employed for sensmg,lg_ZI stabilization of molecules into valuable products.go_82 Industrially, the
1ntermed1ates, 7% molecular reco%mtlon, 7% biological carboxylic acid analogue is an important oxidized derivative
applications,” ™"’ and catalysis.”* ™" Designing molecular of alkyl aromatics since it can be easily converted to ester,

architectures with specific cavities permits efficient catalysis,
which differs significantly from the bulk reaction with
unprecedented regio-, chemo-, and stereoselectivity.‘w_52
Additionally, the close reactant proximity in cavities increases
the reaction rates many times, allowing size-selective catalysis
within a confined pocket.® " Inspired by the substrate-
specific catalysis mediated by cytochrome P450,°* % chemists
have ventured into (Bporous organic golymers 03765 metal—
organic frameworks,” zeolites,”*™”* and covalent organic
frameworks.”>~"> However, due to the solution processability,
metal—organic cages have emerged as promising candidates for
size-selective catalysis.”””” The precise control over the
substrate in homogeneous catalysis opens avenues for

amides, acid chloride, alcohol, etc., in a single step.83_87 The
conventional oxidation of m-/p-xylenes usually requires a
stoichiometric amount of permanganate or persulfate as the
oxidant, and this process oxidizes both the methyl groups,
leading to the formation of isophthalic acid/terephthalic acid.
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Selective oxidation of one of the methyl groups of xylenes to
corresponding toluic acid is challenging, and transition metal
complexes or metal oxides often achieve such oxidation at
elevated temperatures.**™> Hence, selective oxidation of one
of the methyl groups in xylene to corresponding toluic acid
under mild conditions in an aqueous medium is challeng-
ing.”>”* Often selective oxidation of xylenes to the toluic acids
is obtained b}r heterogeneous catalysis due to the ease of
separation.”” ™" Using water as a solvent would enable the
advantages of easy separation as well as heterogeneous
catalysis. Introducing a suitable water-soluble host capable of
encapsulating the substrate could homogenize the reaction
mixture. Furthermore, using molecular oxygen (O,) as an
oxidant will be ideal and align with the green chemistry
principles. Another challenge in alkyl aromatics oxidation is
activating the relatively unpolarized C—H bonds.”*~"*" Light
captured by the molecule could be an ideal energy source for
C—H bond activation. The preorganization of a substrate
within the cavity of the metal—organic cage can induce
selectivity in photocatalytic reactions.'’> Recently, light-
induced H atom abstraction of guest molecules through the
preorganization of guests within the cavity, leading to the
oxidation of alkyl aromatics to carbonyl compounds, has been
reported by Dasgupta and co-workers.'*>'%* In this case, the
oxidation mechanism followed a radical pathway, and the cage
can accept the electron from the guest molecules.

In this study, we report the design and synthesis of a new
redox-active water-soluble molecular capsule [M,L,] (MC),
which was prepared through self-assembly of a bent tetra-
pyridyl ligand (L) (4’,4”’-(1,4-phenylene)bis(1’,4’-dihydro-
[4,27:6',4"-terpyridine]-3',5’-dicarbonitrile)) with a Pd(II)
acceptor cis-[(en)Pd(NO;),] (M) [en = ethane-1,2-diamine]
(Scheme 1). A single-crystal X-ray diffraction study has

Scheme 1. Schematic Representation of Synthesis of MC
Using L and M and the Selective Encapsulation and
Oxidation of Xylene Isomers over Large Alkyl Aromatics
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established its molecular structure. Furthermore, the hydro-
phobic cavity of the MC was harnessed to encapsulate xylene
isomers. Photoirradiation of the encapsulated p-/m-xylenes
showed selective oxidation of one of the methyl groups to their
corresponding toluic acids in an aqueous medium under
ambient conditions. The photoirradiation of the encapsulated
third isomer, o-xylene, resulted in the formation of o-toluic acid
and lactone. Similarly, the photoirradiation of ethylbenzene
(EB) in the presence of MC yielded exclusive formation of
acetophenone. Such selective photo-oxidation of one of the
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methyl groups in xylene isomers at room temperature in the
aqueous medium in a confined space is noteworthy as it
demonstrates the potential for fine-tuned reactivity within the
confined environment of MC; moreover, the narrow windows
of the capsule played a significant role in inhibiting the
encapsulation of larger alkyl aromatics and thereby impeding
their oxidation, which manifests the use of MC in size-selective
catalysis.

The ligand (4’,4”’-(1,4-phenylene)bis(1’,4'-dihydro-
[4,2/:6 4" -terpyridine]-3’,5'-dicarbonitrile)) (L) was prepared
from the condensation reaction of f-amino-f-(pyrid-4-yl)-
acrylonitrile with tereg)hthaldehyde in acetic acid following the
reported procedure.'” L was characterized using NMR and
ESI-MS analyses (Figures 1b and S1—S3). Previously, the
ligand L was used to synthesize a supramolecular organic
framework in the solid state due to the strong N—H---Npy
hydrogen bond, which was used for CO, adsorption.'**"%’
The self-assembly of L with the 90° acceptor cis-[(en)
Pd(NO;),] in a 1:2 molar ratio at 55 °C in DMSO for 12 h
resulted in a clear red solution. "H NMR of this self-assembled
product in DMSO-d, displayed six sharp peaks in the range of
4.8 to 10.2 ppm (Figure S4). The '"H NMR in DMSO showed
a significant downfield shift of the peaks compared to ligand L
due to the metal—ligand coordination. The self-assembled
product from the DMSO was precipitated by adding an excess
amount of ethyl acetate, followed by washing with acetone and
diethyl ether. The "H NMR spectrum of the product in D,0
showed three sharp peaks in the aromatic region ranging from
7.48 to 8.76 ppm (Figures la and S5). The 'H-'H COSY
NMR spectrum showed the correlation of a and b protons, and
the NOESY NMR spectrum showed the correlation between
the acceptor and the ligand protons (Figures S6 and S7). Also,
the 'H DOSY NMR of the self-assembled product in water
indicated the formation of a single architecture (Figures 1c and
S8). The nature of the "H NMR spectrum of MC indicated the
formation of a highly symmetric molecular architecture.
Considering the ligand’s folding nature, L’s self-assembly
with the cis blocked 90° acceptor is expected to form a small
M,L, complex.

The ESI-MS analysis confirmed the composition of the self-
assembled product. After the counterion exchange with the
KPF, the ESI-MS mass spectrum showed major signals at m/z
= 1412.0532, 893.0425, and 633.5446 corresponding to
[M,L,(PF¢)s]** (caled 1412.0598), [M,L,(PF)s]**(calcd
893.0500), and [M,L,(PF)s]* (caled 633.5520) fragments,
respectively (Figures 2a and S9). The NMR and ESI-MS
suggested the formation of a Pd, molecular capsule (MC) by
[4 + 2] self-assembly of the acceptor and donor. To confirm
the conformation of the phenyl ring and the N--H unit,
blocked-shaped orange crystals were successfully grown by the
vapor diffusion of acetone into the aqueous MC and subjected
to X-ray analysis. MC crystallizes in monoclinic C2/m.'”® In
the crystal structure of the MC, the ligand adopts a concave
geometry (the binding sites of the ligands are pointing toward
one side), which is different from the stable folded
confirmation of the free ligand (Figures 2b,c and S10). Two
ligands are connected by four (en)Pd capping units to form a
molecular capsule. The distance between alternate Pd centers
is 17.1 A, while the distance between the neighboring Pd atoms
is around 12.5 A. The central phenyl cores of the two ligands
are aligned perpendicularly with a separation of 6.7 A from
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Figure 1. Stacked partial "H NMR spectra of the (a) cage MC in D,0 (400 MHz, 298 K), (b) ligand L in DMSO-d, (400 MHz, 298 K), and (c)

'H DOSY NMR of MC in D,0 (400 MHz, 298 K).

each other. Also, the N--H moiety in the ligand is pointing
outward to the cage. The occupied volume of the hydrophobic
cavity of the MC was calculated to be 368 A using MoloVol
(Figure 2d,e).'”

We envisaged that the narrow cavity of MC could
encapsulate molecules with a definite size and shape. The
guest binding ability of MC was investigated by treating D,0O
solution MC with excess amounts of PAHs such as
naphthalene, pyrene, anthracene, and phenanthrene at room
temperature and at elevated temperature. These guests showed
no encapsulation in the MC cavity. It is potentially due to the
ligand’s non-aromatic nature, which restricts the encapsulation
of PAHs due to the ineffective 7—rx interactions. Hence, we
turned our attention to encapsulating xylene isomers, which
are smaller in size and can pass through the narrow
hydrophobic cavity of MC with subsequent stabilization by
C—H 7 interactions between the host and guest. The D,0O
solution of the cage was treated separately with the four
equivalent of the xylene isomers, o-xylene (OX), m-xylene
(MX), p-xylene (MX), and EB and stirred for 2 h. The
solutions were centrifugated and analyzed using NMR
spectroscopy.

The "H NMR of the host—guest complex showed an upfield
shift of the phenyl protons (c protons) and the nonaromatic
protons (d protons), which suggests the binding of the guest
molecules with MC (Figure 3). Additionally, the host—guest
complexes were characterized by 2D NMR spectroscopy. The
D,O solution of MC was treated with an excess amount of
guest molecules, and 'H DOSY NMR spectra have been
recorded (Figures S11—S14). The guest molecules that bind
within the host showed a broad diffusion line in the '"H DOSY
NMR spectra, which is attributed to the fast equilibrium
between the guest and host species with the host—guest adduct
on the NMR time scale.

The host—guest stoichiometry and the association constant
of each host—guest complex were calculated from the NMR
titration experiments. NMR spectra were recorded after
gradual addition of the MeOD solution of the OX to the
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D,0 solution of the MC (Figure 4). The '"H NMR spectra
showed the continuous shift of the host and guest peaks, which
suggested a fast-exchange dynamic binding of OX within the
cavity of MC. Similarly, other xylene isomers also exhibited
dynamic binding with MC. To quantify the binding affinity of
the xylene isomers within MC, the binding constants (K,) were
determined. The titration data obtained from the 'H NMR
experiments were fitted with a Hill function."'® The obtained
binding constants are 3.16 X 10° M™! for OX, 2.05 x 10° M
for MX, 1.20 X 10> M™! for PX, and 1.30 x 10° M™! for EB
(Table S2 and Figures S15—521). These results further suggest
that the OX binds relatively stronger than other isomers in the
hydrophobic cavity of MC. Also, Job’s plot between the molar
fraction of MC against the change in the chemical shift of the
host showed a maximum of 0.5, which suggests that one guest
molecule is bound inside the cavity of MC (Figure S22).

To better understand the orientation of the guest molecules
within MC, the structures of the OXCMC, PXCMC,
MXCMC, and EBCMC were optimized using the PM6
Model."'" The optimized structures showed a perfect fitting
of the xylene isomers within the cavity of MC. For example,
the optimized structure of the EBCMC showed C—-H -7
interaction between EB and the host. Similarly, the OX, PX,
and MX fit perfectly within the hydrophobic cavity of MC
(Figure S23).

The successful encapsulation of xylene isomers within the
cavity of the redox-active host (MC) prompted us to activate
the weakly polarized C—H bond of alkyl aromatics.
Encapsulation of organic substrates in molecular cages is
expected to promote polarization of C—H bonds for
oxidation."'”""” Selective oxidation of one of the alkyl groups
of m-/p-xylene is always challenging. Conventional oxidation
methods need high temperature and strong oxidizing agents
like alkaline KMnO, that oxidize both the alkyl groups to yield
corresponding dicarboxylic acids. Selective oxidation of one of
the methyl groups generally requires special catalysts. We
anticipated that a water-soluble redox active cage might
facilitate such an oxidation reaction by reducing the activation
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Figure 2. (a) ESI-MS spectrum of the PF, analogue of MC in
acetonitrile. Experimental isotopic distribution pattern of the
[MC(PFg),]** fragment (inset). (b) Capped stick model of the
single crystal XRD structure (CCDC no. 2268668) of MC (color
codes: yellow = carbon, blue = nitrogen, and red = palladium; the
anions and solvent molecules were omitted for clarity). (c) Space-
filled model of MC. (d) Side-view of the cavity volume (shown as
white mesh) of MC. (e) Top side view of the cavity of MC.
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Figure 3. Partial "H NMR stack plot of (a) MC, (b) PXCMC, (c)
OXCMC, (d) EBCMC, and (e) MXCMC (400 MHz, 298 K, D,0/
MeOD (4:1)). The stars represent the guest peaks. The cross denotes
the acetone solvent impurity.
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Figure 4. '"H NMR titration of MC with the gradual addition of o-
xylene (OX). The changes in the chemical shifts of the ¢ and d
protons of the host are highlighted by green and violet boxes,
respectively. Change in the chemical shift of the methyl protons of the
OX is highlighted in the yellow box.

energy in a confined space and thus lead to the formation of
oxidized products under room temperature with selective
oxidation of one of the methyl groups. UV—vis spectra of the
MC and xylene/EB encapsulated complexes have been
recorded. The host MC showed an absorption band at around
392 nm (Figure S24). Hence, a 390 nm blue LED (40 W) was
utilized for irradiation. Cyclic voltammetry studies of MC
showed a sharp reduction potential at —0.24 V and a broad
oxidation potential at 0.04 V (Figure S25). In view of that, EB
was chosen as the model compound (Table 1), and the

Table 1. Optimization of the Photo-oxidation of Ethyl
Benzene”

time conversion”
entry catalyst condition  (h) light (selectivity)
1 MC (S mol %) 0, 12 ON 97 (96)
2 MC (1 mol %) 0, 12 ON 40.3 (92)
3 MC (5 mol %) 0, 12 OFF 7.4 (78)
4 M (5 mol %) 0, 12 ON 3 (99)
S L (5 mol %) 0, 12 ON 2.4 (99)
6 ni 0, 12 ON 2 (53)
7 MC (5 mol %) N, 12 ON 6 (85)
7 MC (5 mol %), 0, 12 ON 85 (87)
TMP
8  MC (5 mol %), 0, 12 ON 48 (80)
BQ

“The conversion has been calculated from "H NMR spectroscopy.

EBCMC was irradiated under blue LEDs for 12 h at room
temperature in the presence of O, (Figure $S26). The product
was extracted with ethyl acetate and characterized by NMR
spectroscopy after the solvent was evaporated under reduced
pressure. The '"H NMR spectrum confirmed that acetophe-
none was selectively formed with 97% conversion and 96%
selectivity. The control experiments with the ligand L and the
metal acceptor M showed only 2.4 and 3% conversions,
respectively (Figure S27), under the same reaction conditions.
Similarly, the reaction under dark conditions in the presence of
MC resulted in a 7.4% conversion of EB to acetophenone. The
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reaction was optimized by loading 5 mol % MC. The control
experiments showed that MC, blue LED light, and O, are
indispensable parts of the photocatalytic reaction. Moreover,
experiments have been carried out with benzoquinone (BQ)
and 2,2,6,6-tetramethylpiperidine (TMP) to elucidate the
mechanism of photocatalysis. The reaction with BQ, a well-
known radical quencher, showed an evident drop in the
conversion to 48%, while the reaction with TMP (singlet
oxygen quencher) showed a conversion of around 85%.
Furthermore, the photo-oxidation of 4-tert butyl toluene in the
presence of TEMPO resulted in the formation of a TEMPO
adduct with the radical (Figure S28). The above control
experiments suggest that the reaction undergoes through the
radical pathway. Furthermore, we examined the recyclability of
MC up to three cycles in the photo-oxidation. It showed MC’s
negligible loss of activity.

The unusual oxidation of the relatively nonpolarized C—H
bonds of alkyl aromatics to the corresponding acids prompted
us to investigate the underlying mechanism of the reaction.
The structure of the host—guest complex (PXCMC) and the
in situ generated radical of PX within MC (PXCMC) were
optimized semi-empirically using the PM6 model. The
optimized PXCMC structure revealed the stabilization of the
guest molecule within the cavity through robust C—H-- &
interactions (3.01 A) between PX and the ligand core form a
perfect fit within the void of MC. Furthermore, the proximity
of one of the methyl groups of PX and the C—H bond of the
central phenyl core at 2.7 A indicated the effective binding of

the guest molecule. Conversely, optimized PXCMC showed
that the radical species was centered around one of the narrow
windows of MC (Figure 5). Such preorganization indicates

Figure 5. (a) Capped stick model of the optimized structure of
PXCMC (color codes: yellow = carbon, blue = nitrogen, gray =
hydrogen, and red = palladium). (b) Optimized structure of the PX
radical with MC (PXCMC). (c) Optimized structure of PXCMC. (d)
Optimized structure of PXCMC.

that the radicals generated within the cavity could undergo a
facile reaction with the molecular oxygen in the solution. Also,
the PX radical has been stabilized within the cavity with a weak
C—H-7 interaction (3.65 A) with the pyridine core of the
ligand.

Further, the generation of radical species within the
molecular capsule upon irradiation was determined by ESR
analysis. The PXCMC solution was frozen using liquid

3242

nitrogen, and ESR was recorded before and after irradiation.
Upon irradiation, two broad peaks corresponding to the
generated radical are shown (Figure S30). The results showed
that radical generation and oxidation are simultaneous
processes.

The hydrophobic cavity of the MC was expected to assist
the release of the photo-oxidized product from the host.
Additionally, the facile displacement of the carboxylic acids
from the cavity can be accounted for by the fact that the
carboxylic group has a higher free energy of solvation in water
compared with that of PX. This insight supports the fact that
the reaction proceeds favorably through the radical pathway
within the host—guest complex, which renders the reaction
catalytic in nature, facilitated by easy product elimination from
the cavity of MC. Moreover, we turned our attention to
examining the stabilization of the radical intermediates within
the cavity of MC (Figure 6 and Table S4). Also, semiempirical

P

Figure 6. Calculated structures (PM6) and relative energies of PX
CMC (left) and MC and PX radical (right). (Color codes: to rank the
relative energies of the host—guest complex (PXCMC) yellow =
carbon, blue = nitrogen, gray = hydrogen, and red = palladium).

energy calculations (PM6) were performed to calculate the
energy of the host—guest radical adduct. These calculations
suggested that the p-xylene radical (PX) within the capsule was
thermodynamically favored by —7.65 kcal/mol compared to
the free p-xylene radical (PX). Based on the experimental
evidence and previous literature reports, a plausible reaction
mechanism has been proposed in Figure S29 (Supporting
Information). The other isomers of xylene and derivatives were
also explored to generalize the photocatalysis (Table 2). The
reaction of MX and PX resulted in the formation of
monocarboxylic acid along with a minor amount of aldehyde
(Figures S35—S37). The control experiments of photo-
oxidation of p-xylene with M and L were performed. The
reaction with M did not result in acid formation, and the
reaction with L showed negligible acid formation (2% yield
was observed). It further suggests that the oxidation of p-xylene
to the corresponding acid is possible only in the presence of
the MC.

Moreover, the thermodynamic feasibility of electron transfer
between the PX and MC was analyzed usin§ the Rehm—Weller
equation (see Supporting Information).""™'"> The oxidation
and reduction potentials of p-xylene and MC were used to
calculate the free energy change in the electron transfer. The
AG was found to be negative, suggesting that such electron
transfer is feasible thermodynamically.

Photooxidation was further explored using 4-tert-butyl
toluene, which also showed the selective formation of
monocarboxylic acid (Figures S33 and S34). To confirm the
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Table 2. Photocatalytic Oxidation of Alkyl Aromatics

En- Sub- Condition Time Products
try strate Conversion®
COH CHO
1 @\ MC(5 mol%) 16 h
02,390 nm
(91%) (9%)
COH CHO
2 MC(5 mol%) 16 h
02,390 nm
(87%) (13%)
CO,H
3 MC(5 mol%) 16 h
02,390 nm
(98%)
CHO CO,H
4 MC(5 mol%) 16h
02,390 nm
(96%)
COH CHO P
5 ‘/ MC(5 mol%) 16h ‘/ &
02,390 nm
(25%) (26%) (38%)
o
6 MC(5 mol%) 12h
02,390 nm
(97%)
CO,H
7 MC(5 mol%) 16h
02,390 nm
NO, NO,
n.d®
CO,H
8 MC(5 mol%) 16h
02,390 nm
Br Br
n.d

“Determined by "H NMR spectroscopy. bn.d. = not detected.

stepwise oxidation, 4-tolualdehyde was irradiated in the
presence of MC (Figure S38). After extraction with chloro-
form, the 'H NMR spectrum showed the exclusive formation
of the acid. Surprisingly, in the reaction of the OX under the
optimized reaction conditions, the monocarboxylic acid
undergoes further oxidation with the proximal methyl group
to form the lactone, which has been detected in the GC—MS
analysis (Figures S40 and S41).

To check if the encapsulation of the substrates inside MC
promoted the reaction and if the substrate’s size has any role in
such oxidation in the presence of MC, higher analogues of
alkyl aromatics such as mesitylene, durene, 1-methylnaph-
thalene, 9-methyl anthracene, and 6-methyl coumarin were
irradiated in the presence of MC. No oxidation was noticed in
these cases. Such large guest molecules did not show any
binding with the MC. Titration of 9-methyl anthracene with
the D,0O solution of MC did not show any shift of the guest or
host protons due to the mismatch of the window size of MC
with the size of the guests (Figure S31). A similar observation
was also noticed in the presence of the other large alkyl
aromatics mentioned above. To validate the size-selective
behavior of MC, competitive photo-oxidation of 9-methyl
anthracene and EB was carried out in the presence of MC. The
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reaction mixture was extracted with CDCl;, and the '"H NMR
spectrum showed the exclusive oxidation of EB. The reaction
of higher alkyl aromatics analogues did not yield any product
under the same reaction condition in the presence of 5 mol %
MC, even under prolonged irradiation (48 h) of light. It
demonstrates that the encapsulation of the substrates in the
cavity of MC plays a significant role in the photo-oxidation
through the preorganization of guest molecules, followed by
the stabilization of radicals formed during the irradiation.

In conclusion, this work describes the design and synthesis of a
new water-soluble molecular capsule MC that was obtained by
the self-assembly of a redox-active tetrapyridyl donor in
combination with a cis-Pd(II) acceptor. The single crystal X-
ray diffraction study of MC revealed the formation of a rigid
nanocavity, which has been explored for the encapsulation of
xylene isomers. The xylene isomers showed a dynamic binding
within the cage, and Job’s plot revealed the formation of 1:1
host—guest complexes with the xylene isomers. Further, the
photooxidase-mimicking property of MC was explored by the
effective photo-oxidation of the sp> C—H bond present in the
alkyl aromatics. While conventional oxidation of m-xylene/p-
xylene using oxidants like permanganate or dichromate
generally oxidizes both the alkyl groups, leading to the
formation of isophthalic/terephthalic acids. The selective
oxidation of one of the two methyl groups in xylene needs
transition metal-based special catalysts and high temperature
(~120 °C), even though such approach gives a mixture of
products. Encapsulated xylenes (meta- and para-) within the
MC showed facile and selective photo-oxidation of one of the
methyl groups to their corresponding toluic acids at ambient
temperature in the aqueous medium. Encapsulated EB in the
confined cavity of MC upon photo-oxidation yielded
acetophenone selectively without any trace of the correspond-
ing acid. Mechanistic studies suggest that the reaction proceeds
through the radical pathway. The effective stabilization of the
radical generated using photoirradiation in the confined cavity
of MC plays a crucial role in the facile and selective photo-
oxidation of one of the alkyl groups in m-/p-xylene. Further
research established that such oxidation is encapsulation-
promoted and size-selective. Larger alkyl aromatics did not
show any encapsulation; thus, they were inactive in such
photooxidation under the same reaction conditions in the
presence of MC. Our present study demonstrates a facile
approach of selective photooxidation of sp> C—H bonds of one
of the alkyl groups of xylene isomers under ambient conditions
in an aqueous medium in a molecular capsule’s (MC) confined
space.

All chemicals and solvents were commercially available and used
directly without further purification. The 'H NMR, *C NMR, DOSY,
2D 'H—'H COSY, and 'H—'H NOESY were recorded using Bruker
400 and 500 MHz instruments in deuterated solvents. The chemical
shifts in the spectra are reported relative to TMS (0.0 ppm) or proton
resonance resulting from the incomplete deuteration of DMSO (2.50
ppm), MeOD (3.31 ppm), CDCl; (7.26 ppm), and D,O (4.79 ppm).
Electrospray ionization mass spectrometric (ESI-MS) analyses were
carried out on an Agilent 6538 Ultra-High-Definition (UHD)
Accurate Mass Q-TOF spectrometer in standard spectroscopic
grade solvents. UV—vis spectra were recorded using a PerkinElmer
LAMBDA-750 spectrophotometer. All theoretical calculations were
performed using the Gaussian 09 package. The host—guest complexes
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PXCMC, OXCMC, EBCMC, and MXCMC were optimized using the
PM6 semiempirical method. No symmetry constraints were used
during the optimization.

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacsau.4c00539.

Additional NMR, ESI-MS spectra, experimental details,
and optimized structure of the host—guest complex
(PDF)

X-ray crystallographic data for host MC (CIF)
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