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Abstract: This study developed a novel methodology to correlate genome-scale microRNA (miRNA)
expression profiles in a lung squamous cell carcinoma (LUSC) cohort (n = 57) with Surveillance,
Epidemiology, and End Results (SEER)-Medicare LUSC patients (n = 33,897) as a function of com-
posite tumor progression indicators of T, N, and M cancer stage and tumor grade. The selected
prognostic and chemopredictive miRNAs were extensively validated with miRNA expression profiles
of non-small-cell lung cancer (NSCLC) patient samples collected from US hospitals (n = 156) and
public consortia including NCI-60, The Cancer Genome Atlas (TCGA; n = 1016), and Cancer Cell Line
Encyclopedia (CCLE; n = 117). Hsa-miR-142-3p was associated with good prognosis and chemosensi-
tivity in all the studied datasets. Hsa-miRNA-142-3p target genes (NUP205, RAN, CSE1L, SNRPD1,
RPS11, SF3B1, COPA, ARCN1, and SNRNP200) had a significant impact on proliferation in 100% of
the tested NSCLC cell lines in CRISPR-Cas9 (n = 78) and RNA interference (RNAi) screening (n = 92).
Hsa-miR-142-3p-mediated pathways and functional networks in NSCLC short-term survivors were
elucidated. Overall, the approach integrating SEER-Medicare data with comprehensive external vali-
dation can identify miRNAs with consistent expression patterns in tumor progression, with potential
implications for prognosis and prediction of chemoresponse in large NSCLC patient populations.

Keywords: microRNA (miRNA); prognosis; chemoresponse; non-small-cell lung cancer (NSCLC);
CRISPR-Cas9; RNA interference (RNAi)

1. Introduction

Lung cancer remains the leading cause of cancer-related death in the US with a 5
year survival rate of 21.7% [1], due in part to the minimal response to chemotherapy
and metastasis [2–4]. According to the National Cancer Institute (NCI) Surveillance,
Epidemiology, and End Results (SEER) [1], 56% of lung cancer cases are at the distant stage,
meaning that cancer has metastasized at the time of diagnosis. Non-small-cell lung cancer
(NSCLC) accounts for 84% of lung cancer cases. Major histological subtypes of NSCLC
include lung adenocarcinoma (LUAD), squamous cell carcinoma, and large-cell carcinoma.
According to the current practice guidelines, NSCLC patients with stage II and above
receive chemotherapy, with additional radiation for stage III and IV patients [5]. While
adjuvant chemotherapy of stage II and stage III disease has resulted in 10–15% increased
overall survival [6], the prognosis for resectable NSCLC remains poor [7]. Patients with
the same cancer stage and tumor grade may have markedly different responses to a given
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treatment, indicating that these morphological tumor markers alone are not sufficient for
the selection of an appropriate course of therapy. The use of molecular biomarkers to
enhance treatment selection is a promising avenue for improving patient outcomes.

miRNAs are small noncoding molecules (~22 nucleotides) that function in RNA
silencing and post-transcriptional regulation of gene expression [8]. MiRNAs are promising
biomarkers for both prognosis and prediction of therapeutic response in multiple cancer
types [9–11]. There are several advantages of using miRNAs in diagnostics/prognostics,
such as their presence in circulating plasma [12,13] and the greater stability in prepared
tissue samples relative to mRNA [14,15], including formalin fixation [16]. The use of
miRNA biomarkers in the selection of a biologically appropriate treatment has the potential
to improve clinical outcomes by determining the best application of therapeutic regimens,
as well as the elucidation of post-transcriptional regulatory pathways and networks which
may aid in the development of novel intervention strategies [17–19]. Numerous studies
have shown that miRNA biomarkers could potentially be used in the diagnosis and
prognosis of lung cancer [9,11,20–24]. To date, there are no clinically applicable miRNAs
for NSCLC prognosis and treatment selection.

With the increasing use of genome-scale profiling technologies in clinical and trans-
lational research, it is still infeasible to perform transcriptional profiling in hundreds of
thousands of patients of a cancer type for the development of novel biomarkers due to
the required costs, time, and infrastructure. Current biomarker studies identify/validate
candidate genes from clinical cohorts of a limited number of patient samples, and then
leverage public data in consortia such as The Cancer Genome Atlas (TCGA) to confirm the
candidate genes. There are several issues with these common practices. Firstly, published
individual patient cohorts may not have complete treatment information, and the number
of patients in specific treatment categories is very small, making it difficult to evaluate
predictive biomarkers of therapeutic response. Secondly, some sequencing facilities may
not have access to patient outcomes on the samples they have sequenced to conduct
genome-wide association studies (GWAS). Thirdly, on the other hand, large-scale patient
electronic medical records (EMRs) of hospitals or cancer registries have sufficient number
of patients with comprehensive clinical information, but do not have patient genome-scale
profiles in general for GWAS. Novel methodologies are needed to fill the gap between ge-
nomic/transcriptomic profiles in singular patient cohorts and large-scale EMRs to estimate
the applicability of genomic/transcriptomic biomarkers in general patient populations.

The SEER database is an aggregate of registry data from specific geographic areas
covering approximately 26% of the US population [25]. The linked SEER-Medicare data
are well annotated and ready for computational analysis without natural language pro-
cessing. There has been reported success in identifying chemoresponse predictive genes
by correlating mRNA expression profiles in solid tumors of a Serial Analysis of Gene
Expression (SAGE) database with patient survival in SEER data [26]. Using an adapted
approach, this study sought to identify prognostic and chemopredictive miRNAs by cor-
relating their expression in a lung squamous cell carcinoma (LUSC) cohort (n = 57) [9]
with clinical outcome of LUSC patients in the SEER-Medicare database (n = 33,897) as a
function of tumor progression indicators combining T, N, and M cancer stage factors and
tumor grade. The identified prognostic/chemopredictive miRNAs were then corroborated
with the NCI-60 cell panel [27,28], NSCLC patient cohorts collected from Case Western
Reserve University (CWRU) Comprehensive Cancer Center (n = 87) and West Virginia
University Cancer Institute/Mary Babb Randolph Cancer Center (MBRCC; n = 69), and
public NSCLC data including TCGA (n = 1016) and Cancer Cell Line Encyclopedia (CCLE;
n = 117) [29]. We hypothesized that (1) correlating transcriptomic profiles in a clinical
cohort with large-scale EMRs as a function of tumor progression indicators combined with
rigorous external validation would identify prognostic and predictive biomarkers with
consistent expression patterns in tumor progression, and (2) the biomarkers identified with
this novel methodology would have potential prognostic implications in a large patient
population. This approach is advantageous in taking into account the effects of surgical
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and radiological treatments in combination when assessing the role of miRNAs in medi-
ating response to specific chemotherapy. Lastly, important miRNA-mediated regulatory
pathways and proliferation networks in NSCLC were identified using public CRISPR-
Cas9/RNAi screening data. The overall study scheme is delineated in Figure 1. Patient
clinical characteristics in the studied cohorts are summarized in Table 1.
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Table 1. Summary of demographic and clinical variables for patients in the linked SEER-Medicare database and the clinical
cohort used in the population correlation analysis and four validation cohorts from Mary Babb Randolph Cancer Center
(MBRCC), Case Western Reserve University (CWRU), TCGA-LUAD, and TCGA-LUSC.

Clinical Variable

Patient Data Used in Population
Correlation Analysis Validation Patient Cohorts

SEER-
Medicare

Clinical Cohort
(Raponi et al.) MBRCC CWRU TCGA-LUAD TCGA-LUSC

Cancer Stage
Stage I 12,651 (37.3%) 34 (59.6%) 32 (51.6%) 35 (43.8%) 279 (53.4%) 245 (48.6%)
Stage II 2662 (7.8%) 11 (19.3%) 20 (32.3%) 39 (48.8%) 124 (23.8%) 163 (32.3%)
Stage III 11,514 (34%) 12 (21.1%) 8 (12.9%) 5 (6.3%) 85 (16.3%) 85 (16.9%)
Stage IV 5813 (17.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 26 (5.0%) 7 (1.4%)

Unstaged/Other 1257 (3.7%) 0 (0.0%) 2 (3.2%) 1 (1.3%) 8 (1.5%) 4 (0.8%)

Tumor Grade
Grade 1 1462 (4.3%) 1 (1.8%) 3 (4.8%) 2 (2.5%) N/A N/A
Grade 2 13,573 (40.0%) 28 (49.1%) 22 (35.5%) 35 (43.8%) N/A N/A
Grade 3 18,202 (53.7%) 28 (49.1%) 27 (43.6%) 32 (40.0%) N/A N/A
Grade 4 660 (1.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) N/A N/A

Ungraded/Other 0 (0.0%) 0 (0.0%) 10 (16.1%) 11 (13.8%) N/A N/A

Mean Age (σ) 71.1 (7.9) 66.8 (10.7) 67.8 (9.6) 69.5 (9.7) 65.2 (10.0) 67.3 (8.6)

Sex
Male 22,218 (65.5%) 39 (68.4%) 29 (46.8%) 44 (55%) 242 (%) 373 (74.0%)

Female 11,679 (34.5%) 18 (31.6%) 31 (50.0%) 36 (45%) 280 (%) 131 (26.0%)
Missing 0 (0.0%) 0 (0.0%) 2 (3.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

2. Results
2.1. Identification of Prognostic miRNAs for NSCLC

MiRNAs significantly (p < 0.05) associated with patient overall survival were identified
from a squamous cell carcinoma cohort from Raponi et al. (n = 57) [9] using Cox modeling
and Kaplan–Meier estimation. These miRNA expression profiles were correlated with
disease-specific survival of squamous cell lung carcinoma patients in the SEER-Medicare
database (n = 33,897). Specifically, the AJCC TNM classifications and tumor grade were
used to partition patients into disjoint groups indicative of tumor progression, with the
average survival being calculated for each group. Patients in the Raponi cohort [9] were
partitioned in a similar manner. Linear regression was used to estimate the association be-
tween average miRNA expression in the Raponi cohort [9] and survival in SEER-Medicare
patients. Prognostic miRNAs were identified by including SEER-Medicare patients without
indication of having received chemotherapy in the analysis. In the evaluation of the results
from the Raponi cohort [9], miRNAs with significant (p < 0.05) and concordant results
on Cox modeling, Kaplan–Meier analysis, and linear regression in the correlation with
SEER-Medicare data were identified as prognostic miRNAs (Figure 1 and Table 2).

The identified prognostic miRNAs were further validated with NSCLC patient cohorts
collected from the US hospitals MBRCC (n = 69) and CWRU (n = 87), as well as public
TCGA data on lung adenocarcinoma and squamous cell lung carcinoma (TCGA-LUAD
and TCGA-LUSC; n = 1016). The prognostic miRNAs with significant and concordant
association with overall survival and/or recurrence-free survival in these external patient
cohorts were selected (bolded in Table 2). Detailed results on external validation were
provided in File S1 (Supplementary Materials).
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Table 2. Total number of significant prognostic miRNAs when considering variable administration
of surgery, chemotherapy, and radiation in the SEER-Medicare database and clinical cohort. MiRNAs
validated with external patient cohorts from MBRCC, CWRU, TCGA-LUAD, and TCGA-LUSC are
in bold.

Treatment
No Chemotherapy

Positive Correlation Negative Correlation

Surgery miR-520d*, miR-433,
miR-134, miR-382

miR-328, miR-384,
miR-525*

Radiation miR-433 -

Surgery and radiation miR-453, miR-520d*,
miR-134 miR-197

Any treatment

miR-453, miR-372,
miR-142-3p (miR-142), miR-329

(miR-329-2),
miR-520d*, miR-433,

miR-134, miR-382,
miR-493-3p

miR-328, miR-197,
miR-384

2.2. Identification of Chemopredictive miRNAs for NSCLC

Similar analysis was performed to identify chemopredictive miRNAs in NSCLC.
MiRNAs significantly associated with patient overall survival (p < 0.05; Cox modeling and
Kaplan–Meier analysis) in the squamous cell carcinoma cohort from Raponi et al. (n = 57) [9]
were correlated with disease-specific survival of squamous cell lung carcinoma patients
in the SEER-Medicare database (n = 33,897). In this analysis, only patients treated with
any chemotherapy or a specific chemotherapeutic agent were considered, and those who
did not receive chemotherapy were excluded from the analysis. MiRNAs with significant
(p < 0.05) and concordant results on Cox modeling, Kaplan–Meier analysis, and linear
regression in the correlation with SEER-Medicare patients who received chemotherapy
were identified as chemopredictive miRNAs (Figure 1, Tables 2 and 3).

MiRNAs predictive of chemoresponse to cisplatin, carboplatin, etoposide, and pacli-
taxel identified in this population correlation study were validated with the drug activity
profiles in the NCI-60 cell lines using linear regression. Cisplatin, carboplatin, docetaxel,
erlotinib, etoposide, gefitinib, gemcitabine, pemetrexed, and vinorelbine in the CCLE data
were included in the validation of chemosensitive (Table 3) and chemoresistant miRNAs
(Table 4) for specific chemotherapy or the category of “any chemotherapy”. Significant
differential expression (p < 0.05; two-sample t-tests) of miRNA in sensitive versus resistant
NSCLC cell lines to specific drugs in the CCLE data were used as the evaluation criterion.
The identified chemopredictive miRNAs were further validated with two patient cohorts
from MBRCC (n = 69) and CWRU (n = 87) on the basis of the information of chemotherapy
use in these patients. TCGA did not provide information on chemotherapy. Therefore, the
complete TCGA NSCLC patient cohorts were used in the evaluation. A significant and con-
cordant association with patient overall survival and/or recurrence-free survival (p < 0.05,
Cox modeling and Kaplan–Meier analysis) was used to evaluate chemopredictive miRNAs.
Predictive miRNAs with a confirmed result in the NCI-60 and CCLE cell panels and/or
NSCLC patient cohorts from MBRCC, CWRU, or TCGA are in bold in Tables 3 and 4.
Detailed results on external validation are provided in File S1 (Supplementary Materials).

Due to the synergism and successful results of the combination of cisplatin–etoposide
in treating small-cell lung cancer, long-term daily administration of oral etoposide in
combination with cisplatin was used to treat NSCLC [30]. A systematic review showed
that cisplatin–etoposide has comparable efficacy to carboplatin–paclitaxel when used with
concurrent radiotherapy for patients with stage III unresectable NSCLC [31]. Paclitaxel, a
tubulin-binding agent, is commonly used to treat NSCLC in combination with a platinum-
based compound [32]. For cisplatin, carboplatin, paclitaxel, and etoposide, significant
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predictive miRNAs were also examined for interactions with genes known to be function-
ally involved in lung cancer or relevant cellular processes such as apoptosis, proliferation,
cell-cycle regulation, or metastasis with Ingenuity Pathway Analysis (IPA) (Figures A1–A4,
Appendix A, respectively).

Table 3. Total number of chemosensitive miRNAs when considering administration of specific chemotherapeutic agents in
combination with variable administration of surgery and radiation, as evidenced by prolonged disease-specific survival.
The miRNAs which produced a significant stratification in the SEER population samples in addition to significance on one
or more measures in the NCI-60, MRRCC, CWRU, TCGA, and CCLE are in bold.

Treatment Cisplatin Carboplatin Paclitaxel Etoposide Any
Chemotherapy

Surgery
miR-29b

(miR-29b-1,
miR-29b-2)

miR-134,
miR-142-3p
(miR-142),
miR-188,

miR-380-5p
(miR-380)

miR-134,
miR-138

(miR-138-2),
miR-142-3p
(miR-142),
miR-188,

miR-380-5p
(miR-380)

-
miR-142-3p
(miR-142),
miR-433

Radiation - - miR-154,
miR-302a*

miR-141,
miR-17-3p
(miR-17),

miR-17-5p
(miR-17),

miR-182, miR-183,
miR-19b

(miR-19b-1),
miR-200c,
miR-222,
miR-23b

miR-134

Surgery
And

Radiation
-

miR-134,
miR-142-3p
(miR-142)

miR-142-3p,
miR-220 - miR-142-3p

(miR-142)

Any treatment

miR-129
(miR-129-1,
miR-129-2),

miR-134,
miR-142-3p
(miR-142),

miR-184, miR-198,
miR-370, miR-373,

miR-379

miR-134,
miR-142-3p
(miR-142),
miR-206,
miR-33

(miR-33-a),
miR-370,
miR-372

miR-134,
miR-142-3p
(miR-142),
miR-199b,
miR-370,
miR-382

miR-129
(miR-129-1,
miR-129-2),

miR-141,
miR-142-3p
(miR-142),
miR-184,
miR-218

(miR-218-1),
miR-220,
miR-335,
miR-373,
miR-96

miR-33
(miR-33-a),

miR-453, miR-372,
miR-142-3p
(miR-142),
mir-299-3p,

miR-329
(miR-329-2),
miR-520d*,
miR-519a,

miR-494, miR-433,
miR-134,

miR-485-5p
(miR-485),
miR-518c*,
miR-493-3p
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Table 4. Total number of chemoresistant miRNAs when considering administration of specific chemotherapeutic agents in
combination with variable administration of surgery and radiation, as evidenced by shortened disease-specific survival.
The miRNAs which produced a significant stratification in the SEER population samples in addition to significance on one
or more measures in the NCI-60, MRRCC, CWRU, TCGA, and CCLE are in bold.

Treatment Cisplatin Carboplatin Paclitaxel Etoposide Any
Chemotherapy

Surgery

miR-126*,
miR-136,

miR-181b,
miR-181c,
miR-196a

(miR-196a-2),
miR-331, miR-375,
miR-424, miR-92

(miR-92a-1,
miR-92b)

miR-126, miR-192,
miR-195, miR-384

miR-189, miR-192,
miR-197, miR-301,
miR-328, miR-331,

miR-384

- miR-197, miR-384

Radiation miR-384 - miR-189
miR-150, miR-155,
miR-192, miR-337,

miR-98
miR-328

Surgery and
Radiation - miR-192, miR-384

miR-192, miR-197,
miR-328, miR-331,

miR-384
miR-223 miR-328, miR-197,

miR-384

Any treatment

miR-132,
miR-181b,
miR-30c,

miR-30e-3p,
miR-324-3p,

miR-331, miR-339,
miR-384

miR-126, miR-195,
miR-224, miR-384

miR-126, miR-224,
miR-328, miR-331,
miR-361, miR-384

miR-132,
miR-133b,

miR-155, miR-197,
miR-208, miR-214,

miR-324-3p,
miR-374, miR-423

miR-328, miR-361,
miR-511, miR-197,

miR-125a,
miR-384,
miR-126

2.3. Hsa-miR-142-3p/Hsa-miR-142 as a Good Prognostic and Chemosensitive Biomarker for NSCLC

Hsa-miR-142-3p was identified as a prognostic and chemosensitive biomarker from
the population correlation with SEER-Medicare data (Tables 2 and 3), and it was validated
in all the studied datasets, including patient cohorts from MBRCC, CWRU, and TCGA, as
well as drug activities in the cancer cell line panels NCI-60 and CCLE (Figures 2 and 3).

The expression of hsa-miR-142-3p was positively correlated with disease-specific
survival of SEER-Medicare patients who did not receive any chemotherapy (Table 2;
Figure 2A). Hsa-miR-142-3p expression was positively correlated with chemosensitivity
to paclitaxel in the NCI-60 cell lines (p = 0.0224, linear regression; Figure 2B). Squamous
cell lung carcinoma patients in SEER-Medicare data who were correlated with a higher
expression of hsa-miR-142-3p in the Raponi cohort [9] had a significantly longer survival in
the treatment categories of any treatment plus paclitaxel (log-rank p < 0.0001; Figure 2C),
as well as surgery plus paclitaxel (log-rank p = 0.0174; Figure 2D) in Kaplan–Meier analysis.
These results indicate that a higher expression of hsa-miR-142-3p is associated with a lower
risk of recurrence/metastasis in NSCLC patients and chemosensitivity to paclitaxel. These
results were validated with NSCLC patient cohorts we collected from CWRU (Figure 2E,F)
and MBRCC (Figure 2G–H). Patients from CWRU and MBRCC with a higher expression
of hsa-miR-142-3p had a significantly longer survival time (log rank p < 0.05, Kaplan–
Meier analysis) than those with a lower expression of hsa-miR-142-3p, in specific clinical
settings of either receiving chemotherapy (Figure 2E,G) or not (Figure 2F,H). Chemotherapy
in CWRU and MBRCC patient cohorts included cisplatin, carboplatin, paclitaxel, and
pemetrexed. Due to the small sample size, CWRU and MBRCC cohorts were not split into
specific LUAD or LUSC subtypes in the analysis. In this analysis, the miRNA expression
was quantified with qPCR in the NCI-60 panel or microarray assays of patient tumors.
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Figure 2. Overexpression of hsa-miR-142-3p correlates with prolonged survival and chemosensitivity
in non-small cell lung cancer (NSCLC) patients. Correlation between hsa-miR-142-3p expression
and survival in SEER-Medicare lung squamous cell carcinoma (LUSC) patient population (A),
and the dosage required for lethal concentration (LC50) of paclitaxel in the NCI-60 (B). Kaplan–
Meier analyses of patient stratification based on hsa-miR-142-3p expression in all SEER-Medicare
LUSC patients treated with paclitaxel (C) and patients receiving only surgery and paclitaxel (D),
CWRU patients receiving chemotherapy (E) or without chemotherapy (F), and MBRCC patients
receiving chemotherapy (G) or without chemotherapy (H). Log-rank tests were used to assess the
statistical significance.
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Figure 3. RNA-sequencing data of hsa-miR-142 and its isoforms in The Cancer Genome Atlas lung adenocarcinoma
(TCGA-LUAD) and lung squamous cell carcinoma (TCGA-LUSC) patient cohorts. (A–C) Kaplan–Meier analysis of
patient tumors grouped by hsa-miR-142 differential expression in TCGA-LUAD and TCGA-LUSC. When hsa-miR-142 was
overexpressed, patients survived for a significantly longer period of time. The cutoff points of hsa-miR-142 overexpression
and underexpression were: (A) miRNA cutoff = 12.5 in TCGA-LUAD GenomeAnalyzer (GA), (B) miRNA cutoff = 11.7
in TCGA-LUAD HiSeq, and (C) miRNA cutoff = 13.1 in TCGA-LUSC GenomeAnalyzer (GA). (D,E) The expression of
hsa-miR-142 isoforms (with positions in chromosome 17 according to Human Genome 19 (hg19)) that had a significant
hazard ratio (HR) in patient groups of overexpression versus underexpression in TCGA-LUAD (D) and TCGA-LUSC (E).
Each isoform had a specific expression cutoff point to generate the corresponding HR shown in the figure.

The above results were further validated in public RNA-sequencing data of NSCLC
tumors from TCGA and cell lines from CCLE. When the gene-level expression was consid-
ered, both lung adenocarcinoma (Figure 3A,B) and squamous cell lung carcinoma patients
(Figure 3C) with a higher expression of hsa-miR-142 had a significantly longer survival
in Kaplan–Meier analysis. Next, all the isoforms of hsa-miR-142 were examined for their
prognostic performance in TCGA NSCLC patients. A total of 14 isoforms of hsa-miR-142
had a hazard ratio (HR) less than 1 (p < 0.05, Cox modeling) in lung adenocarcinoma,
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indicating a positive association with patient survival (Figure 3D). A total of four isoforms
of hsa-miR-142 had an HR greater than 1 (p < 0.05, Cox modeling) in lung adenocarcinoma,
indicating a negative association with patient survival (Figure 3D). In squamous cell lung
carcinoma, seven hsa-miR-142 isoforms had a positive association with survival and one
isoform had a negative association with survival (p < 0.05, Cox modeling; Figure 3E). The
expression of hsa-miR-142-3p was found to be positively associated with chemosensitivity
to erlotinib in NSCLC cell lines, with a fold change of 0.45 with respect to underexpres-
sion in resistant versus sensitive lines (Figure 4). Gefitinib and erlotinib are widely used
epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for treating advanced
NSCLC with proven efficacy. A recent meta-analysis showed that gefitinib and erlotinib
have comparable effects on patient survival, overall response rate, and disease control
rate, with no considerable variation with regard to EGFR mutation status, ethnicity, line of
treatment, and baseline brain metastasis status [33]. EGFR mutation in the studied NSCLC
cell lines was provided in our previous study [34].

Int. J. Mol. Sci. 2021, 22, 7658 10 of 28 
 

 

 
Figure 4. The IC50 of erlotinib in the dataset Genomics of Drug Sensitivity in Cancer 1 (GDSC1) had 
significant negative correlation with hsa-miR-142-3p. The NSCLC cell lines were divided with mean 
± 0.5 standard deviation (SD) into three groups: sensitive, partial response, and resistant. The sensi-
tive and resistant groups had significantly differential expression with a fold change (FC) = 0.45. 

Together, these results indicate that hsa-miR-142-3p and the overall expression of 
hsa-miR-142 are positively associated with NSCLC survival. Hsa-miR-142-3p is a bi-
omarker of chemosensitivity, including paclitaxel and erlotinib, in NSCLC patients and 
cell lines. 

2.4. Hsa-miR-142-3p-Regulated Pathways and Functional Networks in NSCLC 
The demonstrated clinical relevance of hsa-miR-142-3p substantiated further investi-

gation of its molecular mechanisms. First, experimentally confirmed target genes of hsa-
miR-142-3p were retrieved with TarBase [35]. A total of 842 target genes were included in 
the list. Analyzed with ToppGene [36], these hsa-miR-142-3p target genes were signifi-
cantly enriched in gene families including zinc finger proteins, Kelch like/BTB domain-
containing protein, RNA-binding motif containing protein, NADH ubiquinone oxidore-
ductase, death-inducing signaling complex, exportins, and super elongation complex 
(Figure 5A). Top significantly enriched pathways of hsa-miR-142-3p target genes were 
PDGFR-beta signaling pathway, E-cadherin signaling in the nascent adherens junction, 
ErbB1 downstream signaling, B-cell receptor signaling pathway, head and neck squamous 
cell carcinoma, insulin signaling, exercise-induced circadian regulation, VEGFA–VEGFR2 
signaling pathway, p53 pathway feedback loops, and integrated breast cancer pathway 
(Figure 5B). These target genes were overrepresented in cytobands 19p12 (p < 1.7 × 10−7) 
and 8q13 (p < 1.1 × 10−4). Details are provided in File S2 (Supplementary Materials). 

Figure 4. The IC50 of erlotinib in the dataset Genomics of Drug Sensitivity in Cancer 1 (GDSC1)
had significant negative correlation with hsa-miR-142-3p. The NSCLC cell lines were divided with
mean ± 0.5 standard deviation (SD) into three groups: sensitive, partial response, and resistant. The
sensitive and resistant groups had significantly differential expression with a fold change (FC) = 0.45.

Together, these results indicate that hsa-miR-142-3p and the overall expression of hsa-
miR-142 are positively associated with NSCLC survival. Hsa-miR-142-3p is a biomarker of
chemosensitivity, including paclitaxel and erlotinib, in NSCLC patients and cell lines.

2.4. Hsa-miR-142-3p-Regulated Pathways and Functional Networks in NSCLC

The demonstrated clinical relevance of hsa-miR-142-3p substantiated further inves-
tigation of its molecular mechanisms. First, experimentally confirmed target genes of
hsa-miR-142-3p were retrieved with TarBase [35]. A total of 842 target genes were in-
cluded in the list. Analyzed with ToppGene [36], these hsa-miR-142-3p target genes were
significantly enriched in gene families including zinc finger proteins, Kelch like/BTB
domain-containing protein, RNA-binding motif containing protein, NADH ubiquinone
oxidoreductase, death-inducing signaling complex, exportins, and super elongation com-
plex (Figure 5A). Top significantly enriched pathways of hsa-miR-142-3p target genes were
PDGFR-beta signaling pathway, E-cadherin signaling in the nascent adherens junction,
ErbB1 downstream signaling, B-cell receptor signaling pathway, head and neck squamous
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cell carcinoma, insulin signaling, exercise-induced circadian regulation, VEGFA–VEGFR2
signaling pathway, p53 pathway feedback loops, and integrated breast cancer pathway
(Figure 5B). These target genes were overrepresented in cytobands 19p12 (p < 1.7 × 10−7)
and 8q13 (p < 1.1 × 10−4). Details are provided in File S2 (Supplementary Materials).
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Figure 5. Hsa-miR-142-3p-mediated pathways and functional networks in NSCLC. Top 10 ranked gene families (A) and
pathways (B) of hsa-miR-142-3p target genes in ToppGene functional enrichment analysis. (C) Hsa-miR-142-3p target genes
with a significant dependency score in 100% of the tested NSCLC cell lines in both CRISPR-Cas9 (n = 78) and RNAi (n = 92).
Detailed information is included in File S2, “dependency score” (Supplementary Materials). The experimentally confirmed
interactions from IPA were also shown in the plot. The correlation between hsa-miR-142-3p and the target genes was
computed in the combined TCGA-LUAD and TCGA-LUSC data. (D) Hsa-miR-142-3p target genes that were significantly
(p < 0.05) enriched in three NSCLC patient cohorts with short-term survival in GSEA in C2, C5, and C7 databases. The
colored nodes and edges showed the significant (p < 0.05) correlation of hsa-miR-142-3p and the target genes in TCGA
and CCLE.
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Next, molecular functions of 842 hsa-miR-142-3p target genes were investigated using
public CRISPR-Cas9 [37] and RNAi [38] screening data in NSCLC cell lines. Nine experi-
mentally confirmed target genes of hsa-miR-142-3p, ARCN1 [39], COPA [40], CSE1L [41–44],
NUP205 [41], RAN [45], RPS11 [40,42–44], SF3B1 [39,42], SNRNP200 (ASCC3L1) [42], and
SNRPD1 [41], had a significant impact on proliferation in 100% of the NSCLC cell lines
in CRISPR-Cas9 knockout (n = 78) and shRNA knockdown (n = 92). This hsa-miR-142-
3p-regulated proliferation network in NSCLC is delineated in Figure 5C. Germline COPA
mutations encoding the alpha-COP subunit of COPI impair ER–Golgi transport and cause
hereditary autoimmune-mediated lung disease and arthritis [46]. Mutations of ARCN1 [47],
which encode the coatomer subunit delta of COPI [48], are linked to craniofacial syndrome
due to COPI-Mediated transport defects [49]. CSE1L/CAS, an RNA-binding protein, is
important in mitotic spindle checkpoint assuring genomic stability during cell division
and is involved in proliferation and apoptosis [50]. TMEM209 and NUP205 protein inter-
actions, stabilizing NUP205 and increasing the level of c-Myc in the nucleus, are critical
drivers of lung cancer proliferation [51]. RPS11 is involved in perturbed pathways in
oncogene-induced senescence in human fibroblasts [52]. Hotspot mutations of SF3B1 are
associated with cancer and affect alternative splicing by promoting alternative branchpoint
usage [53]. The affinity between DNA repair factors ASCC2 and ASCC3 is reduced by
cancer mutations [54]. Depletion of SNRPE or SNRPD1 led to autophagy and a marked
reduction of cell viability in breast, lung, and melanoma cancer cell lines, accompanied by a
deregulation of the mTOR pathway [55]. SNRNP200, ARCN1, COPA, and SF3B1 had a sig-
nificant negative correlation with the overall expression of hsa-miR-142 (p < 0.05; Pearson’s
correlation) in the combined TCGA-LUAD and TCGA-LUSC data [56]. Among these hsa-
miR-142-3p target genes involved in NSCLC proliferation, NUP205, RAN, CSE1L, SNRPD1,
and RPS11 had a significant positive correlation with overall expression of hsa-miR-142
(p < 0.05; Pearson’s correlation) in the combined TCGA-LUAD and TCGA-LUSC patients.
Recent pan-cancer analysis of TCGA data found that positive miRNA–gene correlations are
surprisingly prevalent and consistent across cancer types [57], which is consistent with the
observation here. These genes were associated with chemosensitivity or chemoresistance to
cisplatin, erlotinib, gefitinib, paclitaxel, and pemetrexed in CCLE NSCLC cell lines (Table 5;
File S1, Supplementary Materials). Further investigation in patient tumor tissues using
qRT-PCR, ELISA, and/or immunohistochemistry is warranted to substantiate the clinical
relevance of these genes in NSCLC treatment.

Table 5. Hsa-142-3p targeted proliferation genes (shown in Figure 5C) with a significant differential
expression (p < 0.05; two-sample t-tests) in sensitive versus resistant CCLE NSCLC cell lines to
specific drugs. Drug activity measurements include IC50, EC50, ln(IC50), and ln(EC50). Red font
indicates that the gene has a higher expression in the resistant cell lines than in the sensitive cell lines.
Blue font indicates the gene has a lower expression in the resistant cell lines than in the sensitive
cell lines.

Drugs PRISM GDSC1 GDSC2

Cisplatin SNRNP200 SF3B1, RAN CSE1L
Erlotinib SNRNP200 CSE1L
Gefitinib COPA
Paclitaxel NUP205

Pemetrexed RAN, SNRPD1

Gene Set Enrichment Analysis (GSEA) [58,59] was used to identify significant path-
ways and gene sets of hsa-miR-142-3p target genes in short- vs. long-term survival using
mRNA expression data of three patient cohorts: GSE28582 [60,61], GSE81089 [62], and
TCGA (combined TCGA-LUAD and TCGA-LUSC) [56]. Patients who survived shorter
than 20 months after treatment were defined as short-term survivors, and those who
survived longer than 58 months after treatment were defined as long-term survivors. Six
pathways/gene sets were significantly enriched in short-term survivors in all three patient
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cohorts (Figure 5D), including genes downregulated in SaOS-2 cells (osteosarcoma) upon
knockdown of YY1 by RNAi (DE_YY1_TARGETS_DN), process of lamellipodium organiza-
tion (GOBP_LAMELLIPODIUM_ORGANIZATION), genes upregulated in livers injected
with IL6: SOCS3 knockout versus wild-type (GSE369_SOCS3_KO_VS_WT_LIVER_POST_
IL6_INJECTION_UP), EPH–Ephrin signaling (REACTOME_EPH_EPHRIN_SIGNALING),
RHO GTPase effectors (REACTOME_RHO_GTPASE_EFFECTORS), and genes down-
regulated in primary tissue culture of epidermal keratinocytes after UVB irradiation
(TAKAO_RESPONSE_TO_UVB_RADIATION_DN).

Genes involved in these pathways and gene sets that were overrepresented in NSCLC
short-term survivors are shown in Figure 5D. The mRNA expression of ARPC1B, KTN1, and
WASL had a significant negative correlation with hsa-miR-142-3p in CCLE NSCLC cell lines
(p < 0.03, Pearson’s correlation). KTN1 and WASL also had a significant negative correlation
with hsa-miR-142 in the combined TCGA-LUAD and TCGA-LUSC data (p < 5.1 × 10−6,
Pearson’s correlation). A total of 15 target genes had a significant negative correlation and
21 target genes had a significant positive correlation with hsa-miR-142 in the combined
TCGA-LUAD and TCGA-LUSC data (p < 0.02, Pearson’s correlation, File S2, Supplementary
Materials).

Functional assessment of these genes showed that six genes had a significant impact
on cell proliferation in at least 61% of the NSCLC cell lines in both CRSIPR-Cas9 (n = 78) and
RNAi (n = 92) screening: PRC1, PSMA4, NAA15, HNRNPC, RINT1 (RAD50), and XPO1 (File
S2, Supplementary Materials). PRC1 contributes to tumorigenesis of lung adenocarcinoma
and plays a key role in the activation of the Wnt/β-catenin signaling pathway [63]. A
haplotype-based association analysis found that PSMA4 is a strong candidate mediator
of lung cancer cell growth, and may directly affect lung cancer susceptibility through its
modulation of cell proliferation and apoptosis [64]. Truncating variants in NAA15 are
associated with intellectual disability and congenital abnormalities [65]. High HNRNPC
mRNA and protein expression is significantly related to poor overall survival in patients
with lung adenocarcinoma [66]. Rare mutations in RINT1 (RAD50) are predisposition risk
factors of breast and Lynch syndrome-spectrum cancers [67]. The MRE11–RAD50–NBS1
complex is essential in DNA damage repair and tumorigenesis and is a promising target
in cancer treatment [68]. XPO1 inhibitors are promising therapeutic strategies in KRAS-
mutant lung cancer [69]. The identified hsa-miR-142-3p-regulated pathways and networks
in short-survival NSCLC provide novel and important insights into disease mechanisms
and potential intervention strategies.

3. Discussion

Lung cancer is difficult to manage in clinics due to its complex somatic mutations and
etiology, and it remains the leading cause of cancer death in the US and worldwide for
both men and women. To date, there are no effective molecular biomarkers to recommend
optimal treatment selection for individual patients, including specific chemotherapy, use
of immunotherapy, and combination with radiation therapy for NSCLC patients with all
stages and subtypes. MiRNAs are promising biomarkers in diagnostics and prognostics
due to their greater stability in prepared tissue samples including formalin fixation [16]
compared with mRNA [14,15], as well as their presence in circulating plasma [12,13].
Studies on miRNAs could also lead to the development of novel intervention strategies by
revealing post-transcriptional regulatory pathways and networks [17–19].

This study sought to identify prognostic and chemopredictive miRNAs to improve
treatment for NSCLC. The patient cohorts we collected from US hospitals (MBRCC and
CWRU) had limited sample size. The small sample size made it infeasible to correlate
miRNA expression to the clinical outcome of specific chemotherapy (i.e., cisplatin, carbo-
platin, paclitaxel, pemetrexed, etc.) in a particular NSCLC subtype (i.e., adenocarcinoma or
squamous cell carcinoma). The public TCGA data did not provide chemotherapy informa-
tion. The drug activity data in the NCI-60 and CCLE panels are in vitro and do not always
represent the results in patients.
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To overcome these limitations, this study presents a novel methodology for identi-
fying prognostic and chemopredictive biomarkers with potential to be applied in large
patient populations by integrating SEER-Medicare data. There has been reported success
in identifying chemopredictive genes by correlating mRNA expression profiles in solid
tumors of the SAGE database with patient survival in the SEER data [26]. In the study by
Stein et al. [26], genes differentially expressed between solid tumors and cell lines were first
selected from the SAGE database without being adjusted for multiple testing. To control
false discovery, gene expression in solid tumors of the SAGE database was correlated with a
5-year survival of patients with a distant disease in the SEER data by different tumor types.
Stein et al. [26] used the SEER 5 year survival data as a surrogate for chemosensitivity,
acknowledging that factors other than chemosensitivity also influence patient survival.
Here, since we focused on NSCLC, the approach presented by Stein et al. [26] was adapted
in the following way: a composite tumor progression indicator based on AJCC TNM cancer
stage and tumor grade was used as a surrogate to correlate miRNA expression with SEER-
Medicare patient survival, recognizing that the cancer stage is a strong indicator of NSCLC
survival. Specifically, the AJCC TNM cancer staging classifications and tumor grade (G)
were used to partition SEER-Medicare patients into disjoint groups (i.e., T = 1; N = 0; M = 0;
G = 1) indicative of tumor progression, with the average survival being calculated for each
group. Patients in the training clinical cohort from Raponi et al. [9] were partitioned in a
similar manner. Linear regression was used to estimate the association between average
miRNA expression (per group) in the training clinical cohort from Raponi et al. [9] and the
corresponding average survival in SEER-Medicare patients. The results were compared
with those from independent clinical validation cohorts in the public domain, including our
cohorts upon publication. Drug activities of commonly used chemotherapy, together with
miRNA and mRNA profiles in the NCI-60 and CCLE cell lines, were used to corroborate
the results on chemoresponse prediction. Similar to Stein et al. [26], prognostic and chemo-
predictive miRNAs were first selected using univariate Cox model and Kaplan–Meier
analysis in the training clinical cohort from Raponi et al. [9] without multiple testing. The
false discovery was controlled (1) by population correlation with SEER-Medicare data with
linear regression and corroboration with Kaplan–Meier analysis, and (2) with additional
external validation using our collected patient cohorts, as well as TCGA, NCI-60, and
CCLE data.

The results demonstrate that, according to similarities in tumor progression, extrap-
olation of miRNA expression from smaller cohorts to larger population-based data can
serve as an additional confirmatory tool where novel cohorts containing tens of thousands
of patients with matched clinical outcomes and genome-scale transcriptomic profiles are
unavailable. This approach, when combined with rigorous external validation, can iden-
tify miRNAs with consistent expression patterns in tumor progression, with potential
prognostic and predictive implications in large patient populations.

Specifically, it was shown that multiple miRNAs were selected as strong predictors
of chemoresponse through analysis of disease-specific survival in cohorts with similar
treatment strategies. The miRNAs validated with the external patient cohorts and public
data have the potential to be used in clinical practice for prognosis and the selection of
chemotherapy in NSCLC treatment. Among the selected miRNAs, hsa-miR-142-3p was
validated as a good prognosis and chemosensitivity biomarker in all the studied NSCLC
patient cohorts (n = 1172) and drug activities in the NCI-60 panel and CCLE NSCLC cell
lines (n = 117), with promising results for clinical utility upon further prospective evaluation.
In the functional assessment of hsa-miR-142-3p target genes using public in vitro CRISPR-
Cas9/RNAi screening data, the hsa-miR-142-3p-mediated proliferation network in NSCLC
was identified. Furthermore, hsa-miR-142-3p-regulated pathways and functional networks
in NSCLC with poor prognosis (short-term survival) were elucidated. Functioning as
a tumor suppressor, miR-142-3p represses TGF-β-induced growth inhibition [70] and
inhibits lung cancer progression through repressing β-catenin expression [71]. This study
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provides novel insights into hsa-miR-142-3p-mediated cancer cell proliferation and tumor
progression in NSCLC for the development of therapeutic strategies.

Several selected prognostic and chemopredictive miRNAs are consistent with their
reported roles in lung cancer. MiR-29 was selected as a chemosensitive biomarker. MiR-29
family reverts abnormal methylation in lung cancer by targeting DNA methyltransferases
3A and 3B (DNMT3A and DNMT3B), induces re-expression of methylation-silenced tumor
suppressor genes, such as FHIT and WWOX, and inhibits tumorigenicity in vitro and
in vivo [72]. MiR-192 was selected as a chemoresistant biomarker in this study, consis-
tent with its role in enhancing chemoresistance and invasiveness of LUSC [73]. MiR-134
has ambiguous roles in human cancer [74]. MiR-134 was selected as a good prognosis
and chemosensitive biomarker in this study. MiR-134 inhibits NSCLC growth through
mechanisms including targeting EGFR [75], downregulating oncogene CCND1 [76], and
inhibiting epithelial-to-mesenchymal transition (EMT) by targeting FOXM1 [77]. On the
other hand, miR-134-5p was reported to promote metastasis and chemoresistance by tar-
geting DAB2 in stage I lung adenocarcinoma [78]. Recent deep RNA-sequencing studies
revealed that miRNA isoforms are biologically relevant and functionally cooperative part-
ners of canonical miRNAs in post-transcriptional regulation [79]. Different isoforms of
the same miRNA may have markedly different prognostic implications and functions, as
evidenced in Figure 3D,E. In this study, miR-134 had a positive correlation with LUSC
survival in the SEER-Medicare data and TCGA-LUSC. In contrast, miR-134 had a negative
association with survival in TCGA-LUAD and was overexpressed in NSCLC cell lines
resistant to cisplatin and docetaxel in CCLE GDSC2 data (File S1, Supplementary Mate-
rials). Docetaxel offers clinical benefits as a second-line treatment of NSCLC in patients
previously treated with platinum-based chemotherapy [80]. It was recently reported that
the combination of pembrolizumab (anti-PD1 immunotherapy) plus docetaxel was well
tolerated and substantially improved progression-free survival and overall response rate
in patients with advanced NSCLC after platinum-based chemotherapy, including patients
with EGFR variations [81]. These results are consistent with reported ambiguous roles of
miR-134, which are possibly due to the different studied isoforms and NSCLC subtypes.
More miRNAs selected using the population correlation approach are anticipated to be
validated with new upcoming transcriptomic profiling of more patients and functional
studies of miRNAs.

The methodology presented in this study is general and could be applied to other
types of molecular profiles and cancer types. By design, the SEER registry represents a
more demographically and clinically diverse group of patients when compared to cohorts
limited to a specific geographic area or healthcare system. Nevertheless, the use of ad-
ministrative data also has some limitations. Although the SEER data are in general highly
accurate, they are not fully inclusive of all treatments a patient may receive. Treatments
not covered by Medicare or covered by other forms of insurance would not appear in the
database. Additionally, eligibility requirements for Medicare coverage artificially limit
the patient sample to those over the age of 65, with notable exceptions such as eligibility
due to disability benefits. As lung cancer occurs primarily in older populations, this effect
is limited relative to other cancer types which are common in comparatively younger
populations.

4. Materials and Methods
4.1. Patient Cohorts Used in Correlation with SEER-Medicare Data

A cohort of 57 squamous cell carcinoma patients originally published by Raponi
et al. [9] was used to correlate with SEER-Medicare data. Included in this cohort are
expression data on 328 human miRNA quantified by MirVana miRNA Bioarrays, with
corresponding follow-up information on survival time and status, tumor grade, and AJCC
tumor T, N, and M markers. Tumor grade for this cohort was converted from a descriptive
measure of tumor differentiation to numerical grade to match descriptors used in SEER-
Medicare data. This dataset is available from the NCBI Gene Expression Omnibus (GEO)



Int. J. Mol. Sci. 2021, 22, 7658 16 of 28

with accession number GSE 16025. (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE16025, accessed on 16 July 2021).

The linked SEER-Medicare database [82] combines the clinical, demographic, patho-
logical, and survival information from the NCI SEER registry system with claims data
for individual patients found in the Medicare claims database. Briefly, patients in the
SEER portion were linked according to identifying information such as social security
number, census tract, age, and other identifying criteria to records found in the Medicare
claims database [83]. Criteria for inclusion in this study were a diagnosis of squamous cell
carcinoma of the lung or bronchus between 1991 and 2005, as well as valid information
on survival time and status, tumor grade, and AJCC T, N, and M markers. A total of
33,897 patients fit these criteria, with this cohort being stratified according to treatment
modality in subsequent analyses. Patient demographics for this group are detailed in
Table 1. The T, N, and M markers for patients diagnosed prior to 2004 were derived from
EOD10 coding, where possible, and according to established conversion algorithms [25].
Four specific chemotherapeutic agents, cisplatin, carboplatin, paclitaxel, and etoposide
were considered. The administration of chemotherapy was determined through the use
of Healthcare Common Procedure Coding System (HCPCS) codes [82]. First, the use of
chemotherapy was determined by searching individual patient claims histories for entries
with an HCPCS code corresponding to the agent in question. The ICD-9 diagnosis codes for
these records were then checked to ensure that the agent was administered for the treatment
of lung cancer. Curative surgery and radiation therapy were determined using variables in
the SEER portion of the data. These variables were used to stratify patients into a group
receiving any surgical procedure but not preoperative radiation, a group with any type
of radiation but not surgery, a group with both surgery and radiation, and a group with
any combination of treatments. Survival estimates were represented as disease-specific
survival for the SEER-Medicare cohort and overall survival for the clinical cohort from
Raponi et al. [9].

4.2. Validation NSCLC Patient Cohorts

Three NSCLC patient cohorts were used in the validation. The first validation patient
cohort contained 69 NSCLC patient samples collected from MBRCC and Cooperative
Human Tissue Network (CHTN) operated by the NCI. MiRNA expression profiles were
generated with Sanger 15 (Ocean Ridge Biosciences, Deerfield Beach, FL, USA). These
data are available from the NCBI GEO with accession number GSE32524. The second
validation patient cohort contained 87 NSCLC samples collected from CWRU. miRNA
expression profiles were generated with Sanger 15 (Ocean Ridge Biosciences, Deerfield
Beach, FL, USA). These data are available from the NCBI GEO with accession number
GSE31275. The third validation cohort was from TCGA. MiRNA expression data of TCGA
lung adenocarcinoma (TCGA-LUAD) and TCGA lung squamous cell carcinoma (TCGA-
LUSC) are available from LinkedOmics [56] (http://linkedomics.org/; accessed on 28
April 2021). Gene-level data of the Illumina GenomeAnalyzer platform and Illumina HiSeq
platform (Illumina, San Diego, CA, USA), and miRNA isoform-level data were included in
the validation. The miRNA expression values were log-transformed.

Illumina HiSeq platform RNA-Seq mRNA expression data of TCGA-LUAD and
TCGA-LUSC were also downloaded from LinkedOmics. The mRNA expression values
were log-transformed. TCGA-LUAD and TCGA-LUSC were combined in the correlation
calculation of miRNA and mRNA expression in the same patients.

4.3. NCI-60 Cellular Data

The NCI-60 cellular data were used to evaluate chemopredictive miRNAs [27,28]. This
dataset contains expression levels of 209 miRNAs measured with quantitative PCR across
59 cancer-derived cell lines of diverse tissue origin. The data also contain the drug activity
at three clinically relevant endpoints: 50% growth inhibition (GI50), Total growth inhibition

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16025
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16025
http://linkedomics.org/
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(TGI), and 50% lethal concentration (LC50), used to refine the set of significant miRNAs
and assess meaningful biological context.

4.4. Cancer Cell Line Encyclopedia (CCLE)

MiRNA and mRNA expression data for CCLE were downloaded from DepMap 20Q2
(https://figshare.com/articles/dataset/DepMap_20Q2_Public/12280541, accessed on 1
April 2021) [84]. Gene expression data were obtained from the CCLE data portal (https://
data.broadinstitute.org/ccle/CCLE_RNAseq_081117.rpkm.gct, accessed on 1 April 2021).
RNA-seq data were quantified using the GTEx pipelines [85]. A total of 117 NSCLC cell
lines were included in this analysis.

4.5. PRISM Drug Response in CCLE

The growth-inhibitory activity of 4518 drugs was quantified in 578 human cancer cell
lines using the PRISM molecular barcoding and multiplexed screening method [86]. The
PRISM repurposing dataset is available at the Cancer Dependency Map portal
(https://depmap.org/portal/download/, accessed on 1 April 2021). Drug responses
of nine commonly used chemotherapeutic regimens in treating NSCLC were included in
this study: carboplatin, cisplatin, paclitaxel, docetaxel, gemcitabine, vinorelbine, etoposide,
gefitinib, and erlotinib. For each drug, cell lines with IC50 or EC50 values higher than
the maximum dose were defined as resistant; cell lines with IC50 or EC50 value lower
than the minimum dose were defined as sensitive. The remaining cell lines were divided
into groups of resistant, sensitive, or partial response by using the mean ± 0.5 standard
deviation (SD) of the IC50, ln(IC50), EC50, or ln(EC50) values [87,88]. Cell lines with an IC50,
ln(IC50), EC50, or ln(EC50) value greater than the mean + 0.5 SD were defined as resistant
to the drug. Cell lines with an IC50, ln(IC50), EC50, or ln(EC50) value less than the mean
− 0.5 SD were defined as sensitive to the drug, and those with an IC50, ln(IC50), EC50, or
ln(EC50) value between the mean + 0.5 SD and the mean − 0.5 SD were defined as having a
partial response to the drug. This categorization corresponds to the RECIST 1.1 system (i.e.,
complete response, partial response, and stable disease/disease progression) in evaluating
chemotherapeutic response in solid tumors [89].

4.6. Genomics of Drug Sensitivity in Cancer (GDSC1/2)

Drug screening data were downloaded from Genomics of Drug Sensitivity in Can-
cer (GDSC) Project [90] (https://www.cancerrxgene.org/downloads/bulk_download,
accessed on 15 April 2021). The GDSC Project screened more than 1000 genetically charac-
terized human cancer cell lines with a wide range of anticancer therapeutic agents. Among
the commonly used chemotherapeutic regimens in treating NSCLC drugs, nine were found
in GDSC1, namely, cisplatin, docetaxel, erlotinib, etoposide, gefitinib, gemcitabine, peme-
trexed, and vinorelbine, while seven were found in GDSC2, namely, cisplatin, docetaxel,
erlotinib, gefitinib, gemcitabine, paclitaxel, and vinorelbine. For each drug, cell lines were
defined as resistant, sensitive, or partial response by using the mean ± 0.5 SD of the IC50
values as described above.

4.7. Identification of Prognostic miRNAs by Correlating with SEER-Medicare Data

Patients in the Raponi cohort [9] and SEER-Medicare sets were assigned to disjoint
tumor progression groups according to unique combinations of tumor grade and T, N, and
M markers. This tumor progression group membership served as a link between the two
patient sets in subsequent analyses. In total, there were 16 groups common between the
clinical and population datasets, including tumor grades 1 through 3, tumor T 1 through 4,
and tumor N 0 through 2. There were no metastatic or grade 4 groups common between
the two datasets. A leverage analysis was performed to test for undue influence from
any one group. None of the groups were seen to have a disproportionate effect on model
coefficients or significance; therefore, all 16 groups were included.

https://figshare.com/articles/dataset/DepMap_20Q2_Public/12280541
https://data.broadinstitute.org/ccle/CCLE_RNAseq_081117.rpkm.gct
https://data.broadinstitute.org/ccle/CCLE_RNAseq_081117.rpkm.gct
https://depmap.org/portal/download/
https://www.cancerrxgene.org/downloads/bulk_download


Int. J. Mol. Sci. 2021, 22, 7658 18 of 28

The set of prognostic miRNAs was determined by selecting miRNAs which showed a
significant association with survival in the original clinical cohort from Raponi et al. [9],
before validating these miRNAs in the SEER-Medicare population cohort. Cox modeling
and Kaplan–Meier estimation were used to assess the association between expression and
survival in the original clinical cohort from Raponi et al. [9]. Cox model coefficients and
p-values were estimated for each miRNA in independent models. In the Kaplan–Meier
analysis, cutoff values ranging from the 5% to 95% quantiles of miRNA expression were
used to split the patients into overexpression and underexpression groups for survival
analysis. The degree of separation between the resulting survival curves was estimated as
a log-rank p-value, with a p-value less than 0.05 being deemed as significant separation
between the prognostic groups.

Validation of the results of the clinical analysis on the SEER-Medicare population
data was done using linear regression, Cox modeling, and Kaplan–Meier estimation.
Multiple methods of assessment were chosen due to limitations associated with using a
single measure [91]. The linear regressions used the average miRNA expression from the
clinical set and average disease-specific survival from the SEER-Medicare population set
for each tumor progression group. Average survival in the SEER-Medicare population
cohort was calculated as a function of the area under the curve produced by Kaplan–Meier
estimation. Each miRNA was evaluated in each of the four surgical and radiological
treatment modalities. In order to enter the final set of prognostic miRNAs, each miRNA
found to be significant in the original Raponi cohort [9] had to show a concordant and
significant association with average survival in the SEER-Medicare population cohort.
Individual patients in the SEER-Medicare population cohort were then assigned the average
miRNA expression for that progression group from the clinical cohort from Raponi et al. [9],
and the Cox and Kaplan–Meier models were re-evaluated. Any miRNAs which failed
to achieve a significant and concordant association with survival in either the Cox or the
Kaplan–Meier model were removed.

4.8. Identification of Chemopredictive miRNA Using Linked SEER-Medicare Data

In order to select for miRNAs which were predictive of chemoresponse, as represented
by improved or diminished disease-specific survival, linear regression was again used to
estimate the association between average miRNA expression in the clinical cohort from
Raponi et al. [9] and disease-specific survival in the SEER-Medicare population cohort
by tumor progression group. Next, each patient in the SEER-Medicare population set
was assigned the average expression for each miRNA corresponding to the same tumor
progression group in the clinical cohort from Raponi et al. [9]. These combined patient
expression and survival data were then used to estimate a Cox proportional hazards
model. A Kaplan–Meier model was also estimated and assessed on the log-rank p-values.
Significance and concordance on the linear model and one of either the Cox or the Kaplan–
Meier models represented sufficient evidence in the population analysis. Selection of
a particular miRNA as a prognostic marker was not a requirement for selection as a
predictive marker.

4.9. Validation of Chemopredictive miRNAs Using the NCI-60 Anticancer Screen

The miRNAs which were significant in the chemopredictive correlation analyses were
then compared to data from the NCI-60 anticancer screen [27,92,93]. Linear regression was
used to estimate the association between expression on a specific miRNA marker in each
cell line and drug activity in the same cell line for each of the previously described measures.
Cell lines which did not have informative values at any dosage were removed from the
analysis. Significance and concordance on any one of the three drug activity measures
(GI50, LC50, and TGI) was considered in support of meaningful biological context.
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4.10. Validation of Prognostic and Predictive miRNAs Using Independent Patient Cohorts
and CCLE

The prognostic and chemopredictive miRNA biomarkers identified in the previ-
ous analysis were further validated with three external patient cohorts, MBRCC/CHTN,
CWRU, and TCGA. Each miRNA was evaluated with the Cox proportional hazard model
and Kaplan–Meier analysis. Patient subgroups receiving different kinds of treatments
were analyzed separately. MiRNAs that have a significant association with overall sur-
vival and/or recurrence-free survival in treatment subgroups were selected. Furthermore,
chemopredictive miRNAs were corroborated with their differential expression in sen-
sitive versus resistant NSCLC cell lines to the studied drugs using CCLE PRISM and
GDSC1/2 datasets.

4.11. Analysis of Target Genes of Hsa-miR-142-3p

A list of target genes featuring experimentally confirmed interactions with hsa-miR-
142-3p were obtained from TarBase [35] v7.0 (http://snf-515788.vm.okeanos.grnet.gr/
index.php, accessed on 5 May 2021) and v8.0 (https://carolina.imis.athena-innovation.
gr/diana_tools/web/index.php?r=, accessed on 5 May 2021). A total of 842 target genes
were included in the list. ToppFun of ToppGene suite [36] was used to detect functional
enrichment of the hsa-miR-142-3p target gene list retrieved from TarBase. A total of 802 out
of 842 target genes were available in ToppFun. The ToppFun tool used the false discovery
rate (FDR) multiple correction method with enrichment significance cutoff level of 0.05 in
the gene list enrichment analysis. Gene Set Enrichment Analysis (GSEA) software (version
4.1.0) [58,59] was used to identify significant pathways and gene sets of hsa-miR-142-3p
target genes in short- vs. long-term survival using mRNA expression data of three patient
cohorts: GSE28582 [60,61], GSE81089 [62], and TCGA (the combined TCGA-LUAD and
TCGA-LUSC) [56]. In GSEA, the FDR q-value was used to select candidate gene sets. An
FDR q-value < 0.05 indicates statistical significance.

4.12. CRISPR-Cas9 Assays

Gene knockout effects in CCLE using CRISPR-Cas9 screens were quantified in Project
Achilles [37,94]. The data were obtained from DepMap 20Q2 (https://figshare.com/
articles/dataset/DepMap_20Q2_Public/12280541, accessed on 1 April 2021) [84]. The
CRISPR-Cas9 data were processed with the CERES method [37]. Gene effects in each cell
line were normalized such that the median nonessential gene knockout effect was 0 and
the median essential gene knockout effect was −1. A gene is defined as an essential gene if
it is essential to the cell growth in each line; otherwise, it is defined as a nonessential gene.
A dependence score of −0.5 is indicative of a significant effect in CRISPR-Cas9 knockout.
There were 78 NSCLC cell lines with genome-scale CRISPR-Cas9 knockout results.

4.13. RNAi Functional Assays

Genome-scale RNAi screening data in CCLE were obtained from Project Achilles [38]
(https://depmap.org/R2-D2/, accessed on 1 April 2021). The DEMETER2 method [38]
was used to estimate average gene dependency scores in each cell line for short hairpin
RNA (shRNA) libraries. Gene dependency scores were standardized with DEMETER2
such that the median of the across-cell-line average dependency scores of the positive
control gene set was −1 and that of the negative control gene set was 0. A dependence
score of −0.5 is indicative of a significant effect in shRNA knockdown. There were 92
NSCLC cell lines with genome-scale RNAi screening results normalized with DEMTER2.

4.14. Ingenuity Pathway Analysis

For each chemotherapeutic agent, the final set of significant miRNAs were also ex-
amined for interactions with molecular species known to play a role in lung cancer or
relevant cellular processes such as apoptosis, proliferation, cell-cycle regulation, or metas-
tasis with Qiagen Ingenuity Pathway Analysis (IPA) (Ingenuity® Systems, Qiagen, Hilden,

http://snf-515788.vm.okeanos.grnet.gr/index.php
http://snf-515788.vm.okeanos.grnet.gr/index.php
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=
https://figshare.com/articles/dataset/DepMap_20Q2_Public/12280541
https://figshare.com/articles/dataset/DepMap_20Q2_Public/12280541
https://depmap.org/R2-D2/
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Germany) [95]. In short, IPA is a functional pathway analysis tool incorporating genes,
cellular species such as proteins, and chemical compounds with data on their interactions
and involvement in diseases derived from scholarly publications. Using these data, it
is possible to map interactions between biomarkers on any given criterion. The list of
significant miRNAs from each treatment was used to create networks on the basis of exper-
imentally validated interactions between miRNA and molecular components with known
biological function. These networks were created using the Core Analysis feature of IPA.
The Core Analysis compares the set of miRNA markers with molecules with known roles
in human disease in order to select a set of networks in which the interactions between the
miRNA set and IPA-defined functional set are statistically over-represented. IPA was also
used to retrieve reported interactions among hsa-miR-142-3p target genes.

4.15. Statistical Analysis

Statistical analysis was performed using Rstudio version 1.4.1106 [96]. Differential
gene expression between two groups was evaluated with Student’s t-tests, and a two-sided
p-value < 0.05 was considered statistically significant. Survival analysis was performed
using Kaplan–Meier analysis with the survival package in R. Log-rank tests were used to
assess the difference in survival probability from different groups in Kaplan–Meier analyses.
Pearson’s correlation test was used to find the relationship between two variables.

5. Conclusions

This study developed a novel methodology to correlate genome-scale miRNA expres-
sion profiles in a LUSC clinical cohort with SEER-Medicare LUSC patients as a function of
composite tumor progression indicators of T, N, and M cancer stage and tumor grade. The
selected prognostic and chemopredictive miRNAs were extensively validated with miRNA
profiles of NSCLC patient cohorts collected from US hospitals and public consortia includ-
ing NCI-60, TCGA, and CCLE. Among the identified miRNA biomarkers, hsa-miR-142-3p
was associated with good prognosis and chemosensitivity in NSCLC in all studied datasets.
The functional assessment of hsa-miR-142-3p target genes using CRISPR-Cas9/RNAi
screening data identified genes with a significant impact on proliferation in 100% of the
tested NSCLC cell lines. Hsa-miR-142-3p-mediated pathways and functional networks
in short-term survival NSCLC were elucidated. These results shed light on important
molecular disease mechanisms underlying NSCLC and have the potential to develop novel
therapeutic strategies. Overall, the approach integrating SEER-Medicare data combined
with comprehensive external validation can identify miRNAs with consistent expression
patterns in tumor progression, with potential implications for prognosis and prediction of
chemoresponse in large NSCLC patient populations. This approach can be generalized to
other molecular profiles and cancer types.
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Figure A1. Overview of network derived from IPA Core analysis, representing interactions between miRNAs found to be 
chemopredictive for cisplatin and genes relevant to the significant functions and diseases listed in Tables 3 and 4. (A) 
miRNAs and their mRNA target genes. (B) Involvement of miRNAs in pathways, functions, and diseases. Canonical path-
ways (CP:) and functions and diseases (Fx:) as defined by IPA are overlaid to highlight the interconnectedness of the set 
with molecular processes relevant to chemoresponse. Predictive miRNAs whose expression was positively associated with 
survival are shown in green, and those whose expression was negatively associated are shown in red. 

Figure A1. Overview of network derived from IPA Core analysis, representing interactions between miRNAs found
to be chemopredictive for cisplatin and genes relevant to the significant functions and diseases listed in Tables 3 and 4.
(A) miRNAs and their mRNA target genes. (B) Involvement of miRNAs in pathways, functions, and diseases. Canonical
pathways (CP:) and functions and diseases (Fx:) as defined by IPA are overlaid to highlight the interconnectedness of the set
with molecular processes relevant to chemoresponse. Predictive miRNAs whose expression was positively associated with
survival are shown in green, and those whose expression was negatively associated are shown in red.
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Figure A2. Overview of network derived from IPA Core analysis, representing interactions between miRNAs found to be 
chemopredictive for carboplatin and genes relevant to the significant functions and diseases listed in Tables 3 and 4. (A) miR-
NAs and their mRNA target genes. (B) Involvement of miRNAs in pathways, functions, and diseases. Canonical pathways 
(CP:) and functions and diseases (Fx:) as defined by IPA are overlaid to highlight the interconnectedness of the set with molec-
ular processes relevant to chemoresponse. Predictive miRNAs whose expression was positively associated with survival are 
shown in green, and those whose expression was negatively associated are shown in red. 

  

Figure A2. Overview of network derived from IPA Core analysis, representing interactions between miRNAs found to
be chemopredictive for carboplatin and genes relevant to the significant functions and diseases listed in Tables 3 and 4.
(A) miRNAs and their mRNA target genes. (B) Involvement of miRNAs in pathways, functions, and diseases. Canonical
pathways (CP:) and functions and diseases (Fx:) as defined by IPA are overlaid to highlight the interconnectedness of the set
with molecular processes relevant to chemoresponse. Predictive miRNAs whose expression was positively associated with
survival are shown in green, and those whose expression was negatively associated are shown in red.
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Figure A3. Overview of network derived from IPA Core analysis, representing interactions between miRNAs found to be 
chemopredictive for paclitaxel and genes relevant to the significant functions and diseases listed in Tables 3 and 4. (A) 
miRNAs and their mRNA target genes. (B) Involvement of miRNAs in pathways, functions, and diseases. Canonical path-
ways (CP:) and functions and diseases (Fx:) as defined by IPA are overlaid to highlight the interconnectedness of the set 
with molecular processes relevant to chemoresponse. Predictive miRNAs whose expression was positively associated with 
survival are shown in green, and those whose expression was negatively associated are shown in red. 

  

Figure A3. Overview of network derived from IPA Core analysis, representing interactions between miRNAs found to
be chemopredictive for paclitaxel and genes relevant to the significant functions and diseases listed in Tables 3 and 4.
(A) miRNAs and their mRNA target genes. (B) Involvement of miRNAs in pathways, functions, and diseases. Canonical
pathways (CP:) and functions and diseases (Fx:) as defined by IPA are overlaid to highlight the interconnectedness of the set
with molecular processes relevant to chemoresponse. Predictive miRNAs whose expression was positively associated with
survival are shown in green, and those whose expression was negatively associated are shown in red.
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Figure A4. Overview of network derived from IPA Core analysis, representing interactions between miRNAs found to be 
chemopredictive for etoposide and genes relevant to the significant functions and diseases listed in Tables 3 and 4. (A) 
miRNAs and their mRNA target genes. (B) Involvement of miRNAs in pathways, functions, and diseases. Canonical path-
ways (CP:) and functions and diseases (Fx:) as defined by IPA are overlaid to highlight the interconnectedness of the set 
with molecular processes relevant to chemoresponse. Predictive miRNAs whose expression was positively associated with 
survival are shown in green, and those whose expression was negatively associated are shown in red. 

Figure A4. Overview of network derived from IPA Core analysis, representing interactions between miRNAs found to
be chemopredictive for etoposide and genes relevant to the significant functions and diseases listed in Tables 3 and 4.
(A) miRNAs and their mRNA target genes. (B) Involvement of miRNAs in pathways, functions, and diseases. Canonical
pathways (CP:) and functions and diseases (Fx:) as defined by IPA are overlaid to highlight the interconnectedness of the set
with molecular processes relevant to chemoresponse. Predictive miRNAs whose expression was positively associated with
survival are shown in green, and those whose expression was negatively associated are shown in red.
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