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Metastasis is the process by which cancer cells acquire the capability to leave the primary
tumor and travel to distant sites. Recent experiments have suggested that the
epithelial–mesenchymal transition can regulate invasion and metastasis. Another
possible scenario is the collective motion of cells. Recent studies have also proposed
a jamming–unjamming transition for epithelial cells based on physical forces. Here, we
assume that there exists a short-range chemical attraction between cancer cells and
employ the Brownian dynamics to simulate tumor growth. Applying the network analysis,
we suggest three possible phases for a given tumor and study the transition between these
phases by adjusting the attraction strength.
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1 INTRODUCTION

Metastasis is a critical and complex phenomenon in the biology of cancerous tumors. Despite many
findings of genetics and epigenetics of cancer cells, biochemistry of intracellular organelles,
biomechanical properties of cytoskeleton, and tumor microenvironment, there are still a
collection of unanswered questions on how cancer spreads in the body. Two main scenarios
have been proposed for metastasis, the epithelial–mesenchymal transition (EMT) and collective cell
motions. An epithelial cell undergoes changes in morphology and phenotype through EMT. It loses
its polarity and cell–cell adhesion and breaks through the connections with the underlying
membrane. These changes cause the cells to become mesenchymal with high migration
characteristics and invasive properties (Hanahan and Weinberg, 2000; Chaffer and Weinberg,
2011; Ribatti et al., 2020). The EMT scenario is supported by many experimental and computational
works. Here, we only refer to a limited number of them (Nouri et al., 2014; Yeung and Yang, 2016; Pal
et al., 2019; Xing and Tian, 2019). Another approach is based on the collective migration of clusters of
cells which was observed experimentally and studied by simulation for some types of cancer cells
(Friedl et al., 1995; Angelini et al., 2010; Angelini et al., 2011; Park et al., 2015; Cheung and Ewald,
2016; Mitchel et al., 2020). Sadati et al. (2013) have provided explanations on what is happening in
terms of physical forces, and for the first time, they proposed the idea of jamming–unjamming
transition for metastasis. Later, experiments revealed that the epithelial cells form clusters in culture
and become coarse by increasing the density. The epithelial cells show unjammed–jammed
transition, in contrast to the mesenchymal cells, which disperse individually in the environment
(Castro et al., 2016). The evidence which comes from the analysis of patient samples, as well as
experimental models, shows that the tumor cells migrate in clusters (Cheung and Ewald, 2016). It is
now accepted that a connection exists between the unjamming transition of cancer cells and tumor
progression, at least for some kinds of cancer cells (Oswald et al., 2017). A recent study by a group of
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scientists shows the tumor invasion may be switched from the
cellular cluster to the individual cell scenario, depending on the
substrate characteristics and cell type (Kang et al., 2020). Lately, a
physical model has been proposed by Glimson and Golestanian
that relies on the assumption that a chemical long range
interaction exists between the cancer cells (Gelimson and
Golestanian, 2015). The chemical attraction between the cells
leads to coagulation, while the diffusion mechanism behaves in
the opposite way. The diffusion wins the competition for weak
chemical fields, and the system of cells experiences a second-
order phase transition to the metastatic state.

Here, we assume a short-range chemical attraction between
the cancer cells and employ the Brownian dynamics to simulate
tumor growth. The network theory is used to analyze the results.
Three phases of a tumor are distinguished, and the transition
between these phases is observed by adjusting the attraction
strength.

This article is organized as follows. In the next section, we
present the mathematical framework for our simulation,
including a description of the Brownian dynamics and
modelling the chemical interaction between the cells in two
dimensions. The simulation procedure is described in detail in
the third section. The fourth section is devoted to introducing
some basic concepts from the network theory that we use in
analyzing the results. We present our simulation results in the
fifth section. These results are discussed in the final section.

2 METHODS

2.1 Motion of Cancer Cells in the
Extracellular Matrix
The extracellular matrix (ECM) provides structural support as
well as the physical environment for cell activity. It also
facilitates the transfer of essential chemicals to cells. The
ECM is composed of protein fibers that are embedded in
water, in addition to polysaccharides. The composition of
ECM is not definite, and it varies in different tissues. This
causes ECM to have various physical and topological properties.
ECM has a dynamic heterogeneous structure that affects its
mechanical properties. Cells attach to this structure by using
some receptors, e.g., integrins. These receptors are involved in
cell migration through the ECM (Uzman et al., 2003; Bonnans
et al., 2014).

It is an experimentally accepted fact that the cancer cells, like
the other cells, move randomly on the ECM (Selmeczi et al., 2008;
Flate and Stalvey, 2014; Wu et al., 2014; Huda et al., 2018;
Safaeifard et al., 2018; Kwon et al., 2019). The randomness in
cell motion could be due to the random direction of ECM protein
fibres or even intracellular substructure changes, leading to
different types of locomotion of cells (Huber et al., 2013).
There are several models proposed for the description of
cancer cells’ random motion (Huda et al., 2018; Kwon et al.,
2019). Since different cell lines’ behavior is not the same, even
each cell line may have distinct behavior in short and long time
scales (Huda et al., 2018; Kwon et al., 2019). Most of the models
which describe the free motion of cells are reduced to a simple

random walk in a long time period. In addition to random
motion, a cell can have directional migration. The presence of
external stimuli brings about a bias in the motion of cells toward
the source of stimuli (Eisenbach, 2004; Gautreau, 2018).

Tumor growth is a long-time process in which the cancer cells
move in a viscous medium of ECM and may be affected by
chemical signals. Therefore, it is rational to use the Brownian
dynamics for the evolution equation of cancer cells (Drasdo and
Höhme, 2005; Klank et al., 2018; Bull et al., 2020).

dri t( )
dt

� 1
]
F ri( ) + ���

2D
√

ηi t( ). (1)

Here, ri(t) is the position of the i-th cell at time t, the external
force exerted on this cell is shown by F(ri), ] is the friction
coefficient and depends on the cells’ geometry and viscosity of
ECM, D is the diffusion coefficient of cell, and ηi(t) is a Gaussian
random vector.

< η t( )> � 0
< ηi t( ) · ηj t′( )> � δi,jδ t − t′( ) . (2)

In this study, we assume that all the cancer cells secrete
chemicals to attract each other. This type of interaction
between the same cells is observed for bacteria (Eisenbach,
2004) and neural stem cells (Ladewig et al., 2013). It is also
used for the justification of the collective migration of cells
(Camley et al., 2016). The motion of any cell is impacted from
the gradient of chemicals that other cells have secreted.

F ri( ) � −κ∑
j≠i

∇iφ |ri − rj|( ), (3)

where φ(r, t) is the concentration of chemicals or as we call it, the
chemical potential at point r in time t and κ represents the
strength of force.

We can obtain the chemical potential from the diffusion
equation.

1
Dc

zφ r, t( )
zt

� ∇2φ r, t( ) + α0 ∑
j

δ r − rj t( )( ) − λφ r, t( ). (4)

Here, Dc stands for the diffusion coefficient of chemicals. The
diffusion coefficient, Dc, for macromolecules and proteins is
about 102 (μm2/s) (Milo et al., 2009). Every cell can be
considered as the point source of chemicals, α0 is the rate of
the emitting chemical by a cell divided by the diffusion coefficient
of chemicals. In the same manner, the rate of disappearance of
chemicals in the environment divided by the chemical diffusion
coefficient is λ.

The chemical diffuses rapidly through the ECM in
comparison to the cell’s movement. It means that any
chemical disturbance in the ECM rapidly spreads, and the
chemical potential becomes stationary before the cells have
considerable displacement. Hence, it is rational to use the
stationary diffusion equation to obtain the chemical potential
for any configuration of cells.

−∇2φ r( ) � α0 ∑
j

δ r − rj( ) − λφ r( ). (5)
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The abovementioned equation is similar to Poisson equation
for an external point charge in the plasma. Hereafter, we
proceed with the result in two dimensions (Liebchen and
Löwen, 2019).

φ r( ) � α0 ∑
j

K0

�
λ

√ |r − rj|( ), (6)

where K0(r) is the modified Bessel function of the second kind
order zero. The chemical force on the i-th cell can be calculated by
using Eq. 3 for the abovementioned potential.

F ri( ) � κα0

�
λ

√ ∑
j≠i

K1

�
λ

√ |ri − rj|( ) ri − rj
|ri − rj|, (7)

where K1(r) represents the modified Bessel function of the second
kind order one.

The evolution equation for the system of interacting cells on
the ECM is obtained by putting the abovementioned result in
Eq. 1.

dri t( )
dt

� μα0
�
λ

√ ∑
j≠i

K1

�
λ

√ |ri − rj|( ) ri − rj
|ri − rj| +

���
2D

√
ηi t( ), (8)

where μ = κ/] is called the cell motility, and it shows the capacity
of cells for motion on the ECM.

Tumor growth is a long-run process compared with the cell
proliferation cycle. Therefore, we should take into account the
birth and death events for cells during the growth process. The
following subprocesses must be considered with Equation 8 to
fully describe the growth process:

C→Γ C + C
C→γ ∅

.{ (9)

Here, Γ and γ are the birth and death rates, respectively. To
have an increasing number of cells in the tumor over time, Γmust
be greater than γ.

2.2 Simulation Procedure
The simulation is an affordable way for finding the solution of
stochastic differential equations. In this regard, we divided the
processing time into the number of time steps. We use the linear
approximation to find the solution at any step, which plays the
role of the initial condition for the equation in the next step. Here,
we use the Euler–Maruyama method (Kloeden and Platen, 1992)
to discretize Eq. 8.

ri t + δt( ) � ri t( ) + μα0

�
λ

√ ∑N
j�1
j≠i

K1

�
λ

√ |ri − rj|( ) ri − rj
|ri − rj| δt

+ �����
2D δt

√
ηi t( ), (10)

where δt is the size of the time step.
A suitable system of units should be used to avoid dealing with

the large or small numbers in simulations. Here, we choose the
cell’s proliferation cycle, τ = 104 s, and diameter of the cell, ℓ =
10 μm, as the unit of time and length, respectively. It is better to

write Eq. 8 in its dimensionless form. By defining the attraction
range, σ � 1/(ℓ �

λ
√ ) and the attraction strength Δ = μα0τ/ℓ

2, we
arrive at the following equation:

ri t + δt( ) � ri t( ) + Δ
σ

∑N
j�1
j≠i

K1
|ri − rj|

σ
( ) ri − rj

|ri − rj| δt +
���
2 δt

√
ηi t( ).

(11)
In the abovementioned equation, we assumeD = 10−2 μm2/s, it

is a good approximation for the diffusion coefficient of cancer
cells (Milo et al., 2009; Franssen et al., 2019).

It is worth noting that in terms of the new time unit, the birth
rate Γ is equal to one, and for the cancer cell death rate, we use the
value γ = 0.1. The tumor growth rate can be controlled by
adjusting the value of γ, but here we intended to study the
tumour growth qualitatively.

The simulation starts by locating a cell at the origin, the cell
will move when a birth event happens. In each time step of the
simulation, we first examine whether each cell dies or not. This
is easily done by comparing a uniform random number
between zero and one with the product of the death rate
and the time step’s size. If a cell dies, we remove it from the
system. In the later stage, we allow the remaining cells to
randomly proliferate in the same way as the previous stage.
The newborn cell is randomly located adjacent to its mother, it
is sufficient to select a uniform random number θ between
zero and 2π . Then, the coordinates of the daughter cell are
xdaughter = xmother + cos(θ) and ydaughter = ymother + sin(θ). In
the third stage, all the cells in the system change their position
according to Eq. 11, one by one. In this stage, we must
compute the chemical force acting on each cell and draw a
random vector from a Gaussian distribution as a random force
exerted on the cell. The simulation may end at early stages due
to the death of all cells. For the statistical results, we take into
account only simulations that have a nonzero number of cells
at the end.

In our simulation, the cells are not point particles and have
finite sizes. To be specific, in two dimensions, they are disced with
a diameter equal to one. In the birth event or changing the cell’s
position, some overlapping may occur. In that case, we should
repeat the procedure again to find a new position without any
overlapping. If this situation does not occur for a cell after a
number of times, e.g., 100, we put its position unchanged in the
system, or we do not accept the birth of a new cell. It is worth
noting that at each step we update the cells one after the other.
Despite the fact, overlapping less than 0.2 of cell size is acceptable
because, in reality, the cells are compressible objects (Drasdo and
Höhme, 2005).

In our simulation, we deal with several parameters, but most of
them are fixed, namely, D = 1, Γ = 1, γ = 0.1, δt = 0.001 and
number of steps is 40,000. In this study, we fix the attraction
range, σ = 1.5. Then, the attraction strength, Δ is the only free
parameter of the problem. For each value of Δ, we run the
simulation 20 times to be ensured that the result is correct and
obtain the statistical error.
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2.3 Network Analysis
The idea of utilizing the network theory for describing the
complex phenomena has been used for many years (da
Fontoura Costa et al., 2011; Estrada, 2011; Barabási, 2016;
Latora, 2017). Recently, it has also appeared as a powerful
tool for studying the granular material and exploring its
underlying physics (Papadopoulos et al., 2018). Granular
material is a system of grains or particles with finite size.
They can interact with each other only if they are in contact.
Friction between the grains and thermal fluctuations determines
their organization in the system. This is similar to the situation
that we have in the system of cancer cells or tumors, and it
allows us to use the network theory with a minor modification in
analyzing the tumor structure.

We can assign a network to each tumor. The center of cells
plays the role of nodes, and they are linked to each other if
respected cells are in contact. It means that their centers’ distances
are less than or equal to one. Figure 1 depicts the part of a tumour
network. The circles are the cells, and dark parts mean
overlapping between the cells which demonstrates
compression of cells. The red circle is an instance node with a
maximum number of neighbors. For the sake of having a real
sight, we depict a tumor and its associated network in a unique
picture, Supplementary Figure S1.

The degree of a node is defined as the number of links it has to
other nodes. In a two-dimensional contact network, the degree
varies between kmin = 1 and kmax = 6. It should be mentioned that
the isolated nodes are not considered as a part of the network.
There is a quantity that could be useful in analyzing the networks,

Pk displays the number of nodes with degree k to the total number
of nodes. It can also be interpreted as the probability of finding a
node with degree k in the network. The behavior of Pk in terms of
k is an important measure as well. It encompasses information
about the structure of the network, and many other quantities are
related to it. As an instance, the average degree is defined as
< k> � ∑kkPk, while it is calculated directly by

< k> � 1
N

∑N
i�1

ki, (12)

where N is the number of nodes and ki is the degree of the i-th
node. It is worth noting that the sum of nodes’ degrees is twice the
number of links, L.

To show the dependence of degree of nodes to their neighbor
degrees, we can define a measure which is called the average
nearest neighbors degree, Knn.

Knn � 1
N

∑
i

1
kI

∑
j∈N i

kj, (13)

where N i represent the set of neighbors of the i-th node. This
measure gives us another piece of information about the structure
of the network.

Transitivity or global clustering coefficient estimates the
closeness of nodes in a contact network as a whole. It is
defined as

T � N△

N∧
, (14)

where N△ is the number of existent triangles and N∧ represents
the number of possible triangles. Three neighboring nodes with
two links is a possible triangle while the existing triangle has
three links.

The clustering coefficient of a node demonstrates howmany of
its neighbors are connected to each other

Ci � 2Li

ki ki − 1( ), (15)

where ki is the degree of the i-th node and Li stands for the
number of links between its neighbors. It is evident that 0 ≤ Ci ≤ 1.
The average of this quantity over the network identifies the local
clustering feature of the network.

<C> � 1
N

∑N
i�1

Ci. (16)

It is a parameter for showing the clustering behavior of the
network beside the transitivity.

A network is connected if every node is reachable from
another node by traversing the links. In the otherwise
network, it is called disconnected and consists of more than
one component. The number of components Nc, their size
distribution p(s), and the largest size component Smax are
important features of a network. The size of a component is
the number of nodes that it has. For computing these quantities,
we use the breadth-first search method (Kozen, 1992; Erickson,
2019).

FIGURE 1 | Part of the network associated with a tumor. The center of
cells are the network nodes. If two cells are in contact, a link is formed between
their centers. The red circle shows an instance cell with maximum number of
neighbors, kmax = 6.
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To find the other properties of networks, we refer the readers
to many textbooks which cover these topics.

3 RESULTS

Solid, liquid, gas, and phase transition, all of these concepts are
defined in the equilibrium thermodynamics where we have an
infinite system that its properties at the macroscopic level do not
change with time. In tumor growth, we deal with a finite system
that continuously is in nonequilibrium condition. However, it is
possible to assign a phase to a tumor by considering only its
spreading feature. A benign tumor is the accumulation of cells
without the ability to spread, like a solid. Although several reasons
exist to describe the malignancy of a tumor, we focus on its
mechanical reason. When a tumor is malignant, the adhesion
between the cells is decreased (Kim et al., 2019), then some groups
of cells may be separated from the tumor and invade the adjacent
tissues in the presence of external chemical stimulation.
Therefore, we can assume that a tumor with many
components can be considered malignant.

The chemical force between the cells is short-range falls
exponentially as the distance between them increases, so for
each configuration of cells, we can approximate the energy of
the system by the number of pairs in contact and neglecting the
contribution of the other pairs. This is why we choose the number
of links or equivalently the average degree as the thermodynamic
energy. The parameter Δ appears as a coefficient in the chemical
force and then in the energy. Thus, its inverse can be considered
as temperature. The changes in the specific heat, i.e. the derivative
of energy with respect to the inverse of Δ determines the nature of
transition as well as the transition point. Abrupt change of
specific heat in the vicinity of a point is the characteristic of a

first-order phase transition, while the existence of a peak in
specific heat shows a phase transition of a second-order type.
Indeed, in the second-order phase transition, the specific heat
must be infinite, but it turns out to be a peak for the finite systems.
Although we talk about gas, liquid, and solid states for a tumor,
these states change among each other by a second-order phase
transition.

In Figure 2, the behavior of the number of nodes is plotted
against the inverse of attraction strength i.e., Δ−1. The attraction
range has a fixed value, σ = 1.5. The number of nodes or the
network size represents the tumor size as well. Three regions are
clearly observed in this plot. In the first region, we do not have any
considerable change in the size of the tumor. It is the closed
packed state or a solid tumor. In the next region, even though the
tumor size grows by increasing the inverse of attraction strength,
this is not a substantial rise. Eventually, we observe a drastic
change in the tumor size in the third region. The snapshot of a
sample tumor is also illustrated for each region. The same
behavior can be seen in the plot of the number of
components. These regions can be interpreted as different
phases for a tumor. To be more accurate, we should find some
quantities, which demonstrate the phases change and also allow
us to estimate the transition point.

While the distance of the cells is more than one, most of the
cells cannot connect to each other in the language of network
theory. Hence, we expect to find more small clusters in the tumor
network. The nodes in these clusters have a small degree as well.
By increasing the attraction strength, the average distance
between the cells decreases and the small clusters stick
together and form the larger size clusters. Consequently, the
number of nodes with a high degree increases in contrary to the
small degree nodes. The quantity P2, illustrates this aggregation
phenomenon. Figure 3 shows the increasing behavior of P2
against the inverse of attraction strength. The inset plot also

FIGURE 2 | Number of nodes against the inverse of attraction strength
(blue circle), and the attraction range has a fixed value, σ = 1.5. The error bars
are the standard deviation of sampling over 20 simulation runs. Three regions
with distinct behaviors are identified by the rectangles. The rectangle
length approximately determines the domain of the phase and its height
shows variation of the tumor size in that domain. The snapshot of a sample
tumor is also illustrated for each region.

FIGURE 3 | Fraction of nodes with degree two P2 (blue circle) against the
inverse of attraction strength, and the attraction range has a fixed value, σ =
1.5. The error bars are the standard deviation of sampling over 20 simulation
runs. The increasing behavior means more average distance between
the cells in tumor. The inset plot displays a derivative of P2 as well. The peak
splits liquid-like and gas-like phases.
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displays the derivative of P2, which has a peak at Δ−1 ~ 0.66. The
existence of peak means that we have two phases on different
sides of the peak. On the left side, P2 rapidly grows while the speed
of growth decreases quickly after the peak. The shape of this curve
reminds us of the behavior of heat capacity against temperature
during phase transition in magnetic nanoparticles (Kapusta et al.,
2018). In the above-explained scenario, the cells or small clusters
are apart from one another. By increasing the attraction strength,
they come to get closer to each other. This is like the condensation
from a gaseous to a liquid phase.

Stiff nodes are those that have the most neighbors. In our case,
their degree is six. P6 demonstrates the fraction of the stiff nodes
in the network. We can observe in Figure 4 that P6 decreases by
increasing the inverse of attraction strength in contrary to P2.
Derivative of P6 has a peak at Δ−1 ~ 0.476. This peak is the
transition point between the two phases. On the left side, we have
a network with more stiff nodes, which demonstrates a solid-like
phase, and near the peak, on the right side, we expect to have a
liquid-like phase.

It is interesting that both the solid–liquid and liquid–gas
transition points are observed in the plot of derivative of
average degree, the inset plot in Figure 5. Indeed the average
degree is a combination of all Pk with different weights,
< k> � ∑kkPk. In this combination, the stiff nodes are
favored. Due to this fact, the transition peak for the
solid–liquid is sharper than the liquid–gas transition peak.

Knn displays the same behavior as the average degree,
Supplementary Figure S2, a sharp peak for the solid–liquid
transition and a wide peak in the liquid–gas transition point.
This means that the network is homogeneous. Every node is
almost connected to the neighboring nodes with the same
characteristic.

If the number of components is greater than one, it means that
some parts of the network are not attached to the main body of
the tumor, i.e., the maximum component, and can move
independently in an external chemical gradient. It may be
interpreted as metastasis. The number of components per
number of nodes ρc � Nc

N has an increasing behavior in terms
of the inverse of attraction strength, Supplementary Figure S3.
Its derivative also shows the same peaks as the average degree.

Transitivity detects the ratio of the existed triangle to a possible
triangle in the network and cannot exactly provide information
about the low-degree nodes. Therefore, this quantity is not able to

FIGURE 4 | Fraction of nodes with degree six P6 (blue circle) against the
inverse of attraction strength, and the attraction range has a fixed value, σ =
1.5. The error bars are the standard deviation of sampling over 20 simulation
runs. The decreasing behavior shows lack of stiffness. The inset plot
displays derivative of P6 as well. The peak splits solid-like and liquid-like
phases.

FIGURE 5 | Average degree (blue circle) against the inverse of attraction
strength, and the attraction range has a fixed value, σ = 1.5. The error bars are
the standard deviation of sampling over 20 simulation runs. Two peaks are
observed at almost the same points which we predict as the solid–liquid
and liquid–gas transitions (see inset plot).

FIGURE 6 | Average of the degree distribution in terms of degree.
Average of the degree distribution is plotted for three values Δ = 2.3, Δ = 2.4,
and Δ = 2.5. The attraction range has a fixed value, σ = 1.5. Every point is
obtained by averaging over 20 simulation values of Pk. The error bars are
eliminated for clarity of the plots.
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identify the liquid–gas transition as is seen in Supplementary
Figure S4.

In derivative of the average degree of transitivity, we observe a
small peak at Δ−1 ~ 0.417. This peak can also be considered as a
phase transition. This is the point that k = 6 becomes the most
probable degree for the nodes, Figure 6. It is similar to change a
multi-crystalline material to a single crystal, the solidity does not
change, but the cells experience a kind of rearrangement. We
average over the distribution function of networks obtained in 20
simulations for each parameter set for plotting this figure.

As mentioned at the beginning of this section, we roughly talk
about the solid, liquid, gas, and phase transition terms. Here, we
just focus on how the tumor cells spread or how close they are to
one another. Hence, it should be emphasized that there is no
latent heat like quantity in such transitions, and the phases are
smoothly changed to each other. In the liquid–gas transition,
some criticalities are observed. For example, the histogram of
component size in the critical region shows a power-law behavior.
It means that the size of the components is varying by several
orders of magnitude. Figure 7 depicts the histogram of the
component size at Δ = 1.5 in the logarithmic scale. The red
dashed line shows a power-law function with exponent −2 and is
plotted for comparison. We can observe this property in an
almost wide range near Δ = 1.5.

The pair distribution function is another example of criticality.
It measures the distribution of distances between pairs of cells in a
tumor.

g r( ) � 1
N ∑

i,j

< δ |rij| − r( )> , (17)

where N is the number of cells in the tumor, rij is used to show
the distance between the i-th and j-th cells, by < .> we mean the
ensemble averaging. We can find a power-law relationship in pair
distribution function for Δ = 1.5 in the interval 60 (μm) to
200 (μm). In contrast, for two other values Δ = 2.0 and

Δ = 1.2, it has exponential-like behavior or distorted power-
law, respectively. Figure 8 demonstrates pair distribution
function for these values.

Another instance of criticality is the radius of gyration, which
is defined as

Rg �
������������
1
N ∑

i

|rc − ri|2
√

, (18)

where rc denotes the center of mass of tumor, rc � 1
N∑iri. The

radius of gyration designates a characteristic length for a tumor.
Figure 9 plots the radius of gyration for the three values of the
attraction strength Δ = 1.2, Δ = 1.5, and Δ = 2. The power-law

FIGURE 7 |Histogram for component size at transition point Δ = 1.5. We
gather data for the component size from 20 simulations. The red dashed line
shows power-law function with the exponent −2.

FIGURE 8 | Pair distribution function against the distance between cells.
The pair distribution function is plotted for three values of the attraction
strength Δ = 1.2, Δ = 1.5, and Δ = 2. For all the three values, the attraction
range is equal to 1.5. The power-law behavior is seen for Δ = 1.5.

FIGURE 9 | Radius of gyration of tumor against time. The radius of
gyration is plotted for three values of the attraction strength Δ = 1.2, Δ = 1.5,
and Δ = 2. For all the three values the attraction range is equal to 1.5. The
power-law behavior is seen for Δ = 1.5 (dashed line).
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relationship for Δ = 1.5 is observed clearly. The tumor seems to
have an unrestricted (exponential-like) growth for Δ = 1.2, while
it is similar to Gompertzian growth for Δ = 2.

Ultrasound, CT scan, andMRI are useful imaging methods for
detecting a tumor in most tissues. They are based on the fact that
points by various stiffness have a different pattern in an image.
We can produce a similar image for our simulation results by
assigning different color to the cells according to their neighbors
in contact. Figure 10 depicts the heat plot of tumors with three
values of the attraction strength Δ = 1.2, Δ = 1.5, and Δ = 2.

It is useful to use a heatmap for visualizing the solidity of
tumors. Figure 11 describes what we talk about different phases
of the tumor. The number of low-degree nodes and high-degree
nodes shows a difference between the phases.

4 DISCUSSION

In this work, we present a simple scenario to explain why a tumor
is benign or malignant. According to this scenario, we consider
the cancerous cells as elastic disks that move randomly in the
ECM, like the diffusion of particles in a viscous fluid medium.We
use the Brownian dynamics to simulate such randommotion. It is
assumed that the shape of cells does not play an important role in
the malignancy of the tumor. It should be noted that this does not
contradict the EMT, which makes a cancer cell change its
morphology and mobility. We can apply this alteration by
changing the value of diffusivity of cells that undergo EMT.
However, we do not incorporate the EMT in our model at this
time, it remains for future work.

In addition to the shape of the cells, our main assumption in
this work is that the cancer cells interact with each other through
the secretion of chemicals. Although this is not a proven fact for
cancer cells, knowing their stemness upholds it. The chemical
interaction of the stem cells and progenitors in wound healing or
the collective motion of nervous progenitor cells in
embryogenesis is the evidence that convinces us to generalize

this idea for the cancer cells. In this regard, we add a chemical
short-range attractive force to the Brownian equation of motion
of cells. This force tries to aggregate the cells contrary to the
diffusion, which makes them spread through the ECM.
Therefore, a competition exists between these two factors and
in accompany with the reproduction and death of cells can
explain the malignancy of a tumor. It is worth mentioning
that the diffusion coefficient depends on the ECM structure
and biomechanical properties. In the simulation, we fixed the
diffusion coefficient value, so all the reported results will change
by varying this parameter.

When diffusion becomes dominant in the system, the cells
spread in the environment like the diffusion of gas molecules. In
this limiting case, the number of components of the tumor is
comparable with the number of cells. By increasing the attraction
strength, the cells get closer together on average, and small-sized
clusters are made in different parts of the system. If we do not
consider the reproduction and death processes, the system
undergoes an isotropic collapse, the small clusters attract each
other to form the larger size clusters, and at any time, we would
almost have a round tumor. But the existence of birth and death
for cells modify this picture. Due to the death of a cell, a cluster
may break into two or more parts. On the other hand, the birth of
a new cell may lead some clusters to aggregate. In a range of
attraction strengths, such as death and birth events, are
important and result in having components of various sizes.
Near Δ = 1.5, we have a region in which distribution of
component size has power-law behavior. In this region tumor
has a fractal shape, it can be confirmed by measuring the ratio of
perimeter to the area of the tumor that gets very large. By passing
through this region, the chemical force becomes dominants
gradually, and the system has large size components that the
death event could hardly break them up. The larger size
components swallow the small clusters and form the
overcoming clusters. The number of connection in a cluster is
increased as well and the tumor becomes liquid. After that, this
process continues, and the shape of the tumor is rounder than

FIGURE 10 | Heat plot of nodes’ degree for three different tumor networks. The attraction strength for tumors are Δ = 1.5, Δ = 1.9, and Δ = 2.5 from left to right
respectively. The attraction range for all of them are the same, σ = 1.5.
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before. The degree distribution becomes more skewed to high
degrees, and more than half of the nodes have degrees equal or
greater than five, i.e., kmed = 5. This is the evidence of the solidity
of the tumor. By increasing the attraction strength more and
more, the system transforms to a phase with the most stiffness,
and almost all the nodes connect to a maximum number of
neighbors like a single crystal.

Again, we state that using the thermodynamics terminology is
just for a description of the proximity of cells to each other and

how they can spread. There is not any one-to-one similarity
between the tumor and matter phases. For example, the
liquid–gas transition of tumors seems to be a second-order
phase transition, while it is a first-order for the real matter.

Finally, we should note that this is just a simple model for a
description of different phases of tumors and how a metastatic
event may occur. To be more realistic, the polarity of epithelial
cells and EMT must be taken into account. This is one of the
directions of our future work.

FIGURE 11 | The heat plot for five tumors. We made difference between nodes according to their degrees in order to distinguish solidity of tumors.
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