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Abstract

An unbiased, widely accepted estimate of the rate of occurrence of new cases of autism

over time would facilitate progress in understanding the causes of autism. The same may

also apply to other disorders. While incidence is a widely used measure of occurrence, birth

prevalence—the proportion of each birth year cohort with the disorder—is the appropriate

measure for disorders and diseases of early childhood. Studies of autism epidemiology

commonly speculate that estimates showing strong increases in rate of autism cases result

from an increase in diagnosis rates rather than a true increase in cases. Unfortunately, cur-

rent methods are not sufficient to provide a definitive resolution to this controversy. Promi-

nent experts have written that it is virtually impossible to solve. This paper presents a novel

method, time-to-event birth prevalence estimation (TTEPE), to provide accurate estimates

of birth prevalence properly adjusted for changing diagnostic factors. It addresses the short-

comings of prior methods. TTEPE is based on well-known time-to-event (survival) analysis

techniques. A discrete survival process models the rates of incident diagnoses by birth year

and age. Diagnostic factors drive the probability of diagnosis as a function of the year of

diagnosis. TTEPE models changes in diagnostic criteria, which can modify the effective

birth prevalence when new criteria take effect. TTEPE incorporates the development of

diagnosable symptoms with age. General-purpose optimization software estimates all

parameters, forming a non-linear regression. The paper specifies all assumptions underly-

ing the analysis and explores potential deviations from assumptions and optional additional

analyses. A simulation study shows that TTEPE produces accurate parameter estimates,

including trends in both birth prevalence and the probability of diagnosis in the presence of

sampling effects from finite populations. TTEPE provides high power to resolve small differ-

ences in parameter values by utilizing all available data points.

Introduction

An unbiased, widely accepted estimate of the rate of occurrence of new cases of autism over

time would facilitate progress in understanding what causes autism. It would also help answer
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other important questions, such as projecting future adult caseloads based on cases already

born. Epidemiology relies on the rate of occurrence of new cases (occurrence rate) to investi-

gate the risks and causes of any disorder or disease [1, 2]. However, studies of autism epidemi-

ology commonly speculate that estimates showing strong increases in the occurrence of autism

are the result of an increase in rates of diagnosis rather than a true increase in cases [3–19].

Current methods are not sufficient to provide a definitive resolution to this controversy, as the

Background and Literature Review section explains. Prominent experts have written that it is

virtually impossible to solve [20].

This paper presents a novel analytical method called time-to-event birth prevalence estima-

tion (TTEPE) to estimate birth prevalence trends. It quantifies the occurrence rate while avoid-

ing the biases and ambiguity of existing methods. This paper focuses on autism, but the

method may also benefit various diseases, disorders, and conditions.

There are multiple specific measures of the occurrence rate. Birth prevalence is the pre-

ferred measure for birth defects, congenital diseases, and disorders—including autism—where

the times of occurrence events are not observable because occurrence is before or shortly after

birth [2, 21–25]. Birth prevalence is also known as birth year prevalence and birth year cohort

prevalence. Birth prevalence is the proportion of a birth year cohort that has the disorder. A

birth year cohort is the set of all individuals born in a given year. While conventional estimates

of birth prevalence are based on counting diagnoses, the definition of birth prevalence does

not depend on when each case was diagnosed or whether each case was ever diagnosed. Inci-

dence is based on the times of occurrence of new cases and is a measure commonly used to

describe the occurrence rate [1, 2]. The incidence of diagnoses (i.e., the rate of occurrence of

new diagnoses) is different from the incidence of cases. The difference between incident (new)

diagnoses and incident (new) cases is fundamental when considering the hypothesis that

increasing rates of diagnosis reflect improved ascertainment of cases rather than an increasing

case occurrence rate.

There are currently very few studies that estimate the birth prevalence of autism, and there

is no generally accepted estimate of this measure [3–16]. Numerous papers instead examine

autism prevalence, which is a measure of the total number of cases at a specific time, not the

occurrence rate. Prevalence is rarely useful in studying etiology [2, 13, 14]. Estimates of both

prevalence and birth prevalence of autism remain controversial, with no known method of res-

olution. The next section provides essential details.

While the term “birth prevalence” contains the word “prevalence,” its meaning differs from

the standalone term. “Prevalence” on its own is not specific to birth year and is specific to

time. Comparison of prevalence estimates across multiple studies is generally not suitable for

understanding trends in incidence or birth prevalence [2]. Different prevalence estimates may

use different case definitions, case-finding procedures, and ranges of ages, among other possi-

ble differences between prevalence studies [13]. Cumulative incidence is the sum of events,

such as incident diagnoses, as proportions of the cohort, from birth to a specified age. Cumula-

tive incidence of diagnoses approximates birth prevalence, but the result can be biased [1, 26–

28, S1 Text].

Diagnostic factors are factors that affect the probability of diagnosing cases. Probability of

diagnosis is the probability of diagnosing individual cases with the disorder who are exhibiting

diagnosable symptoms. This probability may vary with time. When the probability of diagno-

sis increases, a greater proportion of cases are diagnosed; that is, there is increased ascertain-

ment of cases. Diagnostic factors include, among others: awareness, outreach efforts,

screening, diagnostic practice, diagnostic substitution or accretion, availability of evaluations,

diagnostic criteria, social factors, policies, and financial incentives for diagnosis. The Method

section below shows that the probability of diagnosis is a function of the set of all diagnostic
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factors. Diagnostic criteria specify the set of symptoms that qualify an individual for a diagno-

sis [29, 30] and can affect the effective birth prevalence of each birth cohort. Formal diagnostic

criteria change at specific dates when new criteria take effect.

The TTEPE method is specifically designed to produce valid, accurate estimates of birth

prevalence properly separated from the effects of diagnostic factors and diagnostic criteria. A

suitable method to establish birth prevalence should:

• estimate birth prevalence over a broad range of birth years;

• adjust for the effect of the set of all diagnostic factors;

• adjust for changes in diagnostic criteria; and

• disentangle birth prevalence, diagnostic factors, and diagnostic criteria such that the adjust-

ments do not introduce significant bias or uncertainty in the estimates.

The following sections give a concise review of relevant studies followed by the presentation

of TTEPE. TTEPE extends established time-to-event or survival analysis to model the effects of

diagnostic factors and diagnostic criteria on rates of incident diagnoses by age and year of

diagnosis. It estimates birth prevalence over multiple cohorts. The method presentation

depicts the assumed causal paths, derives the model’s formulas, lists the assumptions underly-

ing the analysis, discusses potential violations of the assumptions, and presents validation of

the method via simulation, followed by a discussion.

Background and literature review

Broad-based literature reviews by Elsabbagh [14] and Fombonne [13] confirmed rises in

reported autism prevalence over time. However, both stated that what matters is the number

of new cases over time (i.e., the occurrence rate) and that rising prevalence does not necessarily

imply an increase in the rate of new cases, consistent with textbooks [1, 2].

A few papers provide estimates of autism birth prevalence over time, in some cases using

different names. A series of reports from the US Centers for Disease Control and Prevention’s

(CDC) Autism and Developmental Disabilities Monitoring Network (ADDM) [3–11] estimate

what they call the prevalence of autism among children who were eight years old at each even-

numbered year 2000 through 2016. These are actually birth prevalence estimates, but the

reports describe the findings as simply “prevalence” with no mention of birth prevalence. The

ADDM reports show a strong trend in birth prevalence by birth year and speculate that the

observed increase may result from various factors other than a true increase [3–11]. Meyers

[12] used a records-based review, largely similar to the ADDM approach, as well as counting

community diagnoses. The authors found a sharp increase in cumulative incidence by birth

year, approximating birth prevalence, and suggested that the increase may result from factors

such as increasing awareness or broadening diagnostic criteria rather than a true increase [12].

Hansen [26] is a methods paper that recommends using the cumulative incidence of diagnoses

of childhood psychiatric disorders for each birth cohort as a measure of risk when risk may

vary by birth year. They found a strongly increasing cumulative incidence of autism by birth

year cohort but made scant mention of it. Sasayama [16] found an increasing cumulative inci-

dence of autism to age five by birth year and suggested it may have been caused by increasing

awareness. None of these papers suggest methods to quantify or adjust for the effects of diag-

nostic factors or diagnostic criteria [3–16, 20, 21, 26].

Supplementary file [S1 Text] shows that while one can use cumulative incidence to estimate

the birth prevalence trend, the result is potentially ambiguous. It is possible to explain a trend
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in cumulative incidence by birth year due to any of a wide range of combinations of the trends

in birth prevalence and diagnostic factors; see also MacInnis [27].

Croen [31] examined birth prevalence trends in autism and mental retardation in Califor-

nia over birth years 1987 to 1994. The authors concluded that the data and methods available

were insufficient to determine how much of the observed increase reflected a true increase in

birth prevalence. Nevison [32] presented California Department of Developmental Services

data showing a sharp rise in the birth prevalence of autism over several decades. They discuss

various non-causal hypotheses that others have suggested to explain the observed trend but

did not discuss methods to quantify or adjust for the hypothesized factors.

Various papers have tried to adjust or control for diagnostic factors or diagnostic criteria to

estimate case trends using one of two closely related methods. One approach adjusts for vari-

ables representing the effects of diagnostic factors, diagnostic criteria or both when estimating

time trends in case rates. The other is age-period-cohort analysis, which typically uses regres-

sion with a linear predictor containing terms for age (at diagnosis), period (year of diagnosis),

and cohort (birth year). Neither method is suitable; both methods either introduce bias or pro-

duce unreliable results, as explained here. Campbell [15] and McKenzie [33] both point out

that various factors could potentially affect the rate of diagnoses without affecting the true case

rate. Elsabbagh, Campbell, and Baxter [14, 15, 34] suggest controlling for changes in diagnostic

factors or diagnostic criteria to enable the comparison of prevalence estimates to estimate time

trends. Elsabbagh [14] wrote: “Time trends in rates can therefore only be gauged in investiga-

tions that hold these parameters under strict control over time,” referring to case definition

(diagnostic criteria) and case ascertainment (probability of diagnosis). However, none of the

papers we have found proposes a method that avoids introducing bias while controlling for the

indicated parameters. All three variables—the probability of diagnosis, diagnostic criteria, and

birth prevalence—are functions of time, so none of them remain constant when any of them

changes, creating a fundamental problem with attempting to control for any of these variables.

Baxter [34] adjusted for dichotomous variables representing the most recent diagnostic crite-

ria, each of which took effect at a specific date, assuming that these variables introduced bias.

However, such adjustment is problematic, and itself introduces bias. Schisterman [35] shows

that controlling for variables on a causal path from the input (time, in this case) to the outcome

(prevalence or incident diagnoses) constitutes inappropriate adjustment and biases the esti-

mate of the primary effect (i.e., of time on the outcome) towards zero. Similarly, Rothman [2]

states that controlling for intermediate variables typically causes a bias towards finding no

effect.

Other papers used age-period-cohort analysis to attempt to separate the effects of diagnostic

factors from either birth prevalence trends or changes in prevalence. Examples include Keyes

[17], King [18], and MacInnis [27]. However, this approach cannot produce valid estimates

except in very special circumstances [27, 36, 37, S1 Text]. The root of the problem is the exact

collinearity (i.e., cohort + age = period) which violates a basic assumption of regression and

causes the model to be unidentified. That is, there is an infinite number of parameter set values

such that estimation could produce any arbitrary one of them [38]. One can constrain the anal-

ysis to make the model identified; however, the constraint imposes an a priori assumption on

the solution [27, 36, 37, S1 Text]. Keyes [17] used the constraint approach, and Spiers [39]

pointed out that the method used could as easily have reached the opposite conclusion. King

[18] assumed that period effects are dominant and controlled for birth year, forming a con-

strained age-period-cohort analysis. Analysis that implicitly assumes little to no trend in birth

prevalence causes the estimate to fit the assumption [27, 37]. Analyses that omit one or two of

the age, period, and cohort variables implicitly assume that the coefficients of the omitted vari-

ables are equal to zero, which might not be valid. That approach does not solve the problems
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of age-period-cohort analysis [36, 37, S1 Text]. It is not suitable to estimate the age trend

directly from the data because such estimates make implicit assumptions about either the

period or cohort trends and result in conclusions that follow the assumptions [27].

We did not find any papers that use survival or time-to-event analysis in ways that are

directly relevant to this paper. The Discussion section gives details.

This paper follows advice from Schisterman [35], who recommends “clearly stating a causal

question to be addressed, depicting the possible data generating mechanisms using causal dia-

grams, and measuring indicated confounders.”

Method of time-to-event birth prevalence estimation (TTEPE)

Description of the method

TTEPE estimates birth prevalence over a range of birth years, properly adjusted for the effects

of diagnostic factors and changes in diagnostic criteria, in a way that solves the problems of

previous methods. TTEPE input data provides either the ages or years of initial diagnoses; this

information exists in some datasets [12, 16, 19, 28, 40–43]. One key element is recognizing that

the probability of diagnosis at the year of each initial diagnosis (diagnostic year) represents the

effect expressed in the data of the set of all diagnostic factors, as shown in the next section and

introduced in [27]. The problem is then one of separating the effects of birth year and diagnos-

tic year, called cohort and period, respectively, in age-period-cohort analysis. Age-period-

cohort analysis inherently involves age (at diagnosis), and we must properly account for the

effect of age without using a linear predictor in age, period, and cohort. Therefore, another

fundamental element of TTEPE is modeling the distribution of initial diagnoses with age—the

age distribution—as a separate, non-linear process. The age distribution may differ between

birth cohorts. The age distribution may ramp up from age zero to a peak at some age and fall

approximately exponentially with further increasing age. TTEPE models the rising distribution

from age zero as cases developing diagnosable symptoms with age, called eligibility. It models

the falling distribution of initial diagnoses with age using a survival process defined below.

TTEPE incorporates variables that model the effect of changes in diagnostic criteria. Optimiza-

tion software finds the parameter values that result in the model best fitting the observed data,

thereby estimating birth prevalence and the other variables of interest. This paper explains all

of these in detail.

In TTEPE’s survival process, “survival” refers to cases that have not yet been diagnosed. In

each cohort, there is some unknown proportion that are cases—the birth prevalence. As the

cases develop diagnosable symptoms—become eligible—they join the pool of cases at risk of

initial diagnosis, called the risk set. The size of the risk set as a proportion of the cohort is called

R. At each age, some portion of the cohort’s cases become eligible, thereby increasing R, and

some portion of the risk set is diagnosed, reducing R. At each age, R multiplied by the proba-

bility of diagnosis gives the proportion of the cohort receiving an initial diagnosis. The reduc-

tion of R due to these diagnoses results in fewer cases being diagnosed at the next age. Thus,

this process inherently produces a falling number of diagnoses with increasing age once most

or all cases are old enough to be eligible.

The birth prevalence BP of each cohort determines the magnitude, not the shape, of the age

distribution. The shape of the age distribution at each cohort is determined by the probability

of diagnosis PD and eligibility EA, which is a function of age. Greater values of PD cause a

greater proportion of the risk set to be diagnosed at each age, leaving a smaller proportion of

cases at risk at the next age. Eligibility EA is the proportion of cases exhibiting diagnosable

symptoms at age A. Few, or no cases may be eligible at birth, and cases may develop diagnos-

able symptoms with increasing age, thereby increasing EA up to a maximum value of 1. If the
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disorder’s definition requires that all cases exhibit diagnosable symptoms by a certain age,

then EA becomes equal to 1 at that age.

Fig 1 illustrates an example of the survival process that models the age distribution. It shows

two scenarios with different values of the probability of diagnosis: PD = 0.1 and PD = 0.25. In

this example, birth prevalence BP is 0.01 (1%) in both scenarios and eligibility EA increases

from 0 at age 0 to 1 at age 3. The model produces predicted values of the proportion D of the

cohort receiving initial diagnoses at each age, corresponding to the input data. The figure

shows the survival function S, which is the proportion of the cohort consisting of undiagnosed

cases at each age, regardless of their eligibility, unlike R, which incorporates eligibility. S>R at

ages where some cases are not yet eligible (EA< 1) and S = R at ages where all cases are eligible

(EA = 1). Cases not yet eligible are surviving (not yet diagnosed), but they are not yet in the

risk set. For clarity, the figure shows S rather than EA and R. The shape of R (not shown) tracks

the shape of D, which is determined by PD and EA, however, R is at a different scale. Cumula-

tive incidence CI shows how many cases have been diagnosed by each age. Note that greater

values of PD result in both a left shift of the curve of initial diagnoses towards younger ages

and a greater cumulative incidence at the end of follow-up, which in this example is age 10.

While generally, PD varies as a function of diagnostic year, this example uses constant values

of PD for clarity.

Later sections explain details of the method, including eligibility and the effect of changes

in diagnostic criteria.

TTEPE is particularly applicable to disorders where case status is either present or predeter-

mined by birth or a known age. Diagnosable symptoms may be present by some consistent

age, or cases may develop diagnosable symptoms gradually over a range of ages, depending on

the disorder.

Fig 1. Example of a survival process for two values of probability of diagnosis PD. The green lines S denote survival,

the blue lines D denote the rate of diagnoses, and the red lines CI denote cumulative incidence. The solid lines represent

PD = 0.1, and the dashed lines represent PD = 0.25.

https://doi.org/10.1371/journal.pone.0260738.g001
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Method details

Input data comprises rates of initial diagnoses D by age or diagnostic year for each birth year

cohort. Since birth year + age = diagnostic year, these variables are interchangeable, subject to

truncation or rounding. The rate is the count of initial diagnoses divided by the cohort’s popu-

lation at the respective diagnostic year or age.

TTEPE models the rate of initial diagnoses as a function of birth year, diagnostic year, and

age. D(BY, DY, A) = fmodel(BPBY, PDDY, CFDY, EA) where D is the proportion of the birth

cohort that receives a diagnosis, BY is birth year, DY is diagnostic year, A is age, BP is birth

prevalence, PD is the probability of diagnosis, CF is the criteria factor, and E is eligibility. The

non-linear function fModel is specified below. Importantly, BPBY comprises all cases in cohort

BY regardless of when or whether they have been diagnosed. The probability of diagnosis

PDDY is the probability of diagnosing eligible, undiagnosed cases. PDDY is the effect of the set

of all diagnostic factors on the data, as explained below. The criteria factor CFDY modifies the

proportion of each cohort that qualifies as cases according to each new criteria set that takes

effect at diagnostic year DY. CF = 1 for the criteria in effect at the first DY. Eligibility EA is the

proportion of cases that have developed diagnosable symptoms at age A. The following text

and causal directed acyclic graph (DAG) in Fig 2 explain and illustrate the paths from BY, DY
and A to new diagnoses, the model outcome. The model can either specify or estimate the eli-

gibility function EA.

Diagnostic factors are those that affect the diagnosis of eligible cases. Any factor that affects

the probability of diagnosis is a diagnostic factor; the introduction lists examples. PD is equiva-

lent to the hazard h in discrete time-to-event or survival analysis. For each case of the disorder,

the information resulting from PDDY consists of the time (diagnostic year) of initial diagnosis.

PDDY has no effect on the data before diagnosing each case, none after the initial diagnosis

since TTEPE considers only initial diagnoses, and none if the case is not diagnosed by the end

of follow-up. Hence, PDDY is the effect of the set of diagnostic factors on the model outcome

and is a function of diagnostic year.

The directed acyclic graph (DAG) in Fig 2 illustrates the causal paths from birth year BY,

diagnostic year DY, and age A to initial diagnosis D. Birth year is the independent variable in

birth prevalence BP. Birth year BY drives variable etiologic (causal) factors, which produce the

disorder. Eligibility E represents the development of diagnosable symptoms with age. Diagnos-

tic criteria determine whether each individual’s symptoms qualify them as a case. Changes in

diagnostic criteria at specific years can change the proportion of the cohort classified as cases,

Fig 2. Directed Acyclic Graph (DAG) showing the effects of birth year, diagnostic year and age on rates of

diagnoses.

https://doi.org/10.1371/journal.pone.0260738.g002
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i.e., the effective birth prevalence, by modifying the threshold of symptoms that qualify case

status. This effect is represented by the criteria factor CF, which is a function of diagnostic year

DY. Symptoms combined with diagnostic criteria form diagnosable case status. DY is the inde-

pendent variable in the effects of diagnostic factors, which manifest as the probability of diag-

nosis PD. Diagnosable case status and probability of diagnosis operate jointly to produce each

initial diagnosis.

TTEPE time-to-event analysis model

TTEPE is based on the DAG of Fig 2 and the survival process described above. For each birth

cohort, undiagnosed eligible cases form the risk set, the size of which is denoted R. BP is the

proportion of the cohort that consists of cases, which is unknown and is the primary target of

estimation, in contrast to known prior uses of survival analysis. R is a function of BP, eligibility

E, and the survival process. A later section describes using the effective birth prevalence EBP
instead of BP to incorporate the criteria factor CF.

A portion of the risk set is diagnosed at each age A according to the probability of diagnosis

PD. The value of PD at each age, or equivalently each diagnostic year, for each cohort, is the

number of newly diagnosed cases divided by R. This formulation applies because TTEPE uses

a discrete-time model; see Kalbfleisch [44]. At each age, newly eligible cases are added to the

risk set, and newly diagnosed cases are removed from the risk set. For any given value of PD,

as R decreases or increases, the population proportion of initial diagnoses D changes accord-

ingly. This process generates the age distribution of diagnoses.

Let DBY,A be the population-based rate of incident (first) diagnoses. The model generates

predicted values dDBY;A . Modeling proportions rather than counts accommodates changes in

each cohort’s population size over time, e.g., due to in- and out-migration and deaths. Alterna-

tively, the analysis could model counts directly.

Let PDDY be the probability of diagnosis at diagnostic year DY. PDDY is equivalent to

PDBY,A because DY = BY + A, subject to truncation or rounding. Let BPBY be the birth preva-

lence of cohort BY, i.e., the proportion of the cohort consisting of cases regardless of how

many have been diagnosed. BPBY does not depend on eligibility. Let RBY,A be the discrete risk

set, which is the proportion of birth year cohort BY consisting of eligible cases at risk of initial

diagnosis at age A. Let EA be the discrete eligibility function, the proportion of cases that are

eligible at age A, bounded by 0� E� 1. At each age A� 1, BP × (EA − EA-1) is the incremental

portion of BP added to R due to increases in eligibility. For simplicity, assume EA increases

monotonically (non-decreasing), meaning that cases do not lose eligibility before diagnosis. At

each age A for each cohort BY, the rate of incident diagnoses DBY,A = RBY,A × PDDY from the

definition of PD above. We write PDDY as PDBY,A to specify the model in terms of BY, noting

that DY = BY + A, subject to truncation or rounding. Kalbfleisch [44] gives background on

general time-to-event theory and equations.

Derivation of formulas. First, consider the simplest scenario, where all cases are eligible

for diagnosis from birth (constant EA = 1 for all values of A), and the diagnostic criteria do not

change the effective birth prevalence over the interval of interest. In the second scenario, EA

increases monotonically, and in the third scenario, EA increases until it plateaus at EA = 1 for

A� AE, where AE is the age of complete eligibility. A later section adds the effect of changes

in diagnostic criteria.

Constant EA = 1. For A� 1, EA − EA-1 = 0. For the first year of age, A = 0, the risk set RBY,0

= BPBYE0 = BPBY and DBY,0 = RBY,0PDBY,0 = BPBYPDBY,0. In other words, at age 0, all cases are

eligible and in the risk set, and the proportion of the cohort (not the proportion of cases) that

is diagnosed is the birth prevalence BP times the probability of diagnosis PD at age 0.
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For A = 1, RBY,1 = BPBY − DBY,0 = BPBY −BPBYPDBY,0 = BPBY (1 − PDBY,0) and DBY,1 =

RBY,1PDBY,1 = BPBY (1 − PDBY,0)PDBY,1.

That is, the size of the risk set decreases from age 0 to age 1 by the proportion of the cohort

diagnosed at age 0. The proportion of the cohort diagnosed at age 1 is the size of the risk set at

age 1 times the probability of diagnosis at age 1.

For A = 2, RBY,2 = RBY,1 = DBY,1 = BPBY (1 − PDBY,0) − BPBY (1 − PDBY,0)PDBY,1 = BPBY (1 −
PDBY,0)(1 − PDBY,1) and DBY,2 = RBY,2 = RBY,2PDBY,2 = BPBY (1 − PDBY,0)(1 − PDBY,1)PDBY,2.

Similarly for A = 3, RBY,3 BPBY (1 − PDBY,0)(1 − PDBY,1)(1 − PDBY,2) and DBY,3 = BPBY (1 −
PDBY,0)(1 − PDBY,1)(1 − PDBY,2)PDBY,3.

Combine these expressions and generalize to, for A� 1,

RBY;A ¼ BPBY

YA� 1

a¼0

ð1 � PDBY;aÞ

and

DBY;A ¼ BPBY

YA� 1

a¼0

1 � PDBY;a

� �
PDBY;A ð1Þ

In all three scenarios in this section, the survival function is:

SBY;A ¼ BPBY �
XA� 1

a¼0

DBY;a ð2Þ

SBY,A is the portion of BPBY that has not been diagnosed by age A. As noted above, S differs

from R because of eligibility. The summation term is the cumulative incidence of initial diag-

noses through age A − 1.

Increasing EA. In this scenario, E0 < 1 and EA increases monotonically with A. For A = 0,

RBY,0 = E0BPBY and DBY,0 = E0BPBYPDBY,0. For each A� 1, RBY,A = RBY,A−1 − DBY,A−1 + (EA −
EA−1)BPBY. The last term represents the increase in RBY,A due to the incremental increase of

EA. Then,

DBY;A ¼ RBY;APDBY;A ¼ RBY;A� 1 � DBY;A� 1

� �
PDBY;A þ EA � EA� 1ð ÞBPBYPDBY;A ð3Þ

Eq (3) serves as a procedural definition for software implementing fModel where EA may

increase from A = 0 to the maximum age of follow-up A = M. EM should be set to 1 to avoid

creating an unidentified model. Equivalent expressions for RBY,A and DBY,A similar to Eq (1)

follow, where each expression in the summations describes the portion of BPBY that becomes

eligible at each age according to incremental increases in EA. For A� 1,

RBY;A ¼
XA� 1

a¼0

ðEa � Ea� 1ÞBPBY

YA� 1

b¼a

ð1 � PDBY;bÞ

DBY;A ¼
XA� 1

a¼0

Ea � Ea� 1ð ÞBPBY

YA� 1

b¼a

1 � PDBY;b

� �
PDBY;A ð4Þ

where E−1 is defined to be 0. EA can be defined parametrically or non-parametrically.

Plateau EA. In this scenario, EA increases with age from E0 < 1 and plateaus at EA = 1 for

A� AE, AE<M, and M is the maximum age of follow-up. External information, such as the

disorder’s definition, may indicate the value of AE, or investigators may specify AE based on

estimates of EA found using Eqs (3) or (4). For A� AE, Eq (3) applies as does the formula for
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RBY,A preceding it. For A> AE, (EA − EA-1) = 0, and

DBY;A ¼ RBY;APDBY;A ¼ RBY;A� 1 � DBY;A� 1

� �
PDBY;A ð5Þ

Alternatively, combine Eq (2) with the fact that EAE = 1 to obtain

RAE ¼ SAE ¼ BPBY �
PAE� 1

a¼0
DBY;a. Then,

DBY;AE ¼ RBY;AEPDBY;AE ¼ SBY;AEPDBY;AE ¼ ðBPBY �
XAE� 1

a¼0

DBY;aÞPDBY;AE ð6Þ

And for A> AE,

RBY;A ¼ SBY;A ¼ RBY;AE

YA� 1

a¼AE

ð1 � PDBY;aÞ

DBY;A ¼ RBY;AE

YA� 1

a¼AE

1 � PDBY;a

� �
PDBY;A ð7Þ

The form in Eqs (6) and (7) uses empirical values of DBY,A for A< AE rather than modeling

DBY,A from BPBY, EA and PDBY,A using Eq (3). Eqs (6) and (5) serve as procedural definitions

in models that assume AE and do not estimate EA, while Eqs (3) and (5) serve as procedural

definitions in models that do estimate EA.

The scenario of increasing EA is a general formulation. The scenario of plateauing EA may

be appropriate when investigators have reason to specify AE. For example, for disorders where

diagnosable symptoms are present by age three by definition, the plateau EA scenario applies,

and the age of complete eligibility AE = 3.

Birth prevalence, cumulative incidence and censoring. The birth prevalence BP of each

cohort BY is equivalent to the sum of the cumulative incidence of diagnoses through the last

age of follow-up plus the portion of cases that were not diagnosed by the end of follow-up, i.e.,

the right-censored portion.

In all three scenarios above of EA, we can express BP as a function of the survival function

SA and the cumulative incidence CIA-1 for A> 0, by rearranging Eq (2) as BP = SA + CIA−1.

Assuming eligibility EM = 1 at the last age of follow-up M, then SM = RM. Then, BP = RM +

CIM−1 and DM = RMPDM. The censored proportion is SM+1 = SM − DM, which is equivalent to

SM+1 = RM − RMPDM = RM(1 − PDM). After estimating the model parameters, the estimated

censored proportion—the proportion of the cohort consisting of cases that have not been diag-

nosed by the last age of follow-up M—is dSMþ1 ¼
cRMð1 �

dPDMÞ.
cRM is an internal variable in

the model. Diagnoses are counted from birth, so there is no left censoring.

Assumptions

The TTEPE method relies on several baseline assumptions. If some assumptions are not met,

there could be bias in estimation results. Investigators can accommodate deviations from

assumptions in many cases, as discussed in a later section. The TTEPE method does not

assume any particular relationship between parameter values, nor does it require assuming

the values of any explicit or implicit variables. The TTEPE method’s baseline assumptions

are:

1. The eligibility function EA is consistent across cohorts.
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2. The probability of diagnosis PD applies equally to all eligible undiagnosed cases at any

given diagnostic year.

3. The birth prevalence within each cohort under consistent diagnostic criteria is constant

over the range of ages included in the analysis.

4. Data represent truly initial diagnoses.

5. Case status is binary according to the applicable diagnostic criteria.

6. The discrete-time interval (e.g., one year) is small enough that the error introduced by treat-

ing the variable values as constant within each interval is negligible.

7. There are no false positives in the dataset.

8. Any difference in competing risks between cases and non-cases in the range of ages ana-

lyzed is small enough to be ignored. Competing risk is a term of art in survival analysis. An

example competing risk is death before initial diagnosis.

The assumption of a consistent eligibility function means that cases develop diagnosable

symptoms as a function of age, and that function is the same for all cohorts. In other words,

the value of EA at age A is the same for all cohorts BY, while EA varies with A. The section

Changes in criteria affecting birth prevalence discusses a separate effect that might make the

eligibility function appear to be inconsistent even if it is not. A later section explores potential

violations of assumptions.

Estimating parameters

TTEPE performs a non-linear regression that estimates the parameters of the model of DBY,A

using general-purpose non-linear optimization software. The model is based on one or more

of Eqs (3), (5) and (6) selected based on the eligibility scenario. The model produces estimated

values of dDBY;A from the parameters and independent variables, and the software finds the

parameter values that minimize a cost function costðD; bDÞ. One suitable implementation of

optimization software in the Python language is the curve_fit() function in the SciPy package

(scipy.optimize.curve_fit in SciPy v1.7). Its default cost function is ðD � bDÞ2, so it minimizes

the sum of squared errors. Python software to perform this regression and the simulations

described below is available at OSF [45].

Investigators should choose which model equation to use based on knowledge or estimates

of the eligibility function EA. Non-parametric estimatescEA can inform a choice of a parametric

form of EA. If EA = 1 for all A� AE, that fact and the value of AE should be apparent from esti-

matescEA , and the plateau EA scenario applies.

Investigators should choose forms of BPBY and PDBY,A appropriate to the dataset. Linear,

first-order exponential, second-order exponential or non-parametric models may be appropri-

ate. Graphical and numeric model fit combined with degrees of freedom can guide the opti-

mum choice of a well-fitting parsimonious model.

If the population proportion of cases represented in the data is unknown for all cohorts,

then absolute birth prevalence, or the intercept, may be underestimated by an unknown scale

factor. Proportional changes in birth prevalence between cohorts are unaffected by underesti-

mation of the intercept. Changes over time in the proportion of cases included in the sample

reflect changing diagnostic factors, and the parameter estimates of PD automatically represent

such changes. If the proportion of cases represented in the data is known for at least one

cohort, one can use that knowledge to determine the intercept.
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Changes in diagnostic criteria affecting birth prevalence

Changes in criteria may change the effective birth prevalence EBP within a cohort, without

affecting symptoms or etiology, by including or excluding as cases some portion of the cohort

population compared to prior criteria. This mechanism is distinct from a changing probability

of diagnosis. A criteria change that changes the effective birth prevalence affects the entirety of

any birth cohort where the birth year is greater than or equal to the year the change took effect.

For birth years before the year of criteria change, a change in criteria affects EBP and the size

of the risk set R starting at the diagnostic year the change took effect. Generally, diagnostic cri-

teria should be given in published documents specifying the effective dates of new or revised

criteria.

Let {CFcy} be the set of criteria factors that induce a multiplicative effect on EBP due to cri-

teria changes that occurred at criteria years {cy}. CF0, the value in effect before the first DY,

equals 1. BPBY is the birth prevalence of cohort BY before the effect of any criteria changes. For

each cohort BY, EBPBY,A at age A is

EBPBY;A ¼ BPBY

Q
cy� BYþAð Þ

CFcy ð8Þ

The combination of BPBY and the effects of all {CFcy|cy� BY + A} determines the EBP at

age A of cohort BY.

For a given BY and increasing A, BY + A crossing any criteria year cy causes a step-change

in EBP. Using a general formulation supporting increasing eligibility EA based on Eq (3) we

obtain the following. A = 0, RBY,0 = E0EBPBY,0 and DBY,0 = E0EBPBY,0PDBY,0. For A� 1,

RBY;A ¼ RBY;A� 1 � DBY;A� 1 þ EAðEBPBY;A � EBPBY;A� 1Þ þ EA � EA� 1ð ÞEBPBY;A

and

DBY;A ¼ ½RBY;A� 1 � DBY;A� 1 þ EAðEBPBY;A � EBPBY;A� 1Þ þ EA � EA� 1ð ÞEBPBY;A�PDDY ð9Þ

The term EBPBY,A − EBPBY,A−1 represents the change in EBP when BY + A crosses one of

{cy}. As each CFcy takes effect at cy = DY = BY + A, the newly effective CFcy changes EBPBY,A

and RBY,A in all BY cohorts where cy corresponds to an age A in the range of ages included in

the analysis. These changes in RBY,A affect the rates of initial diagnoses D. For cohorts born

after cy, CFcy applies to all ages.

The parameters of BPBY quantify the birth prevalence controlled for diagnostic criteria

changes, which are represented by {CFcy}. In other words, BPBY is the effective birth preva-

lence that would have occurred if the initial criteria had been applied at all diagnostic years

included in the study.

To estimate the parameters, use a software model of Eq (9) with optimization software as

described above.

Potential violations of assumptions

Suppose a dataset represents a non-homogeneous set of cases with different effective values of

PD applying to different unidentified subgroups at the same DY. That would violate the

assumption that PD applies equally to all eligible undiagnosed cases at any given DY. Cases

may have differing degrees of symptom severity, and more severe symptoms may result in ear-

lier diagnosis [28, 41–43], implying greater values of PD. Fig 3 illustrates this situation. (The

figure illustrates constant values of PD vs. age purely for clarity, not as an assumption nor a

limitation.) If the data represent a combination of unidentified subgroups with different values

of PD, the distribution of diagnoses is a sum of distributions with different values of PD. Such
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a sum may impair fit with a model that assumes homogeneous PD. For data where E = 1 for

A� AE (plateau EA), slightly increasing the assumed value AE� of the age of complete eligibil-

ity AE used in estimation may mitigate such estimation errors, as shown in the simulation

study below. If subgroup data are available representing groups according to symptom severity

or other characteristics that may affect PD, stratified estimation using subgroups may avoid

the issue of unidentified non-homogeneous subgroups. If one suspects non-homogeneity tied

to geographic location, such as differences in diagnostic practices or health disparities, stratifi-

cation by geographic location can elucidate such differences. The same applies to suspected

non-homogeneity tied to characteristics such as race, ethnicity or socio-economic status.

If there is a difference in BP between the populations migrating into and out of the study

region, that would change the BP of individual cohorts over time. If some cases of the disorder

are caused by exposures after birth, and those exposures vary by year, that would also change

BP over time. Either effect would violate the assumption of constant birth prevalence within

each cohort. If post-natal exposures caused increased BP before age AE, then estimates from

analyses that use empirical values of D for ages less than AE would represent values of BP that

include the post-natal effect.

It is theoretically possible for PD to have different effective values for cases of different ages

with the same symptom severity at the same DY. Such an effect would represent an age bias in

PD independent of symptom severity. Investigators can examine this possibility by adding an

age term to PD in the model and estimating its parameters. One form of a potential age bias in

PD would be age-specific screening for the disorder. In 2006, the American Academy of Pedi-

atrics [46] recommended screening tests for developmental disorders be administered at 9-,

18- and 30- (or 24-) month visits. In 2011, Al-Qabandi [47] concluded that autism screening

Fig 3. Example where observed diagnosis rates represent two unidentified subgroups with different values of probability of

diagnosis PD. The red and green lines represent rates of diagnosis of the two subgroups. Group 1 (red line) has greater PD than

group 2 (green line). The solid black line shows the aggregate diagnosis rates. The dotted line shows the exponential fit to the

aggregate diagnosis rates. The age of complete eligibility AE = 3 in this example.

https://doi.org/10.1371/journal.pone.0260738.g003
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programs were generally ineffective. Screening in the USA starting approximately 2006 might

plausibly have increased the effective PD for ages 0 to 2 or 3. An analysis could test for a

screening-related increase in PD by including a variable for increased PD at ages 0 through 3

starting in 2006. For models that use empirical rates of diagnoses for ages less than AE, the

probability of diagnosis at those ages is not part of the model and does not affect parameter

estimates. Analysis could include a parameter specifying increased PD at age AE, such as age 3.

Alternatively, analysis could specify AE = 4 such that the probability of diagnosis is estimated

for ages� 4, thereby avoiding any potential bias associated with increased probability of diag-

nosis specific to age 3.

If some in-migrating cases were diagnosed before in-migration and their subsequent re-

diagnoses in the study region were labeled as initial diagnoses, that would violate the assump-

tion of truly first diagnoses. Such an effect would be most evident at greater ages after the diag-

nosis of most cases. Bounding the maximum age studied M to a modest value, sufficient to

capture most initial diagnoses, can minimize any resulting bias.

For datasets where diagnosis follows best practices using gold-standard criteria, the lack of

false positives may be a fair assumption, but they might occur nevertheless. It may be difficult

to discover any false positives produced from best practice diagnoses. Where diagnosis uses a

less precise process, false positives might occur. For example, diagnosticians might produce a

diagnosis of individuals who do not meet formal diagnostic criteria, perhaps under pressure

from the patient or parents, or to facilitate services for the individual. Meyers [12] noted the

risk of false positives in record-based approaches in contrast to clinical diagnoses. Lord [48]

stated that what are sometimes called autism spectrum disorder symptoms that appear at later

ages are not always related to autism spectrum disorder. Suppose the pool of individuals sub-

ject to false-positive diagnoses is substantially larger than the birth prevalence of true cases. In

that case, false-positive diagnoses deplete the pool of such individuals slowly relative to the sur-

vival function of true cases. That may result in an approximately uniform age distribution of

false-positive diagnoses, causing a nearly constant additive offset to the rates of diagnoses

across ages. True case diagnoses should be more common at younger ages, and less common

as the risk pool is depleted, so false positives may be more evident at older ages. Setting the

maximum age of follow-up M to a moderate value, such as age 8 or 10 for autism, may help

reduce the impact of false positives on estimates while enabling accurate estimation.

The assumption that case status is binary may not be completely valid, at least in the case of

autism or ASD. Different diagnostic assessment tools, assessments by different professionals,

and applying different cut-off thresholds within a tool can produce somewhat different results

[49].

The formulation that birth prevalence equals the cumulative incidence to age M plus the

right-censored portion assumes that any difference in competing risks between cases and non-

cases in the age range analyzed is small enough to be ignored. This assumption is consistent

with Hansen [26]. In contrast, if the rate of deaths of cases before initial diagnosis exceeds the

rate in the cohort’s overall population at the same ages, that excess would constitute a compet-

ing risk and would reduce the estimated birth prevalence accordingly.

Model fit

To ensure robust conclusions, investigators should test the model fit to ascertain both model

correctness and parameter estimation accuracy. The model fits well if summary measures of

the error are small and individual point errors are unsystematic and small [50]. One can exam-

ine the fit both graphically and numerically. Plots of DBY,A vs. dDBY;A at all ages for individual

cohorts and separately at single ages across all cohorts can illuminate any issues with fit, which
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might occur at only some cohorts or ages. Visualization of the model vs. data can expose

aspects of the data that might not fit well in a model with few parameters, suggesting a higher-

order model or semi-parametric specifications.

Suppose the model uses an assumed age of complete eligibility AE� that differs from the

true value of AE underlying the data. That mismatch may impair model fit. The simulation

study section shows that setting AE�<AE can result in estimation errors. However, setting

AE� >AE tends not to impair model fit and may improve it in the case of non-homogeneous

subgroups; see Fig 3. The presence of non-homogeneous subgroups may be evident from

examining model fit.

The chi-square test statistic is a numerical approach to assess absolute model fit. Investiga-

tors can apply it to the overall model, individual cohorts, and single ages across cohorts. The p-

value associated with the chi-square statistic uses observed and expected count values rather

than proportions. The p-value incorporates the effect of the number of parameters in the

model via the degrees of freedom.

Simulation study

This section presents a simulation study to measure the performance and accuracy of the

TTEPE method, following the recommendations in Morris [51]. Simulation studies evaluate

performance by generating pseudo-random synthetic data according to known parameters

over a broad range of parameter values, estimating parameters from that data using the

method under evaluation, and comparing the estimates to the known true parameter values.

Simulation studies can detect potential problems such as ambiguity or bias [51].

The simulation study described here uses a model with first-order exponential forms of

birth prevalence BP and probability of diagnosis PD. It uses plateau eligibility E with the age of

complete eligibility AE = 3. There are 20 successive cohorts, and the last age of follow-up is

M = 10. The parameters of primary interest are the exponential coefficients of birth prevalence

βBP and probability of diagnosis βPD. The study tested six pairs of values of βBP and βPD, each

ranging from 0 to 0.1 in steps of 0.02, where each pair sums to 0.1. In one parameter set, BP
increases as e0.1×BY (10.5% per year) and PD is constant. In another parameter set, BP is con-

stant and PD increases as e0.1×DY (10.5% per year). The other four parameter sets represent var-

ious rates of change of both variables. In all cases, BP = 0.01 at the final BY and PD = 0.25 at

the final DY. These simulations assume the investigators chose the correct value of the age of

complete eligibility AE = 3, following the plateau EA model, from either knowledge of the dis-

order or estimation of the eligibility function EA. The study synthesized each data model in

two ways: real-valued proportions without sampling, and a Monte Carlo model with binomial

random sample generation. The use of real-valued proportions tests the estimation method’s

accuracy (bias) in the absence of sampling effects in the data. It is logically equivalent to testing

estimation bias in an infinitely large population. Monte Carlo simulation generated data sets

using binomial sampling of case counts for each birth cohort and counts of initial diagnoses at

each age within each cohort, with 1000 iterations of random data set generation for each

parameter set. The population of each synthetic cohort is a constant of 500,000. TTEPE analy-

sis estimated the parameters for each iteration. The results show the parameter estimation bias

and model standard error (SE) for each parameter set over all iterations. The study estimated

the parameters using the method described above, implemented using the Python SciPy cur-

ve_fit() function. The software that performed this study is publicly available [45].

Table 1 shows results using real-valued proportions without sampling, which isolates the

estimation process from random sampling variations. It shows the bias in estimating each of

the four model parameters for each of the six synthesis parameter sets. The biases are minimal
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and may be caused by finite precision arithmetic in the computer. The greatest bias magnitude

in cbBP occurs with βBP = 0 and βPD = 0.1 and is on the order of 10−10. This result shows that the

parameter estimation is extremely accurate in the absence of sampling effects.

Table 2 shows the Monte Carlo analysis of the same parameter sets where the data use bino-

mial sampling. It shows the bias and model standard error (SE) of each parameter for each

parameter set. The bias of the primary parameter cbBP remains small, on the order of 10−5 or

10−6. The SE is relevant when there is sampling, and it shows the effect of sampling, in contrast

to Table 1.

Table 3 gives results where estimation uses an assumed value AE� of the age of complete eli-

gibility AE that, in some cases, does not match the true value of AE = 3 used to synthesize the

data. Synthesis uses one homogeneous group with consistent PD at each value of DY. Estima-

tion used various assumed values of AE� to test the effect of the choice of AE�. Estimation

using AE� = 2 results in substantial estimation errors and model misfit that is obvious from

plots of data vs. model (not shown). Estimation using AE� = 3, AE� = 4, or AE� = 5 produces

accurate results, with slightly more error where AE� = 5. Plots show that the model fits well in

all three cases (not shown). Thus, the choice of AE� is not critical as long as AE� � AE. These

Table 1. Simulation results of parameter optimization using real-valued proportions with no sampling.

True Parameters Bias cBP at final BY Bias cβBP Bias cPD at final DY BiasdβPD

βBP βPD

0.1 0 5.9E-12 8.9E-11 -5.5E-10 -1.8E-10

0.08 0.02 0 0 -2.8E-17 -1.4E-17

0.06 0.04 -1.7E-18 0 1.1E-16 1.4E-17

0.04 0.06 3.5E-18 1.4E-17 -5.6E-17 -6.9E-18

0.02 0.08 0 3.5E-18 5.6E-17 -1.4E-17

0 0.1 -4.7E-11 -6.6E-10 2.2E-9 7.7E-10

BP = 0.01 at the final BY, PD = 0.25 at the final DY, AE� = AE = 3, M = 10, and there are 20 successive cohorts.

βBP, βBD are exponential coefficients for birth prevalence and probability of diagnosis, respectively.

BP, birth prevalence; BY, birth year; DY, diagnostic year.

https://doi.org/10.1371/journal.pone.0260738.t001

Table 2. Simulation results of parameter optimization using Monte Carlo binomial sampling, 1000 iterations.

True

Parameters

cBP at final BY cβBP
cPD at final DY dβPD

βBP βPD Bias SE Bias SE Bias SE Bias SE

0.1 0 -2.0E-6 1.0E-4 -2.0E-5 0.0013 3.3E-5 0.0070 -5.4E-6 0.0019

0.08 0.02 -2.6E-6 1.1E-4 -3.2E-5 0.0012 1.5E-4 0.0072 4.4E-5 0.0019

0.06 0.04 7.8E-6 1.2E-4 2.7E-5 0.0013 -4.4E-4 0.0079 -1.2E-4 0.0021

0.04 0.06 1.3E-5 1.5E-4 6.5E-5 0.0015 -5.8E-4 0.0085 -1.6E-4 0.0022

0.02 0.08 -2.0E-6 1.6E-4 -9.8E-6 0.0016 4.5E-4 0.0086 9.4E-5 0.0023

0 0.1 4.5E-6 1.8E-4 7.1E-6 0.0017 2.0E-4 0.0094 2.7E-5 0.0023

BP = 0.01 at the final BY, PD = 0.25 at the final DY, AE� = AE = 3, M = 10, and there are 20 successive cohorts.

Population of each cohort = 500,000.

βBP, βDP are exponential coefficients for birth prevalence and probability of diagnosis, respectively.

BP, birth prevalence; BY, birth year; DY, diagnostic year.

https://doi.org/10.1371/journal.pone.0260738.t002
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data use real-valued proportions rather than binomial sampling to avoid confusion of model

mismatch with sampling effects.

Table 4 shows results with an intentional mismatch between estimation that assumes one

homogeneous group and data that comprises two unlabeled subgroups with different values of

PD, illustrated in Fig 3. Fig 3 shows the visible error of the exponential fit to the data at age = 3

and a good fit for age> 3. In this synthetic dataset, the two subgroups are of equal size, and

the true value of PD in one group is twice that of the other. This information is unknown to

the estimation, and the data does not indicate subgroup size or membership. In the worst case,

estimation uses AE� = AE = 3, and the cbBP bias is 0.001, which is 1% of the actual value of 0.1.

This error is due to the model misfit at age three resulting from subgroups having different val-

ues of PD, illustrated in Fig 3, and the estimation does not account for the inconsistent values

of PD. When using AE� = 4 or AE� = 5, the biases in cbBP , final cBP, and cbPD are reduced while

the bias in final cPD is increased, all by small amounts.

Discussion

The TTEPE method solves the previously intractable problem of accurately estimating birth

prevalence properly adjusted for diagnostic factors and changes in diagnostic criteria. It

addresses the requirements stated in the introduction. The simulation study shows that

TTEPE produces accurate estimates of the true parameter values across a broad range of values

and in the presence of random sampling effects. This performance implies that TTEPE is suit-

able for estimating birth prevalence.

TTEPE is novel. Apparently, no previous papers use time-to-event or survival analysis to

estimate birth prevalence. In typical survival or time-to-event analysis, including Cox

Table 3. Comparison of the effect of the choice of assumed AE� vs. true value of AE = 3, with one homogeneous

group of cases.

AE� used in estimation Bias cBP at final BY Bias cβBP Bias cPD at final DY BiasdβPD

2 0.002 -0.019 -0.0096 0.036

3 5.9E-12 8.9E-11 -5.5E-10 -1.8E-10

4 -4.4E-12 -6.6E-11 4.8E-10 1.64E-10

5 1.5E-11 2.2E-10 -1.85E-9 -7.18E-10

AE, age of complete eligibility. True values: βBP = 0.1, βPD = 0, P = 0.01 at the final BY, PD = 0.25 at the final DY,

AE = 3. Maximum age M = 10. Twenty successive cohorts. Probability of diagnosis PD is consistent across cases at

each DY. Simulation uses real values, no random sampling.

https://doi.org/10.1371/journal.pone.0260738.t003

Table 4. Comparison of the effect of the choice of assumed AE� vs. true value of AE = 3, with two unidentified subgroups with different values of probability of diag-

nosis, mismatched to analysis.

AE� used in estimation Bias cBP at final BY Bias cβBP Bias cPD at final DY Bias dβPD

3 -0.00043 0.001 0.0018 -0.002

4 -0.00038 0.00061 -0.004 -0.0016

5 -0.00033 0.00035 -0.0097 -0.0011

AE, age of complete eligibility. True values: βBP = 0.1, βPD = 0, P = 0.01 at the final BY, PD = 0.25 at the final DY, AE = 3. Two equal-sized groups of cases where one

group’s probability of diagnosis PD is twice that of the other, while the estimation assumes one homogeneous group. Maximum age M = 10. Twenty successive cohorts.

Simulation uses real values, no sampling.

https://doi.org/10.1371/journal.pone.0260738.t004
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proportional hazards analysis [52], the initial size of the risk set is assumed to have a known

value, such as an entire population, group, or sample, in contrast to the problem addressed

here. For models where the risk set at all ages consists of the entire population without sub-

tracting diagnosed cases, the estimated hazard function of time dPDt ¼ Dt=Rt is simply the pop-

ulation-based rate of diagnoses D at time t [19, 28, 42]. Such models to not apply a survival

process to the size R of the risk set; see above and Kalbfleisch [44]. For methods using the

entire population as the initial risk set, if the disorder is rare, it makes little difference whether

the risk set at subsequent ages is the entire population or the undiagnosed portion since the

size of the risk set decreases only slightly as cases are diagnosed. Some papers use survival anal-

ysis methods to estimate other measures, such as the median age at first diagnosis [28, 42, 43].

That usage is not directly relevant to this paper. Szklo [1] describes the use of survival analysis

to calculate cumulative incidence. That approach does not apply here because it depends on

two assumptions that are not valid for the present problem. One is a lack of a birth cohort

trend, and the other is independence between censoring and survival, which conflicts with a

varying probability of diagnosis.

TTEPE avoids the problems of methods that assume, ignore, or inappropriately estimate

the age distribution, including age-period-cohort methods. It achieves this by directly model-

ing the age distribution of first diagnoses via a non-linear function derived from first princi-

ples. A figure in [S1 Text] illustrates why fitting the age distribution of diagnoses via a survival

model enables identifying correct parameter values. As noted in the background section, some

analytic methods adjust for variables on the causal path, which leads to biased estimates. The

TTEPE method likewise avoids that problem.

This paper states the assumptions that underlie TTEPE analysis and discusses potential vio-

lations of those assumptions. The DAG of Fig 2 illustrates the assumed causal paths from birth

year, diagnostic year, and age, including the effect of the set of time-varying diagnostic factors

on the probability of diagnosis and the effect of changes in diagnostic criteria on effective birth

prevalence. The DAG and associated analysis appear to cover all plausible mechanisms to

explain observed trends in rates of initial diagnoses.

The simulation study presented above shows that TTEPE produces estimates with minimal

bias and strong power to resolve parameter values from input data with sampling effects. The

results in Table 2 show a magnitude of bias of the birth prevalence exponential coefficient cbBP

not exceeding 6.5 x 10−5, i.e., 0.0065% per year. The model standard error (SE) of cbBP ranges

from 0.0012 to 0.0017, where the true βBP ranges from 0 to 0.1. Using the largest observed SE

and 1.96 x SE as the 95% confidence interval threshold, the simulated model can resolve differ-

ences in βBP of 0.0033, i.e., 0.33% per year. Investigators can expect similar performance for

real-world datasets that meet the baseline assumptions and have characteristics comparable to

the simulated data. The population size and birth prevalence affect the numbers of incident

diagnoses and hence the SE. Note that there are 20 cohorts and 11 ages (0 through 10) in the

simulation study, so there are 220 data points. Each data point is an independent binomial ran-

dom sample. The analysis estimates four parameters that define the curves that fit the data.

The relatively large number of independent data points and the small number of model

parameters help produce the small bias and model SE. If each cohort’s population or the birth

prevalence had been substantially smaller, or the number of parameters had been greater, we

would expect the SE and possibly the bias to be larger. These could occur with small geo-

graphic regions or rare disorders, or higher-order or semi-parametric models, respectively.

It is possible but challenging to prove mathematically that a model is identifiable [38], and

we have not done that. We have not found any evidence that the models described here are

unidentified. Investigators can construct a wide variety of TTEPE models with various
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parametric or non-parametric forms of the variables described here and potentially additional

variables. As such, it is possible to construct models with collinearities and resulting non-iden-

tification. Simultaneously estimating the parameters across multiple birth cohorts helps dis-

criminate between parameter sets that might interact within one cohort. As with any

regression, investigators using TTEPE should ensure there are enough data points to estimate

parameters with sufficient precision.

Logically, the eligibility function EA should be an attribute of the disorder under study. Spe-

cifically regarding autism or ASD, the literature shows that cases begin to show predictive

symptoms well before age three, and some are diagnosed at age two [49]. According to some

but not all diagnostic criteria for autism and ASD, symptoms must be present by age three

[29]. There is evidence that some cases with milder symptoms who do not meet diagnostic cri-

teria at age three do meet criteria at a later age [53]. Most of those diagnosed at an early age

develop more severe symptoms over time [54]. There is also evidence that some individuals

who meet or appear to meet case criteria before three years of age no longer meet criteria at

some later age [55]. These phenomena are consistent with the discussion above of non-homo-

geneous subgroups with different effective values of the probability of diagnosis. The phenom-

enon of late development of diagnosable symptoms may be worthwhile to investigate,

particularly with datasets representing initial diagnoses over a broad range of ages. One way to

model that phenomenon is the eligibility function continuing to increase over many years of

age. It may also be worthwhile to investigate the proportion of cases diagnosed after childhood

that do not meet formal criteria, i.e., false positives. As Tables 3 and 4 show, some errors in

estimating the eligibility function and erroneously assuming the homogeneity of the severity

of cases have only a minor effect on parameter estimates when the assumed age of complete

eligibility AE� is chosen carefully.

Investigators can use TTEPE to answer important questions beyond the overall trend in

birth prevalence. For example, where datasets include appropriate covariates, stratified analysis

can determine whether observed trends in the rates of diagnoses in specified subgroups are

due to actual changes in birth prevalence or diagnostic factors. Example covariates include sex,

race, ethnicity, socio-economic status, geographic region, parental age, environmental expo-

sure, genetic profile, and other factors of interest.

Investigators may use domain knowledge to inform specialized analyses. For example, they

may incorporate knowledge of mortality rates and standardized mortality ratios, rates of

recovery from the condition before diagnosis, or the characteristics of migration in and out of

the study region.

It may be feasible to extend TTEPE to disorders, diseases and conditions where the time

scale starts at some event other than birth. For example, the time origin might be the time of

completion of a sufficient cause. Various outcomes may serve as events of interest. It is impor-

tant to ensure that the eligibility function with respect to the time origin is consistent across

cohorts.

Supporting information

S1 Text. TTEPE additional analyses and explanations. Contains figures.

(PDF)
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