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ABSTRACT

Though transcriptomics technologies evolve rapidly
in the past decades, integrative analysis of mixed
data between microarray and RNA-seq remains chal-
lenging due to the inherent variability difference be-
tween them. Here, Rank-In was proposed to cor-
rect the nonbiological effects across the two tech-
nologies, enabling freely blended data for consoli-
dated analysis. Rank-In was rigorously validated via
the public cell and tissue samples tested by both
technologies. On the two reference samples of the
SEQC project, Rank-In not only perfectly classified
the 44 profiles but also achieved the best accuracy
of 0.9 on predicting TaqMan-validated DEGs. More
importantly, on 327 Glioblastoma (GBM) profiles and
248, 523 heterogeneous colon cancer profiles re-
spectively, only Rank-In can successfully discrimi-
nate every single cancer profile from normal controls,
while the others cannot. Further on different sizes of
mixed seq-array GBM profiles, Rank-In can robustly
reproduce a median range of DEG overlapping from
0.74 to 0.83 among top genes, whereas the others
never exceed 0.72. Being the first effective method
enabling mixed data of cross-technology analysis,
Rank-In welcomes hybrid of array and seq profiles
for integrative study on large/small, paired/unpaired
and balanced/imbalanced samples, opening possi-
bility to reduce sampling space of clinical cancer pa-
tients. Rank-In can be accessed at http://www.badd-
cao.net/rank-in/index.html.

INTRODUCTION

The past decades have witnessed the rapid development of
transcriptomics technology and widely application into the

cancer area, where the top two are microarray and RNA-seq
platforms (1). Till October 2020, GEO hosted near 10 000
series of cancer transcriptomic data including about 5500
series from microarray and 3000 series from RNA-Seq, pro-
duced by multiple laboratories through the various version
of platforms from Affymetrix, Agilent, Illumina and so on
(2). To derive significant results statistically, datasets of can-
cer samples often need to be pooled together as many as
possible for bioinformatics computation. Yet, gene expres-
sion profiles are routinely required to be compared only
with controls in the same technology such as seq-cancer
versus seq-control or array-caner versus array-control. Inte-
grative analysis of mixed data remains difficult due to tech-
nology designing differences, platform variations and batch
effects. Particularly, array platforms were designed by dif-
ferent sets of probes to detect signal sensitivity, while RNA-
seq was designed to count the copy number of transcripts.
For microarray data, log-expression is a continuous mea-
surement that is approximately distributed within a certain
range as a normal Gaussian random variable (3). RNA-Seq
data, however, is measured in integer counts without a lim-
ited peak, which does not follow the typical normal distri-
bution (4). The inherent design difference between them of-
ten causes the expression profiling incomparable, which dif-
fers systematically in one technology of array from that in
another of RNA-seq, even to the same biological samples
(5).

To explore the gaps between them, FDA started MAQC
(Micro Array Quality Control) (6) and SEQC (Sequencing
Quality Control) (7) projects to run both technology plat-
forms in different labs by providing the same paired-RNA
samples. The reference samples they provided included hu-
man mixed RNA samples A (Universal Human Reference
RNA), human brain tissue sample B (Human Brain Refer-
ence RNA) and two mixture samples of the above two at
different ratios (8). The results showed that systemic vari-
ations exist across the two technologies in the value of ex-
pression measures (9), and the datasets were not feasible to
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pool together for direct analysis. Also, the researchers con-
structed thousands of predictive models to test whether the
computation results from one technology agree with that
from another on the same human and rat samples, but the
correlations were showed at a rugged range between 0.38
and 0.90 depending on different samples, labs and platform
versions (10).

Despite that, some methods have been elaborated to cor-
rect the above nonbiological effects. The first class is to ad-
just the batch effects based on empirical models (11). A
notable representative is ComBat, which was originally de-
signed for microarray experiments only (12). It used the em-
pirical Bayes method to estimate and shrink batch effects
by balancing individual sets of expression results. In 2020,
a parallel version of ComBat-seq was released for RNA-
seq integrative analysis (13). Additional strategies aimed
to filter out factors that are associated with batch effects
by factorizing the input expression data and then recon-
structing an adjusted matrix (14). A typical example is SVA
(15), which was designed by estimating surrogate variables
of the unknown effects and iteratively weighting a subset
of the factors identified in the decomposition. Currently,
SVA and its updated version (16) have been widely applied
to bulk and single-cell RNA-seq analysis (17,18). Mean-
while, spike-in marker genes were also adopted to adjust
cross-platform biases, such as housekeeping genes (19,20)
or so-called ‘bias-low gene sets’ (21). Yet this hypothesis has
been questionable (22), as the filtered gene signatures were
reported to be highly unstable (23), depending on patient
samples, disease states (24) or tissues (25). On top of the
above, machine learning classifiers have also been attempted
to cross-platform analysis (26), such as FSQN, which ren-
dered RNA-seq analysis from the training of microarray
data distribution (27).

So far, no methods have met well with the challenge of
cross-technology data integration in this area.

In this paper, we designed a computational method,
Rank-In, to make mixed datasets comparable. Our idea is
to transform the raw expression into relative ranking within
each profile, then weighted by the distribution of overall ex-
pression intensities among consolidated datasets. By mini-
mizing the profiling variations between array and RNA-seq,
Rank-In made it possible to combine microarray and RNA-
seq data for further analysis. Independent testing on cell
data and clinical samples was comprehensively done to val-
idate the performance and robustness of Rank-In. A web-
server was also set up to allow community application, with
example datasets built-in for cancer subtypes.

MATERIALS AND METHODS

Design of Rank-In

Rank-In was designed as below in Figure 1. For the raw
transcriptomic profiling, genes are first lining up accord-
ing to the gene expression increase within each transcrip-
tomic profile, and then the sorted genes are partitioned into
100 groups (28). Second, the ranks of gene groups are fur-
ther weighted by the increasing slope of expression inten-
sity within each group of genes for each profile. So far, a
weighted internal gene ranking has been derived for each
profile. Third, across consolidated profiles, singular value

decomposition (SVD) is performed to reduce the nonbio-
logical effects between different experiments or platforms.
Via this, the data distribution has been unified into a sim-
ilar curve across array and RNA-seq. Finally, the adjusted
ranking matrix can be utilized for subsequent comparison
or analysis.

Algorithm of Rank-In

Transformation of gene-level expression intensities into inter-
nal ranks. For each profile, the raw expression intensity
of each gene is ranked from low to high. Then, genes are
divided into 100 groups, with the same number of genes
in each group (28). The continuous expression values thus
have been converted to internal ranks within each profile.

Weighting ranks based on expression intensities. We define
the expression intensity of gene i in profile j as ei j , and the
internal ranking of the gene i in the profile j as ri j . The
weight of ri j is described as wi j = 2ari j + b, where a and
b are the coefficients of the equation ei j = ari j

2 + bri j + c.
These coefficients are calculated by the least square func-
tion in SciPy. Formally, the adjusted ranking matrix RN×M
was calculated as:

Ri j = ri j · wi j

where N denoted the whole number of genes and M denoted
the number of profiles in each class.

Using matrix decomposition to remove nonbiological effects.
We assume the following model for the observed data
RN×M:

RN×M = xN×M + yN×M + α j + εN×M

Where xN×M is a matrix of the overall gene expression,
yN×M is a matrix of the nonbiological batch effects of genes,
α j is the effect corresponding to experimental conditions,
and the term εN×M represents random noise.

The mean of the rank of the weighted gene would be es-
timated close to the true rank. Here, we get the variance
matrix of genes:

Rreal = xN×M + α j ≈ Mei j

R
′
N×M = RN×M − Mei j = yN×M + εN×M

Where Mei j denotes mean of the i-th gene of the experi-
mental group or control group, RN×M is the adjusted rank-
ing matrix, R

′
N×M is the variance matrix of genes including

random errors and nonbiological effects.
The mean of different groups is used to represent the ac-

tual values of the experiments, to approximate the matrix
of the weighted gene rank changes caused by the error, and
the nonbiological effect matrix is obtained from the change
matrix by the SVD method. Here, we get the nonbiological
effect matrix:

R
′
N×M = RN×M − Mei j = yN×M + εN×M = U

∑
VT

Where UN×N,
∑

k×k and VM×M are sub-matrices obtained
by SVD decomposition.
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Figure 1. The workflow of Rank-In. (A) The Rank-In workflow. The consolidated expression profiles from microarray and RNA-seq are transformed
into internal ranking and further weighted by intensity increasing, then calculated by SVD into the adjusted ranking matrix. (B) The data distribution
difference of raw profiles between microarray and RNA-seq. (C) The sorted ranking according to expression. (D) The data distribution from microarray
and RNA-seq after Rank-In.

Noted that the variance matrix of genes R
′
N×M mostly

comes from nonbiological effects, the SVD method is used
to observe the magnitude of the singular value and deter-
mine the k value to maintain the random error and approx-
imate the nonbiological effects such as platform effects.

R
′
N×M = UN×k

∑

k×k

VT
M×k + εN×M

yN×M ≈ UN×k

∑

k×k

VT
M×k

Where k is the main number of nonbiological variables, and
yN×M is the nonbiological effect matrix.

Nonbiological effects are eliminated by subtracting non-
biological effects from the original matrix. Thus, we have
adjusted the nonbiological effects:

RAd just
N×M = RN×M − yN×M = xN×M + α j + εN×M

Where RAd just
N×M is the final adjusted matrix that removes most

of the nonbiological effects.
A complete list of all software used in Rank-In is pro-

vided in Supplementary Table S1.

Data preprocessing

The original expression intensity of microarray data is log-
transformed based on 2. Probe IDs are mapped to gene IDs
using the latest corresponding platform annotation files.
Multiple probes are mapped to the same gene, the arith-
metic mean of the values of the multiple probes could be
used as the expression value of this gene.

For the RNA-seq data, original counts (.sra files) are
downloaded and the fragments per kilobase of tran-
script per million fragments mapped (FPKM) is calcu-
lated by Tophat2 (29) and cufflinks (30). Transcripts per
kilobase million (TPM) is calculated according to the
definition (counts per length of transcript [kb] per mil-
lion reads mapped), while the trimmed mean of M val-
ues (TMM) is calculated by edgeR package (31). Those
genes with zero counts (or zero FPKM/TPM/TMM) in
all profiles are excluded. All data are then log2(x + 1)
transformed.

From the MAQC project, 1044 genes are validated by
TaqMan quantitative PCR (32). About 328 genes are finally
defined as true DEGs (a log2 fold change >2 and P-value
<0.05 between class A and B) and 93 genes are filtered as
true non-DEGs (a log2 fold change <0.2 and P-value >0.05
between class A and B).
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Differentially expressed genes (DEGs) selection

DEGs are calculated by a nonparametric approach
(Wilcoxon Rank Sum test). An FDR (false discovery rate)
threshold of 0.05 for multiple testing is used.

Evaluation parameters

To evaluate the performance of Rank-in, parameters in-
clude three aspects: accuracy, precision and recall. Accuracy
is the similarity between the measurements of a prediction
and actual (true) value. The precision (or called specificity)
is the probability of its positive claims being correct. The
recall (or called sensitivity) is the probability of facts being
claimed as true. Formally, the accuracy, precision and recall
are defined as follows:

accuracy = (TP+TN)/(TP+FP+TN+FN)
precision = TP/(TP+FP)
recall = TP/(TP+FN)
where TP, FP denotes the true/false positives, and TN,

FN denotes the true/false negatives.

RESULTS

Rank-In was comprehensively validated on both SEQC cell
data and TCGA clinical data, where the same biological
samples were tested on both microarray and RNA-seq plat-
forms. The performance of Rank-In was evaluated via the
unsupervised hierarchical clustering effects and the ability
to pick up true differential expression genes (DEGs), in
comparing with four representative peers, including uncor-
rected method without processing, Combat (12), SVA (15)
and Angel’s method (21).

Perfect clustering on SEQC datasets

At the level of cell samples, GEO data of MAQC/SEQC
project (GSE56457 and GSE47774) were selected, cover-
ing two unique and homogenous RNA only (sample A and
sample B). Each sample was sent to different platforms and
labs to obtain transcriptomic profiles. Considering the data
balance, 22 profiles were chosen for each biological sample,
covering 14 from 3 array platforms and 8 from one RNA-
seq platform (Supplementary Table S2).

The clustering results were illustrated in Figure 2A. As
being shown, without adjustment, the uncorrected method
failed to distinguish the profiles of the two biological sam-
ples. All the other four (Rank-In, ComBat, SVA and Angel’s
method) can group A and B. Theoretically, without tech-
nology or platform biases, different profiles representing
the same biological condition would likely cluster in a ran-
dom way. In other words, clustering according to platform
or technology, instead of biological conditions, frequently
indicates the existence of substantial biases. In Figure 2A,
within sample A or B, profiles have been sub-clustered ac-
cording to various platforms in the three peers. Only Rank-
In aligned those sibling profiles in an approximately random
manner regardless of their original platforms, indicating its
ability to reduce the platform variation. Here, sibling pro-
files were tentatively referred to as those multiple profiles
sequenced by different labs and platforms, but they were all

Table 1. Performance of different methods* on detecting DEGs† on
SEQC data

Method Accuracy Precision Recall

Rank-In 0.90 0.91 0.97
ComBat 0.87 0.86 0.99
SVA 0.87 0.86 0.99
Uncorrected 0.45 0.99 0.29

*Angel’s method is not fit to derive DEGs and thus not shown.
†Genes with FDR value <0.05 are grouped as predicted DEGs and those
≥0.05 as predicted non-DEGs.

derived from the same biological sample such as sample A
or B. On top of that, extra RNA-seq platform was added
and tested (Supplementary Table S3). Rank-In remained
the best among peers (Supplementary Figure S1).

The data distribution of expression intensity processed by
each method was checked and compared between array and
RNA-seq technologies, as Figure 2B showed. The raw data
without processing demonstrate two peaks in RNA-seq but
one completely deviating peak in microarray. In contrast to
the large difference in the uncorrected method, Combat and
SVA have significantly shrunk the discrepancy by formu-
lating two peaks and Angel’s method by deleting all peaks.
Note that, Rank-In almost removed the curve deviation be-
tween microarray and RNA-seq and merged them into one-
peak distribution.

High DEG detecting rate on SEQC data

In addition to the overall clustering ability, the performance
of detecting DEGs was tested for different methods. In the
SEQC project, 1044 genes were validated by TaqMan quan-
titative PCR (32), where 328 genes were finally defined as
true positive DEGs and 93 genes were filtered as true neg-
ative non-DEGs between sample A and B. Since Angel’s
method is not fit to pick DEGs, only the left peers were put
under test on predicting the DEG list between sample A and
B. In line with the true positives and true negatives from the
above PCR results, the prediction accuracy, precision and
recall were summarized in Table 1. Accuracy represents the
overall predictive performance, while precision indicates the
ability that the predicted DEG becomes true positives, and
recall means how many of the true positives can be predicted
out (33). It can be seen from Table 1 that, without correc-
tion, though high precision (0.99) can be made, only a very
minor portion of true DEGs can be picked with a recall
rate of 0.29, leading to the lowest accuracy of 0.45. Com-
Bat and SVA gave almost the same accuracy of 0.87, with
the precision of 0.86 and the highest recall of 0.99, indicat-
ing a slightly higher false-positive rate in detecting DEG.
Among the peers, Rank-In obtained a balanced precision of
0.91 and a recall rate of 0.97. Due to the trade-off between
precision and recall, Rank-In achieved the best accuracy of
0.90 in terms of overall DEG-detecting ability. Small vari-
ation was noted on SEQC data among peer performance.
The reason may come from the apparent DEG difference
between homogenous brain RNA and the homogenous uni-
versal RNA samples, which would be easily detected by all
methods.
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Figure 2. Performance and distribution comparison of Rank-In and other methods on SEQC data. (A) Unsupervised clustering of SEQC data. The upper
horizontal bars illustrate four different platforms, and the bottom bars illustrate the sample type of A and B. (B) The data distribution of profiles from
microarray and RNA-seq before and after adjustment.

Best performance on clustering clinical samples

In reality of clinical samples, the major challenge lies in
heterogeneous variations from personal backgrounds to tu-
mor stages and tissue differentiation etc. The Glioblastoma
(GBM) data were collected from the TCGA database where
each clinical sample was tested by both microarray and
RNA-seq (34). A total of 327 expression profiles were incor-
porated, covering 157 GBM patients and 4 healthy controls
(Supplementary Table S4).

Unsupervised hierarchical clustering was made on the
above profiles for each method (Figure 3A). It is shown
that the uncorrected method clustered profiles into two
categories fully according to the technologies of RNA-seq
and microarray. Whereas ComBat and SVA clustered four
heath samples into disease groups, Angel’s method mixed
the health with GBM profiling, though health samples were
grouped at a closer distance. Only Rank-In perfectly clus-
tered these health samples into one branch out of GBM
samples. Further, the GBM expression datasets were ap-
proximately uniformly aligned regardless of their initial
technology or platform, suggesting the lowest bias after
Rank-In processing.

Further, as ComBat was reported not to work well if sam-
ple classes were not properly balanced across batches (35),
resampling was made to construct a balanced dataset be-
tween tumor and health. To make a fair play, paired mi-
croarray and RNA-seq data of four GBM patients were
randomly selected out of 157 GBM patients 1000 times to
match the four health controls. A representative cluster-
ing tree is illustrated for each method in Figure 3B. Sub-
sequent statistics was made on clustering effects from two

perspectives: inter-class differentiation between tumor and
health profiles, and intra-class clustering effects of individ-
ual samples within tumor and health (Figure 3C). It can be
seen that, on this small dataset of 16 profiles with balanced
data, the inter-class performance of ComBat, SVA and An-
gel’s indeed got increased. At 90% probability, ComBat can
make correct classification between tumor and health pro-
files. Rank-In achieved the highest inter-class differentiation
accuracy at 99%, and the second was obtained by SVA.

For intra-class performance, clustering trees of the eight
profiles from four tumor/health samples may present in dif-
ferent formats depending on the relative distance between
them after data processing. According to the best and worst
clustering illustrated in Supplementary Figure S2, the dis-
tance between paired profiles from the same sample may
vary between 0 and 7. We chose the distance of 4 as a mod-
erate stringent cutoff and calculated the averaged percent-
age of clustered samples with paired profiles being ≤4 in all
the 4000 simulations (Figure 3C). It can be seen that Rank-
In and Angel’s method performs similarly well on clustering
GBM tumor profiles. However, on clustering health profiles,
Angel’s only gives 24%, similar to SVA and Combat. While
Rank-In archived a high performance of 68%, demonstrat-
ing a significant advantage over other peers.

To further test the performance on more compre-
hensive clinical application, paired/unpaired and
balanced/imbalanced conditions of larger colon can-
cer datasets from https://xenabrowser.net/datapages and
literature (36) were curated with cancer versus normal of
124:124 and 384:139 respectively (Supplementary Table
S5). Rank-In appears as the only one to correctly classify
every single cancer from normal profiles on different

https://xenabrowser.net/datapages
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Figure 3. Clustering performance on clinical data of GBM and colon cancer. (A) Unsupervised hierarchical clustering on 319 GBM and 8 health profiles.
(B) Representative clustering tree from the 1000 randomizations. (C) Clustering accuracy of inter-class of GBM versus health, intra-class of GBM and
intra-class of health from 1000 randomizations. (D) Unsupervised hierarchical clustering results on 124 colon cancer and 124 normal profiles in a paired and
balanced condition. (E) Unsupervised hierarchical clustering results on 384 colon cancer and 139 normal profiles in unpaired and imbalanced condition.
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scenarios, while others cannot (Figure 3D,E). Collectively,
Rank-In demonstrated the best performance in discrim-
inating cancer from normal profiles, also in clustering
sibling profiles of the same biological sample, indicating
its unique ability in reducing nonbiological effects across
microarray and RNA-seq.

High robustness in tolerating different sample size

The sample size to reproduce DEGs was also tested on both
simulated samples and GBM samples respectively on dif-
ferent scenarios. Theoretically, the DEG list between the
batches, platforms or technologies would be highly over-
lapped once the technology and platform effects being prop-
erly corrected.

In simulated condition, both model performance on dif-
ferent sample size and model tolerance to imbalanced sam-
ple size were tested with 200 predefined DEGs among
10 000 genes for each sample. The sample size varied from
14 to 500, containing an equal number of disease and con-
trol in each batch, and gene expression profiles were ran-
domly created 100 times for each sample and divided into
parallel batches or platforms by an R package (‘madsim’
package) (37). Since small datasets may not necessarily lead
to reproducible DEG, the overlapping rates between the top
200 DEGs from the parallel platforms were shown in Figure
4A. Rank-In gave a rate of 0.61 at the smallest sample size
of 14 in each platform, further 0.82 at the sample size of 40,
and 0.9 at a sample size of 150. Model tolerance to imbal-
anced sample size was done within a fixed number of 500
samples in each platform. The samples of the control group
ranged from 10 to 250, corresponding to the disease group
from 490 to 250. As shown in Figure 4B, under different im-
balance ratios, Rank-In gave consistently high overlapping
DEG ranging from 0.81 to 0.92. Particularly, under extreme
imbalanced condition (control 10 versus disease 490), the
lowest overlapping rate remained around 0.81, indicating
the tolerance of our model to imbalanced sample size.

On clinical data, GBM samples were randomly drawn to
pool together with health samples into similar size with sim-
ulated data. As being shown in Figure 4C, the Rank-In got
the overlapping rate of 0.74 at the smallest sample size of
14 in each platform, then gradually grew to 0.78 when the
sample size increased to 40. After that, the rate stabilized
around 0.79 with similar variation despite the increasing
sample size. Thus, Rank-In seems to work robustly on rel-
atively small consolidated datasets though a larger sample
size may give a better result.

Furthermore, we investigated the ability of Rank-In to
detect DEG in GBM case. For the 157 GBM and 4 health
tissue samples, their paired array or RNA-seq profiles are
randomly split into two sets, with each containing the same
list of tissue samples. DEGs were derived for individual set
between 157 GBM and 4 health control, and further over-
lapping between the two sets. Thus, the higher overlapping
rate indicates the better ability of the method in remov-
ing technology effects. After 100 times of split randomiza-
tion, the overlapped rate (y-axis) was plotted into Figure
4D according to different cutoffs of top DEG lists for peer-
ing methods. It can be seen that the percentage of overlap-
ping genes tends to increase with the increasing cutoff of the

top DEGs list, excepting the uncorrected data. Combat and
SVA showed similar results, with a median range from 0.58
to 0.72 and 0.54 to 0.68 respectively. Interestingly, Rank-
In maintained the top rate among peers at different cut-
offs, with a median range from 0.74 to 0.83, demonstrating
header-and-shoulder higher performance than peers. On
top of that, the standard deviations of Rank-In were kept
the lowest, indicating the robustness of this method.

Online platform

To promote the community application, Rank-In was es-
tablished as an online platform at http://www.badd-cao.net/
rank-in/. Rank-In requires two files as input, the gene ex-
pression profiles of all consolidated samples and the class
label of each sample (Figure 5A). The expression ma-
trix should be uploaded as gene expression intensities in
the log-transformed format of raw value for microarray
or FPKM/TPM/TMM for RNA-seq. The class label file
needs to contain the same sample descriptors as the data
file, as well as the class identifies. Additional information
about the experimental design is encouraged to upload for
better results, such as platforms/batches and cancer types.
Three files will be given by Rank-In, including adjusted ma-
trix, DEG list if two classes are labeled, and an unsupervised
clustering tree (Figure 5B). More instructions can be found
on the online help page.

DISCUSSIONS

The rapid upgrading of RNA profiling technologies makes
the consolidated analysis of cancer transcriptomics a de-
manding task due to the inherent difference of platform
design and data distribution. Existing computational tools
are recommended to compare within the same type of tran-
scriptomic data. Here, Rank-In was designed enabling di-
rect integrative analysis for mixed data of array and RNA-
seq. To achieve the above, Rank-In transformed the raw
expression intensity of overlapping genes between consol-
idated samples into relative ranking within each gene ex-
pression profile, and further partitioned into gene groups
to avoid oversensitivity, as the relative levels of gene ex-
pression were found to be roughly comparable across Array
and RNA-seq technologies, but never the absolute expres-
sion intensity (7). Considering that purely internal ranking
may lead to evenly distributed genes, the ranks were fur-
ther weighted by the intensity increasing slope within gene
groups. Be noted that the slope may display smoothly in the
middle groups, but become extremely sharp at both top and
bottom ends, particularly to RNA-Seq data (38,39), as Fig-
ure 2B showed. As such, the ranking of middle-group genes
may be adjusted into lower value, while those in extreme top
or bottom remain similar after weighted processing. At last,
the technology, platform and batch variances can be further
reduced by matrix decomposition through adjusting those
volatile genes across different samples. So far, the evenly dis-
tributed internal ranking matrix has been normalized into
an un-even one from 0 to 100, to enable cross-sample anal-
ysis.

Among the peers, Combat and SVA are both great meth-
ods being widely adopted within microarray or RNA-seq

http://www.badd-cao.net/rank-in/
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Figure 4. The overlapping rate of top DEGs between microarray and RNA-seq. Angel’s method is not fit to derive DEGs, and thus not shown. (A) The
boxplot of overlapped DEGs on different simulated sample sizes. (B) The boxplot of overlapped DEGs on different imbalanced ratios. (C) The boxplot of
overlapped DEGs on different GBM sample sizes. (D) The overlapped top DEGs between microarray and RNA-seq on GBM.

separately. Until this year of 2020, Angels’ method was
released claiming for cross-platform transcriptomics anal-
ysis between array and RNA-seq for blood samples. In-
stead of all overlapping genes, it can auto-screen and se-
lect a subset of genes with low platform variance for sub-
sequent cell-type clustering. Though being designed for
blood samples, Angel’s method obtained similar perfor-
mance with Combat and SVA in our tests on SEQC cell
samples. Yet on clinical samples of both GBM and colon
cancer, its performance shows fluctuation, with general
achievement better than Combat, but worse than SVA.
This may be related to the inherent limitation of the
‘marker genes’ strategy, where the personal variation in
health tissues might be not enough to become the ‘promi-
nent features’ in data collection (21). While in Rank-In,
both relative and absolute intensity of gene expression
are considered for all overlapping genes between datasets.
This, coupled with SVD to further reduce nonbiological
bias, may have rendered Rank-In to surpass the other
peers.

Being validated on different scenarios, Rank-In showed
unique robustness not only on tumor and health controls
but also on balanced and imbalanced datasets, even the size
of normal control is relatively small. Thus Rank-In could
provide practical means to revitalize and reutilize those ob-

solete datasets for a new analysis of refreshing results, par-
ticularly to those precious tissue samples difficult to obtain,
such as brain or thyroid tissues. In this regard, Rank-In may
help to save the number of samples that need to be col-
lected in clinical research. In terms of application bound-
ary, Rank-In is suggested to be used with caution for those
array profiles with probes targeting only a minor portion of
whole genomes. As RNA-seq is designed to detect all genes
expressed, a partial and biased overlapping list may cause a
global shift in the expression ranking curve, which has bro-
ken the requirement of Rank-In that the overall gene expres-
sion levels are comparable from a view of the whole genomic
portfolio. In the future, this method would be extended to
multiple tumor subtypes, and to combine public data for
cancer transcriptome atlas across multiple platforms and
studies.

To summarize, we developed a method enabling inte-
grative transcriptomics analysis of mixed data across mi-
croarray and RNA-seq for cancer, tolerating small/large,
paired/unpaired and balanced/imbalanced samples. With
continuous updating, Rank-in would be particularly use-
ful to analyzing blended data across different transcriptome
technologies, platforms or batches, as well as consolidat-
ing limited cancer samples for large-scale bioinformatics
analysis.
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Figure 5. The online platform of Rank-In. (A) The interface of uploading consolidated data. (B) The interface of downloading the results such as adjusted
matrix and sorted DEGs.
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