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Kidney renal clear cell carcinoma (KIRC) is one of the most common cancers with high mortality worldwide. As members of the
homeobox (HOX) family, homeobox-A (HOXA) genes have been reported to play an increasingly important role in tumori-
genesis and the progression of multiple cancers. However, limited studies have investigated the potential diagnostic and
prognostic roles of HOXA genes in KIRC. In this research, we explored the expression pattern of the HOXA gene family in KIRC
progression by differential analysis of expression profiles from .e Cancer Genome Atlas (TCGA). By using univariate Cox
analysis and lasso regression analysis, we comprehensively evaluated the prognostic value of HOXA genes and eventually
identified a prognostic risk model consisting of five HOXA genes (HOXA2, HOXA3, HOXA7, HOXA11, and HOXA13). .e risk
model was further validated as a novel independent prognostic factor for KIRC patients based on the calculated risk score by
Kaplan–Meier analysis, univariate and multivariate Cox regression analyses, and time-dependent receiver operating characteristic
(ROC) curve analysis. Moreover, to explore the potential mechanism of tumorigenesis and clinical application of KIRC, we also
developed the HOXA-based competing endogenous RNA (ceRNA) regulatory network and machine learning classification
model. Valproic acid and tretinoin were predicted to be the most promising small molecules to adjuvant treatment of KIRC by
mining the CMAP and DGIdb drug database. Subsequently, pathway and functional enrichment analyses provided us with new
ways to search for a possible mechanism of action of drugs. Taken together, our study demonstrated the nonnegligible role of
HOXA genes in KIRC and constructed an effective prognostic and diagnostic model, which offers novel insights into
KIRC prognosis.

1. Introduction

Homeobox (HOX) gene family, as pivotal regulatory factors
in mammalian development, strongly correlates with body
repair and various homeostatic cellular processes [1, 2].
Currently, there are arrayed 4 gene clusters with 9 to 11
genes per cluster named HOXA, HOXB, HOXC, and
HOXD, respectively [3]. .e HOXA cluster is composed of
11 genes (HOXA1, HOXA2, HOXA3, HOXA4, HOXA5,
HOXA6, HOXA7, HOXA9, HOXA10, HOXA11, and
HOXA13), which encodes highly conserved DNA-binding
transcription factors [4]. Homologous fragments at the end
of the HOXA genes can specifically recognize and bind to the
TAAT or TTAT box in the promoter region of the target

gene and further play a regulatory role by activation and
inhibition of transcription of downstream genes. .e bio-
logical functions of the HOXA gene family cover a wide
spectrum of life regulatory processes, including cell differ-
entiation, cell proliferation, and cell death [5]. Noteworthily,
the HOXA gene family also controls the early patterns of
embryo segmentation, as well as postdevelopmental events.
To date, some literature have found that the expression of
some HOXA genes was dysregulated in certain types of
cancers, which might lead to carcinogenesis [6–9]. For ex-
ample, the upregulation expression of the HOXA1 gene in
breast cells would conduce to increased cell proliferation and
drug resistance in clinical [10, 11]. HOXA gene expression
showed tissue specificity in colorectal carcinoma, which
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presented a more expression level of HOXA13 in normal
colons than in malignant colons [12]. Costa et al. reported
the abnormal expression of HOXA9 and HOXA10 and
estimated their prognostic value in glioblastoma multiforme
[13, 14]. .erefore, a comprehensive exploration of the
biological functions of the HOXA gene family in a wider
range of tumors will bring us light in the field of prognosis
and early screening of tumors.

Renal cell carcinoma (RCC) with approximately 175,000
deaths occurred in 2020 is one of the most frequent ma-
lignancies of the urinary system [15, 16]. Kidney clear cell
renal cell carcinoma (KIRC) is the commonest subtype of
RCC, representing roughly 75% [17]. Since KIRC lacked
sensitivity to chemotherapy and radiotherapy, the primary
treatment for KIRC is still surgery. However, 30% of patients
experience metastasis or recurrence after radical nephrec-
tomy [18]. With the improvement of medical science, the
five-year overall survival rate (OS) of early-stage KIRC could
reach about 80%–95%, whereas the five-year survival rate of
patients with advanced stages drops less than 10% sharply
[19]. .erefore, there is still an urgent need to study new and
sensitive KIRC tumor prognostic markers to reduce the
number of KIRC patients who are not diagnosed before the
onset of the invasive disease [20].

Considering the accuracy of the prognosis and diag-
nostic model, the discovery of the potential value of the
HOXA gene family in KIRC will be more valuable than
simple genes. We comprehensively analyzed HOXA gene
family expression profiles and identified five significantly
prognostic-related genes based on the TCGA-KIRC cohort.
A subsequent corresponding prognostic model was con-
structed and further verified its reproducibility in the in-
ternal and external test set. Besides, we developed the ceRNA
regulatory network based on the HOXA gene family and an
efficient machine-learning classification model in order to
achieve the early screening of KIRC patients. According to
differential expression profiles from the TCGA-KIRC co-
hort, we also carefully screened out possible underlying
small molecular drugs by mining public drug databases. .e
complete workflow of the study is displayed in Supple-
mentary Figure 1.

2. Materials and Methods

2.1. Data Collection and Preprocessing. Gene expression
quantification data (FPKM format) for KIRC were down-
loaded from TCGA (https://portal.gdc.cancer.gov/)..en 72
normal samples and 539 KIRC samples were obtained. .e
RNA expression matrix was extracted separately by anno-
tations using the Gencode (GENCODE v 26) GTF file and
normalized. For repetitive gene expression data, the average
value was utilized as the expression level. .e corresponding
clinical information (n� 537) of KIRC also were obtained
from the TCGA database. Patients with missing clinical
information (including TNM, grade, clinic stage, etc.) or
with OS less than 30 days were excluded from this study to
reduce statistical bias. Ultimately, we obtained a TCGA-
KIRC cohort consisting of gene expression profiles and
corresponding matching clinical information for 487

patients. Sample information of collected TCGA-KIRC is
shown in Table 1. Additionally, to increase the robustness,
the external validation cohort set (E-MTAB-3033) used to
validate the prognostic model was downloaded from the
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) data-
base, acquired using the Illumina Hiseq platform. .e data
set included 91 KIRC samples and corresponding clinical
data. .e external validation set (GSE151419) used to val-
idate the machine learning model was obtained from the
GEO (https://www.ncbi.nlm.nih.gov/geo) database. .e
data set consisted of 58 KIRC tumor samples and 17 normal
adjacent kidney tissue samples, which provided full RNA
expression profiles based on the Illumina Hiseq platform.
Overall, we collected a training set from the TCGA-KIRC
cohort and two external validation sets from the remaining
two databases..e “caret” package in the R environment was
utilized to achieve data partitioning in order to develop
subsequent different models in our analysis.

2.2. Comparison of the mRNA Expression of HOXA Gene
Family inKIRC andNormal Tissues andCorrelationAnalysis.
In order to obtain HOXA gene family members with
prognostic significance rather than simply differential gene
identification, we firstly utilized Wilcoxon test between 539
KIRC samples and 72 normal controlled samples to pre-
liminarily filter potential differential expression genes
(DEGs). P values obtained from the Wilcoxon test and fold
change calculation were adjusted using the BH16 method
[21]. .resholds of |log2FC| > 1.0 and an adjusted P value of
<0.05 were selected (Supplementary Table S1). .e mRNA
expression levels of the HOXA gene family were obtained
from the whole genome mRNA expression by utilizing Perl
software (version 4.26; https://www.perl.org/). .ereafter,
we utilized the “corrplot” package in R to explore the
correlation between the HOXA gene family expression in
KIRC.

2.3. Construction and Evaluation of the Risk Score. To es-
tablish the prognostic signature of the HOXA gene family,
univariate Cox regression analysis was performed for these
genes in the TCGA discovery set, and P< 0.005 was set for
screening condition. To further minimize the risk of over-
fitting, significantly, HOXA genes were then subjected to
lasso regression analysis using the package “glmnet” [22] in
R. .e coefficients (β) obtained from the previous step were
used to generate the following risk score formula: risk
score� gene1 expression ∗ β1 + gene2 expression ∗

β2 + . . .+ genen expression ∗ βn. Finally, the risk score of
each patient was calculated, and according to the cutoff value
of the risk score, samples were stratified into low- and high-
risk score groups. .e optimal cutoff for risk grouping of
different cohorts was determined by the “survminer”
package in R.

2.4. ceRNARegulatory Network andMachine LearningModel
Construction. miRTarbase [23] (http://mirtarbase.mbc.
nctu.edu.tw/), an online platform containing more than
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thousands of miRNA-mRNA target interactions by exper-
imental verification, was used to predict the miRNA
interacting with the HOAX gene family. For putative
miRNA, only the miRNA-mRNA interaction pairs over-
lapped with the TCGA differentially expressed miRNA were
ultimately selected for downstream analysis. In addition, the
possible lncRNAs interacting with filtered miRNA were
predicted by retrieving the LncBase database [24] (http://
carolina.imis.athena-innovation.gr/)..e obtained lncRNAs
were also overlapped with TCGA differentially expressed
lncRNA to finally establish lncRNA-miRNA-mRNA ceRNA
regulatory network. Cytoscape 3.6 provided the visualization
of the network, and then we labeled its position in the
human reference genome HG19 by “circlize” package [25].
Besides, random forest (RF) is an ensemble algorithm of
decision trees, which belong to the branch of ensemble
learning. We used the ceRNA network-related genes as
classification features to establish a machine learning clas-
sification model for predicting possible KIRC patients,
which to some degree assisted clinicians to achieve the early
screening of KIRC.

2.5. Identification of Small Molecule Drugs and Function
Annotations in the Treatment of KIRC. To predict the small
molecular agents that could attenuate or reverse the influ-
ence brought by KIRC, the CMAP database [26] and the
DGIdb database [27] were used to mine the putative mo-
lecular drugs for the treatment of KIRC..e former database
contains whole genomic expression profiles for small active
molecular inferences, and the latter covers more than
thousands of the correlative information between specific
genes and their interacting drugs. Of note, Dr. Insight [28]
provides a novel systematic connectivity mapping method to
connect drugs in the CMAP data set with query data. Hence,

we applied Dr. Insight to establish the mapping relation
between DEGs and potential drugs (P< 0.05 and FDR <0.1
as the significance threshold), instead of the CMAP database.
Based on the provided gene interacted information, the drug
that interacted with DEGs in the above two databases would
be obtained. Moreover, enrichment analysis with GO terms
and KEGG pathways was performed by utilizing the
“clusterProfiler” package [29] in R. .e top pathways of GO
and KEGG enrichment analysis were visualized using the
“ggplot2” package.

2.6. Statistical Analysis. All statistical tests and packages
were implemented by R software (version 3.6.1; https://www.
r-project.org/). .e difference comparison of two groups
was performed by Wilcoxon test, while the difference
comparison of multiple groups was conducted by Kruskal
test. To investigate whether prognostic signature may be an
independent prognostic factor, univariate, multivariate,
lasso regression, and Kaplan–Meier analyses were used to
construct and evaluate the risk signature by using the R
packages “glmnet” and “survival.” ROC curve analysis by
using the R package “survivalROC” was conducted to test
the performance of the prognostic signature. P< 0.05 in-
dicated statistical significance.

3. Results

3.1. Expression Status and Correlation of the Expression of
HOXA Gene Family in the TCGA-KIRC Cohort. We firstly
explored the expression patterns of each HOXA gene in the
TCGA-KIRC expression profile. As shown in Figure 1(a),
almost all of HOXA genes were expressed aberrantly in
KIRC samples compared to normal samples. Among these
genes, HOXA4, HOXA13, and HOXA3 were expressed
higher in KIRC samples than in normal samples, while
HOXA11, HOXA7, HOXA5, HOXA5, HOXA6, HOXA9,
and HOXA2 were expressed lower (P< 0.001). Unlike the
above genes, the expression levels of HOXA1 and HOXA10
were of no statistical difference between normal and KIRC
samples (P> 0.05). Besides, Spearman correlation analysis
was further performed to explore the interaction among the
HOXA gene family. Most of the HOXA genes were corre-
lated with each other positively, whereas the expression of
HOXA13 showed a significant negative correlation with
HOXA11 (Figure 1(b)), which might be related to the target
action of HOXA13 with other HOX genes [30]. .ese
findings demonstrated that the inconsistent expression level
of the HOXA gene family possessed important roles in the
KIRC occurrence and development.

3.2. Establishment and Verification of the HOXA Prognostic
Model. Considering the potential clinical application of the
HOXA gene family in the progression of KIRC, we
attempted to uncover the prognostic and diagnostic value of
HOXA genes. Firstly, we matched the HOXA gene family
expression profiles with clinical information to obtain a
complete prognostic model input profile consisting of 480
patients. .e filtered TCGA-KIRC patients were split at

Table 1: Clinicopathological variables of patients in TCGA dis-
covery and test sets.

Variables Type Total
No. (%)

No. of patients ≤60 487
249 (51.12)

Age >60 238 (48.88)

Gender Female 169 (34.70)
Male 318 (65.30)

Grade
G1-2 211 (43.32)
G3-4 271 (55.64)

Unknown 5 (1.04)

Stage
Stage I 241 (49.49)
Stage II 164 (33.67)
Stage IV 82 (16.84)

T stage T1-2 311 (63.86)
T3-4 176 (36.14)

M stage
M0 400 (82.13)
M1 80 (16.43)

Unknown 7 (1.44)

N stage
N0 216 (44.35)
N1 16 (3.29)

Unknown 255 (52.36)
Abbreviations: T, tumor size; M, metastasis.
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random into the discovery set (n� 384; 70%) and test set
(n� 96; 30%). Secondly, we conducted the univariate Cox
regression analysis in the TCGA discovery set, and the re-
sults showed that six of these genes were clearly related to OS
(P< 0.05; Figure 2(a)). Among these OS-related genes,
HOXA7 acted as protective roles with HR< 1, while
HOXA1, HOXA11, HOXA13, HOXA3, and HOXA2 played
as risky factors with HR> 1. Subsequently, after removing
the insignificantly HOXA1 gene between KIRC samples and
normal samples, five OS-related genes were subjected to the
lasso regression model to reduce the risk of overfitting
(Figures 2(b) and 2(c)). Finally, a five-gene prognostic
signature consisting of HOXA11, HOXA13, HOXA7,
HOXA3, and HOXA2 was constructed. Applying the co-
efficients obtained from the lasso regression, the risk score

for each patient was calculated, and the formula for the risk
score was as follows: Exp(HOXA11)

∗ 0.1544− Exp(HOXA7)
∗ 0.1823 + Exp(HOXA13)

∗ 0.0912 + Exp(HOXA3)
∗ 0.0326 +

Exp(HOXA2)
∗ 0.1055. According to the optimate cutoff of risk

score, patients were stratified into low- and high-risk score
groups.

We further evaluated the performance of the prognosis
model in TCGA-KIRC discovery and test sets, as well as in
external validation sets (consisting of 91 KIRC patients).
Either one of the sets showed all-right survival prediction
ability (Figures 2(d)–2(f )). Specifically, the survival risk
curve showed that patients in the high-risk score group had
an obviously shorter overall survival time compared with
patients in the low-risk score group (P< 0.005). Moreover,
to compare our model with the existing model in predicting
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Figure 1: Differentially expressed HOXA genes and correlation analysis results in the TCGA data set: (a) the relative expression levels of
HOXA genes across KIRC and normal samples and (b) the heatmap of HOXA genes between KIRC and normal samples is shown on the left,
corresponding to Spearman correlation analysis of the HOXA genes on the right. “X” and different colors represent P> 0.05 and correlation
coefficients, respectively.
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Figure 2: Continued.

Journal of Oncology 5



the survival rate, we constructed the ROC curve of the
HOXA signature, TNM stage, age, gender, and clinical
grade. .e area under the curve (AUC) of the HOXA sig-
nature was 0.701 (Figure 2(g)), which showed that our
prognostic signature had reliable predictive power and was
similar to the AUC of clinical grade. .en we analyzed the
time-dependent ROC curve of the HOXA signature. We
found that the area under the HOXA signature curve: 1 year:
0.70, 3 years: 0.68, and 5 years: 0.71 (Figure 2(h)). Of note,
clinical grade and TNM stage were known as the prognostic
criteria in KIRC. Compared with clinical-grade ROC (AUC
at 1, 3, and 5 years were 0.71, 0.69, and 0.67, respectively), the
HOXA prognostic model had similar prognostic perfor-
mance but had a more prominent prognostic capability at
5 years. Compared with TNM stage ROC (AUC at 1, 3, and 5
years were 0.56, 0.56, and 0.55, respectively), the HOXA
prognostic model consistently delivered better prognostic
performance (Supplementary Figure 2). .ese all indicated
that our model had a good predictive ability for patients with
1-, 3-, and 5-year survival.

3.3.Prognostic Signature, asanIndependentPrognosticFactor,
Correlated with Disease Progression. For observing the as-
sociation between the risk score and clinicopathological
features, we quantitatively examined the expression levels of
prognostic signatures in high-/low-risk score groups
(Figure 3(a)). We found that the HOXA score was clearly
correlated with survival status, stage, grade, and T stage
(P< 0.001; Figures 3(b)–3(e)). Specifically, as the HOXA
score gradually increased, the patient’s disease state became
more severe. To investigate whether the above prognostic
signature could be used as an independent prognostic factor,
we implemented univariate and multivariate Cox regression
analyses of the risk score and relevant clinical variables in the

TCGA-KIRC cohort (Figures 3(f ) and 3(g)). In the uni-
variate analysis, we found that the risk score was significantly
correlated with the overall survival (OS; HR� 1.070, 95%
CI� 1.025–1.117, P< 0.005). Multivariate analysis shows
that the risk score is an effective independent prognostic
predictor of OS (HR� 1.086, 95% CI� 1.026–1.149,
P< 0.005). Besides, the Kaplan–Meier survival curves were
also applied to evaluating single prognostic roles of the five
prognosis-related HOXA genes (Supplementary Figure 3).
.ese results reflected that the prognostic signature based on
the HOXA gene family was an independent prognostic
predictor for KIRC and significantly correlated with disease
progression.

3.4.Constructing the ceRNARegulatoryNetworkandMachine
Learning Model. To establish the HOXA-associated ceRNA
regulatory network, we predicted the interactions among
DE-miRNAs, DE-lncRNAs, and DE-mRNAs by using
bioinformatics tools. miRNAs that interacted with the
HOXA gene family were obtained from the miRTarbase
database. After we discarded miRNAs that did not include in
DE-miRNAs, eight miRNAs were selected as the ceRNA-
miRNAs for follow-up research. .en, we utilized the
LncBase database to predict the miRNA-LncRNA interac-
tion pairs and then found the eleven lncRNAs that were
predicted to interact with the above miRNAs. Ultimately,
eleven lncRNAs, eight miRNAs, and four HOXA genes were
included in the ceRNA network. Based on the above find-
ings, we systematically constructed and visualized the
ceRNA regulatory network using Cytoscape 3.6.
Figures 4(e)–4(f) show that four miRNAs, two mRNAs, and
eleven lncRNAs are involved in one ceRNA network; only
two single HOXA-miRNA pairs were involved in another
ceRNA network. .e position of the ceRNA elements in the
human reference genome HG19 was labeled in Figure 4(g).
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Figure 2: Establishment and verification of the prognostic signature of HOXA genes in the TCGA database: (a) univariate Cox regression
analysis of HOXA genes; (b) lasso model with tenfold cross-validation; (c) lasso coefficient profiles of the six HOXA genes; (d–f)
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Moreover, we applied the classifier RF to establish a
machine learning model based on multiple related features,
aiming at unsupervised early diagnosis of KIRC patients.
Briefly, we randomly stratified samples for the training set
(70%) and the independent test set (30%) (Figure 4(a) and
Supplementary Table S2). .e ceRNAs expression level and
clinicopathological features were regarded as the input
feature of the model and then normalized. We selected the
optimal hyperparameters by tenfold cross-validation,
trained the final model, and evaluated the model in an
internal and external test set. A more detailed model con-
struction process was provided in Supplementary Figure 4.
Our training results showed strong generalizable

discrimination among the two classes, with a training set
AUC of 0.985 and a test set AUC of 0.970 (Figures 4(c) and
4(d)). .e confusion matrix showed that almost all patients
in the test set were correctly identified, except for two
normal patients who were predicted to have the tumor.
Furthermore, by introducing an external validation data set
from the GEO database, our model still achieved good
classification performance even when clinical input features
are completely missing, with a validation set AUC of 0.756.
.e importance of different features in the model was
prioritized and ranked by average decrease accuracy, and we
further found that several lncRNAs and miRNAs (such as
XIST, TRG-AS1, SNHG5, etc.) showed the ability of better
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classification than other features (Figure 4(b)). In general,
these results demonstrated that early screeningmodels based
on HOXA-ceRNA regulatory networks had good predictive
power and suggested that some important HOXA-related
biomarkers deserved attention in the KIRC progression.

3.5. Mining of the Small Molecule Drug and Function
Annotations. To predict the potential small molecule drug in
the treatment of KIRC, a total of 1,373 DEGs (669 upregulated
and 704 downregulated) were identified between 539 tumor
samples and 72 normal controlled samples, as shown in the
volcano (Figure 5(a)). .e DEGs were submitted to the CMAP
database and the DGIdb database, obtaining 3,587 and 3,670
types of putative drugs, respectively. .e intersection of 2 da-
tabases showed 294 type possible small molecule drugs
(Figure 5(b) and Supplementary Table S3). After filtering by the
threshold of P value and FDR, only 2 possible small molecule
drugs, named valproic acid and tretinoin, were finally identified.
.eir chemical structure was retrieved from the PubChem
database and shown in Figure 5(c). Detailed annotated infor-
mation about these small molecule drugs is listed in Table 2.
Moreover, in order to explore insight into the potential mo-
lecular mechanisms of 2 drugs, enrichment analysis (GO terms
and KEGG pathways) of DEGs was carried out. .e results
indicated that DEGs were notably associated with many sig-
naling pathways related to cancer and immunity, such as cy-
tokine-cytokine receptor interaction and PI3K-Akt signaling
pathway (Figures 5(d) and 5(e)). Abovementioned results
provided possible molecular targets and signaling pathways for
subsequent researches of drug interventions in KIRC
progression.

4. Discussion

In addition to the HOXA gene family role in regulating
embryonic development and cell fate, gene members also
play an important role in tumor genesis, progression, and
patient prognoses, such as hepatocellular carcinoma [31],
epithelial ovarian cancer [32], leukemia [33, 34], and gastric
cancer [35]. KIRC is a heterogeneous disease with complex
biological characteristics, the incidence of which is in-
creasing rapidly worldwide. Advances in surgical techniques
and comprehensive treatment techniques have improved the
local control rate and quality of life of KIRC patients. Still, in
recent decades, the survival rate has not increased signifi-
cantly. KIRC still needs to find accurate biomarkers for early
diagnosis and a more accurate prognosis. Hence, a com-
prehensive and in-depth exploration of the role of the
HOXA gene family in KIRC development is necessary to be
performed.

In our study, we aimed at investigating the expression
pattern of the HOXA gene family to uncover the association
between these gene members and prognosis and clinical
application in KIRC. By analyzing the TCGA-KIRC ex-
pression profile from the open-access TCGA database, a
total of 1,373 DEGs showed a considerable difference be-
tween the two groups, which included 9 HOXA gene family
members. By utilizing univariate Cox regression analysis, 5
HOXA genes were found to be associated with the prognosis
significantly, including HOXA2, HOXA3, HOXA7,
HOXA11, and HOXA13. Currently, numerous studies have
demonstrated that the above HOXA genes played a critical
role in multiple cancers. For instance, the results of Heller
and Eoh et al. identified HOXA2 as potential prognostic
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Figure 4:.e construction of ceRNA regulatory network and machine learning classifier. (a) Flowchart of developing RF machine learning
model. Based on the ceRNAs and clinicopathological features as the input of the model, the model was trained with cross-validation using a
training set (n� 422) after normalization. And then the trainedmodel was further applied to assessing generalization and performance using
the independent testing set (n� 180) and the external validation set (n� 75). (b).e important features ranked by RFmodel. Mean decrease
accuracy is shown along the horizontal axis, the value of which means the average impact of features in the model. .e stacked bar indicates
the different classes of features. (c) Confusion matrix for classifying the KIRC sample in the independent testing set. (d) Density plot of ROC
for classifying the KIRC sample in the training set, the testing set, and the external validation set. (e) .e HOXA genes related to ceRNA
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markers and therapeutic targets for non-small cell lung
cancer and cervical cancer patients [36, 37]. Li et al. found
that epigenomic modifications of two HOXA gene family
members (HOXA2 and HOXA5) were closely associated
with the clinical manifestations of non-small cell lung cancer
patients [38]. HOXA7 significantly enhanced proliferation,
migration, invasion in vitro, and tumor growth and me-
tastasis in vivo in liver cancer. .e activation of Snail
molecules was an important mechanism for HOXA7 to
perform its oncogenic characteristics for liver cancer cells
[39]. Moreover, HOXA11 regulated RCC cells apoptosis by
inhibiting Wnt signaling in renal cell carcinoma, and its
function was regarded as a tumor suppressor in RCC [40].
HOXA13, as a novel oncogenic gene in KIRC, was proved to
accelerate cancer cell proliferation in a p53-dependent way
[41]. A more detailed summary of the different roles of
HOXA family members in KIRC was illustrated in Sup-
plementary Table S4. Some HOXA genes whose functions
have been researched, such as HOXA3, HOXA9, and
HOXA13, were mostly confirmed to have significant
prognostic values in our research and then introduced to the
subsequent establishment of the diagnostic model. Such
evidences also efficiently improve the interpretability of our
machine learning model. In clinical observation aspects, we
found the expression of the aforementioned genes was
changed as the disease stage and ages at clinic diagnosis
developed, indicating the expression levels of these genes are
highly correlated with malignant progression of KIRC.
Collectively, our study is the first to link these genes to the
prognosis and clinical features of KIRC, providing clues for
further study of the molecular mechanisms involved.

Prognostic-associated HOXA genes were identified as
independent prognostic factors for KIRC patients by mul-
tivariate Cox regression analysis. We classified KIRC pa-
tients into high- and low-risk score groups to precisely
predict clinical outcomes. And we further verified that risk
score, age, tumor T stage, and clinical grade were inde-
pendent prognostic factors, which provided additional
pathway options for the prognosis of KIRC patients.
Moreover, stratification analysis demonstrated that the high-
risk subgroup had worse OS compared to the low-risk
subgroup, which was almost consistent with the trend ob-
served in clinical. It was worth noting that we found
HOXA13 and HOXA3 were upregulated in tumor samples
compared with normal samples. HOXA13 and HOXA3 also
were risk factors (hazard ratio >1), which were upregulated
in the high-risk subgroup..e Kaplan–Meier survival curves
showed that higher expression of HOXA13 and HOXA3
were linked to poorer survival outcomes. .ese results
suggested that they might act as tumor suppressors in KIRC.
On the contrary, HOXA7 was downregulated in tumor
tissues and regarded as a protective factor (hazard ratio <1),

which were upregulated in the low-risk subgroup. And the
lower expression of HOXA7 was linked to poorer survival
outcomes. .ese results suggested that it might act as a
tumor promoter in KIRC. Cai et al. demonstrated similar
results in their study, which presented the negative prog-
nostic role of HOXA13 in KIRC [41]. .e roles of the
remaining three HOXA genes in tumors have not been
reported. Furthermore, verifying HOXA gene members’
function and mechanism by molecular biology experiments
methods was necessary to be performed.

.e ceRNA hypothesis provided a novel guiding theory
and suggested valuable strategies for the diagnosis and
treatment of malignancies. Herein, we constructed a HOXA-
related lncRNAs-miRNAs-mRNAs ceRNA regulatory net-
work based on the TCGA-KIRC expression profile. By in-
tegrating the ceRNAs and clinical features as input variables,
we successfully constructed an RF classifier to achieve the
early screening of KIRC patients and performed well in the
test and validation set. According to the results of the
prediction model, partial lncRNAs and miRNAs have better
categorization than the other features. .ese features such as
FGD5-AS1, SNHG1, TRG-AS1, and MIR22HG have higher
mean accuracy in model evaluation and thus may potentially
yield crucial diagnostic biomarkers for early screening KIRC
patients. Currently, numerous studies have described the
functional role of these genes in the pathogenesis of KIRC.
For example, Yang et al. found that FGD5-AS1 expression
was significantly lower in the KIRC sample than in adjacent
normal tissues, and increased expression of FGD5-AS1 was
associated with longer OS. .ey believed that FGD5-AS1
could serve as a valuable diagnostic and prognostic marker
in KIRC [42]. Zhao et al. reported that SNHG1 promoted
KIRC progression and metastasis by negatively regulating
miR-137 [43]. MIR22HGwas first reported by Tani et al. [44]
and commonly downregulated in tumor tissues and par-
ticipated in the inhibition of cell proliferation. Abnormal
expression of MIR22HG was associated with many tumors,
including lung cancer, breast cancer, and thyroid cancer
[45, 46]. Using these features, we could optimize existing
approaches to improve the accuracy and sensitivity of
auxiliary detection and prevent progression in time to
minimize individual, medical, and social costs.

Based upon the DEGs and drug interactions from the
CMAP and DGIdb databases, we reported several putative
small molecule drugs that displayed anticancer activity.
Valproic acid, which was used as an anticonvulsant drug for
years, was related to inhibitions on cell proliferation and
differentiation, cell cycle control, and cell apoptosis in KIRC.
Valproic acid could activate ERK and AKT proteins and
perform antitumor effects by regulating cell apoptotic signal
pathways [47, 48]. Recent research reported that the com-
bination strategy of valproic acid and metformin enhanced

Table 2: Antineoplastic drugs targeting DEG based on the CMAP database and the DGIdb database.

Name Cell line P value FDR Description
Valproic acid HL60 4.88E-08 5.84E-05 Histone deacetylases and nitric oxide synthase inhibitor
Tretinoin MCF7 0.0017 0.087129 Regulators of cell reproduction, proliferation, and differentiation
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the antitumor activity and surprisingly overcame the re-
sistance induced by the long-term use of metformin in KIRC
cells [49]. Tretinoin, a derivative of vitamin A, functions via
targeting the retinoic acid receptor alpha (RARα) mediated
signals to regulate cell apoptosis [50]. Shi et al. reported that
tretinoin could be a novel promising drug to overcome RCC
resistance by regulating TR4/lncTASR/AXL signaling
pathway while also aiding in enhancing sunitinib efficacy in
RCC treatment [51]. Subsequently, the outcomes of en-
richment analysis revealed that the PI3K-Akt signaling
pathway might be the most probably putative action
mechanisms of future drug development. Considering this,
further researches were still required to investigate their
suitability as broad-spectrum antitumor auxiliary drugs in
KIRC.

As far as we know, this work is the first to research the
prognostic value and clinical application of the HOXA gene
family in KIRC. We identified a novel risk prognostic model
consisting of five HOXA gene family members (HOXA2,
HOXA3, HOXA7, HOXA11, and HOXA13) in KIRC.
Furthermore, based on HOXA-ceRNA regulatory network,
we constructed an efficiently machine learning early
screening model for KIRC patients. .ese developments
may open a new chapter in KIRC prognosis and diagnosis.
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