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Abstract: The endoplasmic reticulum (ER) supports many cellular processes and  

performs diverse functions, including protein synthesis, translocation across the membrane, 

integration into the membrane, folding, and posttranslational modifications including N-linked 

glycosylation; and regulation of Ca2+ homeostasis. In mammalian systems, the majority of 

proteins synthesized by the rough ER have N-linked glycans critical for protein maturation. 

The N-linked glycan is used as a quality control signal in the secretory protein pathway.  

A series of chaperones, folding enzymes, glucosidases, and carbohydrate transferases support 

glycoprotein synthesis and processing. Perturbation of ER-associated functions such as 

disturbed ER glycoprotein quality control, protein glycosylation and protein folding results 

in activation of an ER stress coping response. Collectively this ER stress coping response is 

termed the unfolded protein response (UPR), and occurs through the activation of complex 

cytoplasmic and nuclear signaling pathways. Cellular and ER homeostasis depends on 

balanced activity of the ER protein folding, quality control, and degradation pathways; as 

well as management of the ER stress coping response. 
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1. Introduction 

The endoplasmic reticulum (ER) is a multifunctional network of intracellular membranes responsible 

for the secretory protein demands of the cell as well as adaptive responses to stress. Proteins within the 

ER are responsible for controlling the translation, folding, and translocation of nascent polypeptides for 
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secretion or insertion into the membrane as transmembrane proteins. The many functions of the ER are 

supported by its luminal environment, including formation of disulphide bonds and protein folding, 

carried out by molecular chaperones and folding enzymes, as well as post-translational modifications [1]. 

Once soluble proteins are properly folded, they are targeted to the secretory pathway. The molecular 

chaperones of the ER are also important for regulating intracellular Ca2+ signaling within the ER lumen 

and the rest of the cell [2–4]. Accumulation of mis-folded proteins in the ER due to cellular insults, 

impaired ER homeostasis and/or disrupted glycoprotein quality control leads to activation of a specific 

ER stress coping response, termed the unfolded protein response (UPR) [5,6]. The UPR results in ER to 

nucleus and ER to plasma membrane signaling, with activation of genes encoding ER chaperone 

expression [6], inhibition of protein synthesis and increased protein degradation [5,6]. Consequently, the 

ER may be defined as a versatile component of the intracellular reticular network able to detect and 

integrate incoming signals, modulate and respond to its own luminal dynamics and generate output 

signals in response to environmental changes [4,5,7]. 

2. Glycoproteins and ER Quality Control 

Secretory (glyco)proteins and membrane (glyco)proteins are synthesized on ER membrane-bound 

ribosomes. Most of the nascent protein chains that enter the ER lumen are targeted for N-linked 

glycosylation (Figure 1). The covalent attachment of hydrophilic oligosaccharide to the nascent chain 

can increase protein solubility and stability. Initially, the N-glycan is partially synthesized on the 

cytoplasmic side of the ER membrane. The N-glycan is then “flipped” to the ER luminal side by a  

bi-directional flippase in an ATP-independent manner [8]. Future addition of mannose and glucose 

moieties on the partially synthesized N-glycan is carried out by multiple mannosyltransferases and 

glycosyltransferases to form the mature oligosaccharide donor for protein N-glycosylation [9]. A specific 

14 residue oligosaccharide consisting of Glc3Man9GlcNAc2 (Glc: Glucose; Man: Mannose; GlcNAc:  

N-acetylglucosamine) is transferred from the donor Glc3Man9GlcNAc2-PP-dolichol to the Asn-X-Ser/Thr 

(NXS/T, where X is any amino acid except proline, although in some case NXC, NXV or NG can  

also be used [10]) site in the growing polypeptide chain, occurring when the polypeptide termini is a 

minimum of 12–14 amino acids away from the membrane [11]. This transfer is catalyzed by OST 

(oligosaccharyltransferase), an ER membrane bound and translocon (Sec61) associated multimeric 

protein complex [12–14]. Immediately after the attachment of Glc3Man9GlcNAc2 to the nascent chain, 

the terminal glucose residue is trimmed by glucosidase I. Since both OST and glucosidase I are part of 

the translocon complex [12], they can closely associate with newly synthesized polypeptide chain, with the 

oligosaccharide transferring and the first glucose trimming generally occurring co-translationally [15–18]. 

Glucosidase I is an 85 kDa type II membrane glycoprotein composed of two contiguous domains: a 

membrane bound domain and a 39 kDa catalytic luminal domain [18]. This first glucose trimming 

process is very fast and occurs immediately after the glycan attaches to the nascent chain [15,16]. The 

Glc2-N-glycan generated by glucosidase I can associate with malectin, an ER localized type 1 membrane 

associated N-glycan binding protein [19]. The possible functions of malectin include recruiting glucosidase 

II for further deglycosylation and preventing aggregation of nascent polypeptides during the early synthesis 

period [19]. 
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Figure 1. N-Glycan synthesis and glucose trimming in the ER. The synthesis of N-glycans 

begins on the cytoplasmic face of the ER membrane. The enzymes that catalyze each step in 

N-glycan biosynthesis are encoded by ALG genes. Firstly, GlcNAc-P is attached to the 

membrane-bound dolichol phosphate from UDP-GlcNAc by GlcNAc-1-phosphotransferase 

(ALG 7) and UMP is released. The addition of GlcNAc and mannose residues is catalyzed 

by ALG13/14, and ALG 1, 2, and 11 sequentially. The partially synthesized N-glycan 

(GlcNAc2Man5) is flipped across the ER membrane to the luminal side by an ATP-independent 

flippase. Four mannose and three glucose residues are added to generate the final mature  

N-glycan which is transferred to the nascent polypeptide chain by oligosaccharyltransferase 

(OST). The terminal two glucoses can be removed by glucosidase I and glucosidase II 

separately. Glucosidase II also removes the last glucose, which can be re-attached by UGGT. 

The next two glucose residues are sequentially removed by glucosidase II [20]. When glucosidase II 

removes the second glucose from the core oligosaccharide, it generates the monoglucosylated glycan 

(GlcMan9GlcNAc2) that allows the initial binding of the N-glycosylated nascent chain to calnexin and 

calreticulin, members of the protein quality control cycle [21,22]. Glucosidase II is a soluble heterodimeric 

enzyme that removes the remaining two glucose residues from N-glycan [20] and is composed of a 

catalytic α subunit and a regulatory β subunit [20]. The regulatory β subunit contains a mannose  

6-phosphate receptor homology (MRH) domain and KDEL ER retrieval signal [23,24]. In vitro affinity 

chromatography shows that the glucosidase II β subunit can bind strongly to glycans with the α 1,2-linked 

mannobiose structure. Moreover, mutations in the β subunit can significantly inhibit glucosidase II 

substrate binding [24].  
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Figure 2. Glycoprotein folding in ER and the calnexin/calreticulin cycle. The folding of 

newly synthesized glycoproteins in the ER is assisted by calnexin (CNX) and calreticulin 

(CRT). Initially, a 14-residue oligosaccharide is transferred from dolichol di-phosphate to 

the nascent chain of glycoprotein by oligosaccharyltransferase (OST). The terminal two 

glucoses are removed by glycosidase I and II sequentially. The monoglucosylated form of 

the glycoprotein can then bind to CNX and the CRT N-domain to facilitate its folding. Both 

CNX and CRT are associated with ERp57 on their arm-like P-domains. The binding of CNX 

and CRT with the protein substrate is also stabilized by the oxidoreductase ERp57. Removal 

of the last glucose by glucosidase II causes substrate release from CNX/CRT. If the protein 

reached its native conformation, it will be released from the ER through the protein secretory 

pathway. However, if the protein is not correctly folded, the exposed hydrophobic region 

will be recognized by UDP-glucose:glycoprotein glycosyltransferase (UGGT). This enzyme 

will add the removed glucose back on to the glycoprotein from a UDP-glucose donor. This 

generates a monoglucosylated N-glycan on the glycoprotein and promotes binding with 

CNX/CRT again. A protein may cycle through this CNX/CRT cycle numerous times before 

it reaches its native conformation. However, if proper folding of the protein still cannot be 

achieved, the unfolded protein will be targeted to the ER associated degradation (ERAD) 

pathway. ERAD targeted proteins undergo sequential demannosylation assisted by EDEM, 

an ER-resident mannosidase. Demannosylated ERAD substrates are then recognized by and 

bind to XTP3-B and OS-9 which prevent aggregation and are then further targeted to  

Hrd1-SEL1L for ubiquitination. This is followed by retro-translocation into the cytoplasm 

where the misfolded polypeptide chain is subjected to proteasome degradation. Additionally, 

the accumulation of unfolded protein will also trigger the unfolded protein response (UPR). 
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The NMR structure of this MRH domain demonstrated a β-barrel fold similar to the mannose binding 

site of other mannose 6-phosphate receptors [25]. However, this mannose binding site on the glucosidase 

II β subunit is very shallow, and can only fit a single mannose residue [25]. Unlike glucosidase I, the 

trimming of glucose by glucosidase II is more regulated. The second glucose trimming by glucosidase II 

only occurs when there is a second glycan present in the nascent chain [15]. After removal of the second 

glucose by glucosidase II, the resulting monoglucosylated glycoprotein can bind to the lectin chaperones, 

calnexin and calreticulin, and the protein is targeted to the ER protein quality control cycle (Figure 2). 

3. Calnexin/Calreticulin Cycle  

Calnexin and calreticulin are two critical ER localized lectins, non-classical chaperones, responsible 

for the folding and quality control of newly synthesized glycoproteins (Figure 2) [1]. Calnexin is a Type I 

integral membrane protein, with the bulk of the polypeptide exposed to the lumen of ER where the protein 

interacts with substrates. The cytoplasmic tail of calnexin may also affect protein folding and appears to 

interact with a number of cytoplasmic molecules, as well as undergoing posttranslational modification 

including phosphorylation, sumoylation and palmitoylation [26–31]. Calreticulin is a high capacity Ca2+ 

buffering ER localized protein, with similar substrate specificity for glycoproteins as calnexin [32]. Both 

protein, in conjunction with ERp57, an ER resident oxidoreductase, function as the major chaperone 

complex in the calnexin/calreticulin cycle. Calnexin or calreticulin interact with the monoglucosylated 

glycan found on the nascent polypeptide chains. The sugar residues on the glycoprotein interact with the 

globular N-domain of calnexin or calreticulin, while the polypeptide chain can form transient mixed 

disulfide bonds with ERp57 to further stabilize the interaction and assist in folding [1]. The binding of 

these non-stable glycoprotein intermediates with calnexin/calreticulin-ERp57 complexes can also prevent 

protein aggregation. When the third glucose residue is removed by glucosidase II, allowing its release 

from the calnexin and calreticulin protein quality control cycle [1,33], then the native glycoprotein is 

released from the ER and transits through the secretory pathway. Since glucosidase II seems to have no 

substrate specificity towards native glycoproteins, it can also cleave the third glucose from improperly 

folded proteins. The last glucose of the N-linked glycan is removed by glucosidase II upon substrate release 

from calnexin/calreticulin, but can be re-attached by the UDP-glucose:glycoprotein glucosyltransferase 

(UGGT) [34]. UGGT is a fascinating glucosyltransferase that plays an essential role in ER protein 

quality control. It can re-attach the third glucose (previously removed) onto the N-linked glycan of 

improperly folded glycoproteins, which allows the glycoprotein to re-enter the calnexin/calreticulin 

protein quality control cycle [35]. UGGT is an enzyme comprised of two main functional parts: a large 

N-terminal folding sensor region, and a C-terminal carbohydrate transferase domain [1,36]. The N-terminal 

sensor region is predicted to contain three tandem thioredoxin-like domains [36]. In vitro molecular 

studies demonstrate that UGGT only interacts with the hydrophobic amino acids exposed in denatured 

protein conformations [37]. Until recently, the crystal structure of the third thioredoxin-like domain in the 

N-terminal sensor region had not been solved. The crystal structure revealed an extensive hydrophobic 

patch, which is concealed by a single α helix [36]. Functionally, this indicates that hydrophobic amino 

acids of other proteins can bind to UGGT through hydrophobic interactions [36]. This may explain the 

substrate selectivity of UGGT towards misfolded proteins, as the hydrophobic amino acid side chains in 

mis-folded proteins are more likely to be exposed than in properly folded proteins. A protein may enter 
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this quality control cycle numerous times until it is properly folded. However, if correct folding of the 

protein cannot be achieved, the mis-folded protein will be targeted for degradation through the ER 

associated degradation (ERAD) process. Accumulation of misfolded protein will also trigger the unfolded 

protein response (UPR). These mechanisms function to ensure that misfolded and incorrectly assembled 

proteins are retained in the ER and eventually degraded. Other than calnexin and calreticulin, there are 

additional ER chaperones involved in protein folding, including BiP (immunoglobulin binding protein) 

and PDI (protein disulfide isomerase) [1,38,39]. 

4. Molecular Properties of Calnexin and Calreticulin 

Calnexin is a 90-kDa, non-glycosylated type I membrane protein [40,41]. The crystal structure of 

calnexin’s ER luminal domain was solved at 2.9Å resolution and revealed two important functional domains 

in its core luminal region, namely the P-domain and the globular carbohydrate binding domain [41,42]. 

The C-terminus acidic cytoplasmic tail of calnexin was not included in crystallization studies [42]. The P 

domain consists of a long extended arm (134 amino acids in length) composed of β-sheets and loops that 

are rich in proline residues. NMR analysis shows that the P domain of calnexin contains the ERp57-binding 

site on the tip of the P domain at residues 361-367 [43]. This interaction with ERp57 is important for the 

chaperone function of calnexin. A β-sandwich structure forms the carbohydrate binding domain of 

calnexin, which is commonly found in leguminous lectins [42]. 

Calreticulin is a 46-kDa ER luminal protein [32]. Recent evidence points to the targeting of calreticulin 

to alternate sites within the cell, including the nucleus, mitochondria, cytoplasm and the plasma 

membrane [44–49]. Additional studies are needed to further support the diverse intracellular localization 

of this ER resident protein and it is outside the scope of this review. While the crystal structure of the whole 

protein has not been solved, calreticulin shows a high degree of primary amino acid sequence similarity to 

calnexin. It contains three structural and functional domains: a globular N-domain, a long P-domain arm, 

and an acidic C-domain [32]. The crystal structure of the globular N-domain and NMR analysis of 

calreticulin shows that calreticulin bears strong homology to calnexin. Moreover, the ERp57 binding 

site also lies at the tip of the P-domain, specifically at polypeptide segment 225-251 [50]. The primary 

oligosaccharide binding site in calreticulin is located in the globular N-domain [51]. There is potentially 

a secondary binding site in the P-domain, but it shows much weaker interactions with sugar and a lack 

of specificity for monoglycosylated oligosaccharides [51]. Mutational analysis studies identified that 

mutation of some residues in the N-domain, including Tyr109, Asp135 [52], Tyr128, Tyr109, Lys111, 

and Asp317 [53], can completely abolish oligosaccharide binding. A high resolution crystal structure of 

the N-domain in complex with its tetrasaccharide substrate (GlcMan9GlcNAc2) suggests that the shape 

of the sugar binding pocket is formed by concave β-sheets with two residues, Gly124 and Lys111, 

responsible for the binding selectivity and specificity of monoglycosylated oligosaccharides to calreticulin. 

These two residues can form direct hydrogen bonds with the oxygen of the glucose [54]. 

5. Endoplasmic Reticulum Associated Degradation (ERAD) 

ERAD is a process by which misfolded ER proteins are detected in the protein secretory pathway by 

ER-resident factors and directed to translocation machinery for retro-translocation into the cytoplasm, 

where they undergo ubiquitin- and proteasome-dependent degradation. ERAD is initiated when the 
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misfolded proteins are recognized by EDEM (ER degradation-enhancing α-mannosidase–like protein), 

which starts to trim the mannose residues from the core glycan of misfolded proteins [55–58]. Recent 

evidence points to compartmentalization as the mechanism to target proteins for ERAD [59,60]. Mannose 

removal involves several proteins, including ERManI (ER α1,2-mannosidase I), EDEM1,2,3 and Golgi 

resident mannosidase I [56,61,62]. Interestingly, ERManI is localized in quality control vesicles [61,63], 

while EDEM1 is found mostly in autophagy like vesicles that do not involve the COPII exit sites [56,64,65]. 

Finally, the Golgi-resident α1,2-mannosidases [62] cleave mannose residues from Man9GlcNAc2 to 

Man5GlcNAc2 of the N-glycan [9,66]. Mannose trimming is believed to be the key step for preventing 

ERAD targeted proteins to re-enter the calnexin/calreticulin cycle [67,68]. Decreased mannose content 

in the core glycan of glycoproteins can prevent glycosylation by UGGT in cell-free assays [69], as well 

as binding to calreticulin and calnexin [22]. However, in vivo, UGGT enzymatic activity does not influence 

the mannose content in the core glycan of the substrate [70]. The exit of misfolded glycoproteins from the 

calnexin/calreticulin cycle most likely occurs upon removal of the outermost mannose residue from the 

glucose-containing arm, preventing re-glycosylated by UGGT [66]. The deglycosylated and demannosylated 

misfolded proteins are recognized by the ERAD lectin, osteosarcoma amplified 9 (OS-9) and XTP3 

transactivated protein or erlectin (XTP3-B), which bind to the misfolded proteins and delivers them to 

HRD1-SEL1L for ubiquitination [71,72]. The HRD1-SEL1L ubiquitin ligase is part of a complex in the ER 

membrane which includes Der1-like proteins 1 and 2, VCP, p97, valosin containing protein (VCP)/p97-

interacting membrane protein (VIMP), and Herp [73,74]. This is followed by retro-translocation into the 

cytoplasm and subsequently targeting to the 26S proteasome for degradation [75]. The retro-translocation 

machinery may include Derlin-1 [76], which contains four transmembrane regions, forming a complex 

with the small membrane protein VIMP, cytoplasmic valosin containing protein (VCP) also termed AAA 

ATPase p97 [73,77,78], and N-glycanase, which removes the oligosaccharide [79]. This complex appears 

to be distinct from the Sec61 translocon [73,80,81].  

6. Quality Control and Endoplasmic Reticulum Stress 

Protein glycosylation is a fundamental part of the ER protein quality control. Entry to the secretory 

pathway begins at the ER to drive glycoprotein movement towards the trans-Golgi to deliver properly 

folded glycoproteins. Many of the cell surface glycoproteins are critical for the homeostasis of eukaryotic 

cells. Impaired protein glycosylation and folding may trigger activation of ER stress coping responses 

(i.e., the UPR). Furthermore, disruption of glycoprotein trafficking to the cell surface may also contribute 

to the activation of ER stress coping responses and the cell’s ability to recognize and deal with 

environmental stimuli. 

One of the main features of ER stress is an accumulation of mis-folded proteins in the ER lumen, which 

results in activation of the UPR [82]. The UPR triggers an adaptive response to restore ER homeostasis  

by coordinating a reduction in the quantity of protein expressed, increased expression of molecular 

chaperones to deal with buildup of misfolded protein, as well as an increase in ER-associated protein 

degradation to remove misfolded proteins [83,84]. Initially, suppression of protein synthesis and up 

regulation of ER chaperones such as calreticulin and BiP attempt to deal with the accumulation of  

mis-folded protein, but if the condition continues or becomes more severe, the UPR will trigger apoptosis 

as a means to eliminate the problem [85]. To maintain homeostasis of ER protein folding, several ER 
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transmembrane proteins are involved: activating transcription factor 6 (ATF6), protein kinase RNA-like 

ER kinase (PERK) and inositol-requiring protein 1α (IRE1α), with the luminal domains of these proteins 

serving as ER stress-sensing domains via an interaction with BiP [86,87]. BiP interacts with the luminal 

domain of these transmembrane proteins under non-stressed conditions. With accumulation of unfolded 

proteins, BiP binds to the unfolded hydrophobic portions of the misfolded protein. This activates the 

intrinsic protein kinase activity of IRE1α, which controls the endoribonuclease activity-dependent 

cleavage of XBP1 mRNA, a transcription factor involved in feedback regulation of protein expression 

and degradation [88]. Another member of the UPR, PERK is an ER kinase that phosphorylates eukaryotic 

translation initiation factor 2α (eIF2α) and attenuates protein translation [89] while the third member, 

ATF6, is released from the ER and is cleaved by Golgi enzymes, site 1 and site 2 proteases (S1P and S2P), 

to generate a cytoplasmic transcription factor that activates expression of chaperones involved in protein 

folding and degradation [90]. Specifically, UPR signaling induces several ER chaperone and degradation 

proteins to decrease the amount of misfolded protein in the stressed cell [87]. These are all mechanisms 

that a cell employs to minimize damage, recover homeostasis and avert apoptosis. 

As an example of the necessity of ER homeostasis, targeted disruption of ER specific proteins can 

result in embryonic lethality in mice. Disruption of calreticulin, a Ca2+ buffering chaperone of the ER, 

is embryonic lethal at day 13.5 due to malformation of the heart [91]. BiP is embryonic lethal in mice at 

very early stages of development, embryonic day 3, and is necessary during hatching and implantation [92]. 

GRP94-deficient mice are embryonic lethal at day 7 due to impaired cardiogenesis [93]. Deletion of the 

oxidoreductase ERp57 is embryonic lethal at very early stages [94]. Interestingly, calnexin deficiency 

in mice is not lethal but leads to neurological and metabolic disorders [95]. 

Fluctuations in ER homeostasis may result in temporary activation of the UPR with translation 

attenuation and an increase in the level of protein folding chaperones. But upon extended or severe  

ER stress, the cell will trigger apoptosis. A number of disease states have demonstrated the integral 

involvement of ER stress, including metabolic disease, cardiovascular disease, neurodegenerative 

disease and cancer. Metabolic diseases, such as diabetes, have recently been linked to ER stress with an 

up-regulation of ER stress-associated genes observed in diabetic individuals [85]. Furthermore, targeted 

disruption of the chop gene impedes ER stress mediated diabetes in Akita mice [85], implying that 

apoptosis is part of the stress response. Reports also establish a role for ER stress in the heart, with 

ischemia activating the ATF6 dependent branch of the ER stress response [96,97], with sustained stress 

such as pressure overload causing cardiac expression of ER chaperones [98] or during severe stress such 

as ischemia/reperfusion with overexpression of ATF6 reducing the amount of necrosis and apoptosis [99]. 

Similarly, involvement of the ER in neurodegenerative diseases such as Parkinson’s and prion-related 

disorders has now been documented. Disruption in the secretory pathway appears to be an initiating 

factor in the proteostasis dysfunction of Parkinson’s disease [100]. Interestingly, ER stress appears to 

play a dual role by preserving cell survival during early stages of the disease and triggering neuronal 

degeneration when stress levels are persistent [101]. In Alzheimer’s and prion disorders, UPR activation 

is seen in post mortem brain samples as well as in mouse models of neurodegeneration [102,103]. ER 

stress may also contribute to cancer conditions, with recent work showing that three independent mutations 

in IRE1 are linked to glioblastoma or hepatocellular carcinoma [104–106]. As well, XBP1 splicing is 

increased in a triple negative breast cancer, leading to an aggressive phenotype [107]. 
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During ER stress, adaptive mechanisms are in place to modify cellular pathways to compensate for 

the disruption in ER homeostasis. However, some of these modifications can be detrimental to the 

organism. These adaptive mechanisms lead to alterations in the level of proteins, thereby modifying ER 

homeostasis [6,108]. These changes include increased expression of extracellular matrix proteins, 

causing cellular fibrosis [109], variation in Ca2+ homeostasis due to expression of Ca2+ buffering proteins 

in the ER [110], and changes in the secretion of proteins that transit through the ER that have downstream 

effects, such as insulin or other growth factors [111]. A number of signaling proteins also have an ER 

stress element or an UPR element in their promoter [112], so the ER stress pathway has far reaching 

effects, both immediate and long term. 

7. Conclusions 

The ER performs many varied functions within the cell, including Ca2+ storage, protein folding, 

quality control and post translational modification; as well as managing stress. Connection between the 

Ca2+ and protein quality control system with the ER stress coping responses such as the UPR is necessary 

for normal function of the cell, and is required for proper cell differentiation and growth, tissue biogenesis 

and organism embryogenesis. With the multiple functions of the ER, disruption in protein folding and 

glycoprotein processing results not only in organelle disease but also has detrimental effects at the 

cellular and systemic levels. Consequently, the ER quality control and stress responses are essential for 

the growth and subsequent well-being of the organism. 
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