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A B S T R A C T

Background: Blood-based biomarker such as circulating tumor DNA (ctDNA) has emerged as a promising tool
for assessment of response to immunotherapy in solid tumors; But in hematological malignances, evidences
are still lacking to support its clinical utility. In current study the feasibility of ctDNA for prediction and moni-
toring of response to anti-PD-1 therapy in Chinese patients with relapsed or refractory classical Hodgkin lym-
phoma (r/r cHL) was assessed.
Methods: A total of 192 plasma samples from 75 patients with r/r cHL were collected at baseline and upon
therapeutic evaluation. ctDNA were sequenced by targeting panels capturing frequently mutated genes in
cHL and other hematological malignancies and then quantified. Analysis on: 1) Gene mutation profile and
association of the gene mutations with progression-free survival; 2) Association of pre- and post-treatment
ctDNA variant allelic frequencies with clinical outcome; (3) Correlation of the mutated genes with treatment
resistance; were performed.
Findings: Somatic mutations were detected in 50 out of 61 patients by ctDNA genotyping. The mutations of
CHD8 was significantly higher in patients with PFS � 12 months. Baseline ctDNA was significantly higher in
responders and a decrease of ctDNA � 40% from baseline indicated superior clinical outcome. Strong agree-
ment between ctDNA dynamic and radiographic response change during therapy was observed in majority
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of the patients. Furthermore, the mutations of B2M, TNFRSF14 and KDM2B were found to be associated with
acquired resistance.
Interpretation: ctDNA could be an informative biomarker for anti-PD-1 immunotherapy in r/r cHL.
Funding: This work was supported by Innovent Biologics, Eli Lilly and Companyhttps://doi.org/10.13039/
501100002852, China National New Drug Innovation Program (2014ZX09201041-001 and 2017ZX09304015),
Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-1-001)
and National Key Scientific Program Precision Medicine Research Fund of China (2017YFC0909801). The fun-
ders had no role in study design, data collection, data analysis, interpretation or writing.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Research in context

Evidence before this study

Circulating tumor DNA (ctDNA) has been used for multiple clinical
applications such as the assessment of genomic imbalances, sub-
typing, prognosis, minimal residual disease, monitoring therapeu-
tic response and clonal evolution in hematological malignancies.
We searched Pubmed for articles published before Oct 01, 2019
using the terms, “circulating tumor DNA”, “Classical Hodgkin lym-
phoma”, “immunotherapy”, with no limitation to clinical trials or
other types of studies. Only one article titled “Circulating tumor
DNA reveals genetics, clonal evolution, and residual disease in
classical Hodgkin lymphoma” (published in May of 2018 on jour-
nal of “blood”) was found. In this study, only five patients treated
with anti-PD-1 blockade were included and there is no report on
the association between ctDNA and clinical outcome of these
patients. To our knowledge, there were no published studies that
evaluated the value of ctDNA for predicting or monitoring the
response to immunotherapy in patients with relapsed or refrac-
tory classical Hodgkin lymphoma (cHL) before our study.

Added value of this study

Genetic profiling of Chinese patients with relapsed or refractory
cHL was delineated. Our study showed that baseline ctDNA was
predictive for response to immunotherapy in these patients.
Patients with a ctDNA decrease of �40% from baseline achieved
superior clinical outcome than those with <40% and patients
with a tumor area decrease of �60% showed a more substantial
ctDNA decline than those with tumor area decrease of <60%.
Strong agreement between ctDNA dynamic and radiographic
response change during therapy was also observed in majority
of the patients. Furthermore, the mutations of B2M, TNFRSF14
and KDM2B were found to be associated with acquired resis-
tance to anti-PD-1 therapy.

Implications of all the available evidence

There is no validated biomarker available for assessment of
response to immunotherapy in patients with relapsed or refrac-
tory cHL. Imaging is the standard approach for therapeutic
response assessment and disease monitoring. However, imag-
ing has its limitation as it measures the size of the tumor mass
including inflammatory component, which is often seen in
patients under immunotherapy. ctDNA may reflects the actual
tumor burden, therefore, it could be complement to imaging
for the comprehensive assessment of immunotherapy efficacy.
We proved the concept that ctDNA could be a valuable bio-
marker for predicting or monitoring the response to immuno-
therapy in patients with relapsed or refractory cHL. Besides, we
also proved that ctDNA could be a reliable source for detection
of gene mutations, which could provide valuable information
for further understanding the pathogenesis and clone evolution
of cHL, as well as mechanism of resistance to immunotherapy.
1. Introduction

Hodgkin lymphoma (HL) accounts for 50% of all lymphomas in
children and young adults in the Western world [1] and 8¢6�13% of
all lymphomas in mainland China [2]. This disease is a B-cell lym-
phoid malignancy characterized by a scarcity of malignant Hodgkin
Reed-Sternberg (HRS) cells (i.e., only ~1% of all cells in the tumor
environment) among the abundance of inflammatory/immune cells
[3]. The pathogenesis of the disease involves amplification of chro-
mosome 9p24.1, which leads to the overexpression of programmed
cell death ligand 1 (PD-L1) and PD-L2 and constitutive activation of
the JAK-STAT, NF-kB, and NOTCH signaling pathways. Approximately
5�10% of the patients with HL are refractory to first-line treatment,
and 10�30% will relapse after attaining complete remission (CR) [4].
Two anti-PD-1 antibodies, nivolumab and pembrolizumab, have
been approved to treat relapsed/refractory classical HL (r/r cHL) in
US. In China, another anti-PD-1 antibody, sintilimab was recently
approved by the National Medical Products Administration to treat r/
r cHL. All three agents achieve a high objective response rate (ORR)
exceeding 60%.

Despite this robust ORR, some patients do not respond to anti-PD-
1 treatment or have progressive disease (PD) after a short initial
response. In recent years, some studies have investigated possible
biomarkers that are potentially correlated with response to anti-PD-
1 treatment in patients with r/r cHL. These are tissue biopsy-based
biomarkers, which include the expression levels of PD-L1, PD-L2,
major histocompatibility complex (MHC) class I and class II in tumor
[5-7]. However, the overall attempts to explore the potential bio-
markers are limited and until recently, no reproducible, well-vali-
dated biomarker is available.

Blood-based biomarker is an emerging attractive tool for disease
diagonosis and treatment assessment because of the minimally inva-
sive sampling and thus high patient complicance. More importantly,
blood is a easy-to-access source which allows for serial sampling for
monitoring disease progress during treatment. Circulating tumor
DNA (ctDNA) in peripheral blood contains DNA fragments that are
derived from apoptotic or necrotic cancer cells [8] and, thus, deep
next-generation sequencing (NGS) of this DNA can provide valuable
information of cancer. Use of ctDNA as a dynamic biomarker for treat-
ment response in solid tumor [9] and hematological malignancies
[10] is becoming more common. In cHL, the ctDNA quantity is low in
peripheral blood due to the scarcity of HRS cells in the tumor, which
brings challenges to the analysis of ctDNA. Despite this, progress has
been made in using ctDNA as a biomarker for multiple clinical appli-
cations such as the assessment of genomic imbalances, prognosis,
minimal residual disease, therapeutic response to chemotherapy, and
clonal evolution in cHL [11,12]. However, to date, no study has
explored the correlation between ctDNA and clinical outcome of
anti-PD-1 treatment in this disease.

In this study, we utilized ctDNA to examine the genetic fea-
tures of Chinese patients with r/r cHL and assess the predictive
value of ctDNA for response to sintilimab immunotherapy in a
large cohort [13].

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1
Participant demographic and clinical characteristics.

Characteristic Number (Ratio)

Median age (range), years 35 (19�70)
Female 29 (38¢7%)
Male 46 (61¢3%)
Cell-free DNA samples available 192
Pre-treatment/Baselinea 61
Cycle 3, week 6a 45
Cycle 6, week 15a 41
Cycle 9, week 24a 31
Cycle 13, week 36a 11
Cycle 17, week 48a 1
Others 2
The best response
Complete remission 24 (32¢0%)
Partial remission 39 (52¢0%)
Stable disease 10 (13¢3%)
Progressive disease 2 (2¢7%)
Number of patients by different analysis
Baseline ctDNA analysis 61
ctDNA decline after 2 treatment cycles 29
Serial ctDNA dynamics analysis 34 (including the 29 above)
Drug resistance mechanism 13
Median follow-up time, month 16¢7 (3¢7�18¢9)

Abbreviations: ctDNA, circulating tumor DNA.
a Peripheral blood samples (10 mL) were collected and then plasma was

isolated for ctDNA analysis for each participant at baseline and immediate
before each subsequent treatment.
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2. Materials and methods

2.1. Participants and sample collection

Of the 96 Chinese patients with r/r cHL enrolled in the ORIENT-1
study (NCT03114683), 75 agreed to participate in this biomarker
study and provided informed consent. Participants were enrolled
from April to November 2017, and the data cutoff was December 29,
2018 after a median follow-up time of 16.7 months. The characteris-
tics of participants in this study are listed in Table 1 and additional
details of individual cohorts are in supplementary Table 1.

From the 75 enrolled patients, 192 longitudinal samples were col-
lected and analyzed for ctDNA. A flowchart of blood samples for
Fig. 1. Scheme of blood samples for circulating tumor DNA (ctDNA) analysis. A fl
ctDNA analysis is shown in Fig. 1. Treatment response was assessed
by positron emission tomography and computed tomography (PET/
CT), enhanced CT scan (preferred), or magnetic resonance imaging at
baseline, at weeks 6, 15, and 24, every 12 weeks from weeks 24 to 48,
and every 16 weeks beyond week 48, until commencement of a new
therapy, disease progression, death, or withdrawal of consent, as
described previously [13]. The PET/CT scan was assessed by an inde-
pendent radiological review committee (IRRC) and then the thera-
peutic response was defined. The study was conducted in accordance
with the Declaration of Helsinki. The protocol, amendments, and
patient informed consent were approved by the independent ethics
committee at each participating site before the study began.

2.2. Sample processing and DNA extraction

Peripheral blood was collected in cell-free DNA collection tubes
(Cat# 218962, Streck Inc., Omaha, NE) and processed within 24 h.
After separation of plasma, the cell pellet was resuspended to remove
peripheral blood mononuclear cells using Ficoll-Paque Premium
solution (Cat# GE17-5442�02, GE Healthcare, RRID:SCR_000004),
and the remaining high-density peripheral blood cells were collected.
Cell-free DNA and genomic DNA were extracted from plasma and
high-density peripheral blood cells using the QIAamp circulating
nucleic acid kit and QIAamp DNA blood mini kit (Cat# 55114 and
Cat# 51106, Qiagen, RRID:SCR_008539), respectively, according to
the manufacturer’s instructions. DNA concentration was measured
using a Qubit fluorometer and the Qubit dsDNA high sensitivity assay
kit (Cat# Q32854, Invitrogen, RRID:SCR_008539). The size distribu-
tion of plasma DNA was assessed using an Agilent 2100 bioanalyzer
and the DNA high sensitivity kit (Cat# 5067-4626, Agilent Technolo-
gies, RRID:SCR_013575).

2.3. Sequencing library construction and target enrichment

Before library construction, 1 mg of each genomic DNA was
sheared to 300-bp fragments with a Covaris S2 ultrasonicator (Cova-
ris, Woburn, MA). For library construction, 20�80 ng of cell-free DNA
were used. Indexed Illumina NGS libraries were prepared for geno-
mic and cell-free DNA using the KAPA DNA library (Cat# KK2602,
owchart showing the blood samples of participants analyzed in the study.
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Kapa Biosystems, Wilmington, MA). Target enrichment was per-
formed with a custom SeqCap EZ library (Cat# 5634253001, Roche
NimbleGen, RRID:SCR_008571). To explore the comprehensive
genetic profiling of cHL, two capture probes were chosen. One was
designed based on ~2¢1-Mb genomic regions of 619 genes that are
frequently mutated in cHL and other common lymphoma and hema-
tologic malignancies. The other probe was designed based on ~2¢4-
Mb genomic regions of 659 genes, which is an updated version of a
619-gene panel with 42 T-cell lymphoma-related genes included and
two RNA genes removed. Capture hybridization was carried out
according to the manufacturer’s protocol. Following hybrid selection,
the captured DNA fragments were amplified and pooled to generate
multiplex libraries.
2.4. NGS sequencing

Cell-free and genomic DNA libraries were sequenced using the
HiSeq Sequencing System (Illumina, San Diego, CA) with paired-end
reads supported by a commercial vendor (Geneplus-Beijing, China).
2.5. Sequence data analysis

After removal of terminal adaptor sequences and low-quality
data, reads were mapped to the reference human genome (hg19) and
aligned using BWA version 0.5.9 (Broad Institute) [14]. Sequencing
data from paired tumor-germline samples were used to identify
somatic mutations. Single-nucleotide variants were identified using
MuTect (version 1.1.4) and NChot [15,16]. Small insertions and dele-
tions were determined using GATK [17]. Copy number variations
were detected using the CONTRA tool (2.0.8) [18]. An in-house algo-
rithm was used to identify split reads and discordant read pairs to
identify gene fusion. At least five supporting reads were required for
true fusion. All final candidate variants were manually verified with
the integrative genomics viewer browser.
2.6. ctDNA analysis

ctDNA was quantified by determining the allelic fraction of cf DNA
fragments that harbor cancer-associated somatic mutations [9]. The
variable variant allelic frequencies (VAFs) in different mutations from
ctDNA implied variable clonality of different mutations. To explore
the subclonal architecture of cHL by ctDNA sequencing, we used
PyClone [19] to infer the cancer cell fraction of each mutation in each
ctDNA sample. Mutations were then clustered by corresponding can-
cer cell fraction, and the subclonal architecture of ctDNA from cHL
was subsequently inferred. The overall ctDNA VAF was defined as the
100-fold average VAF of mutations from the major clones (the cluster
with the greatest cancer cell fraction).
2.7. Statistics

Time to response (TTR) was measured from the date of first sintili-
mab treatment to the date of first radiological remission. Progression-
free survival (PFS) was measured from the date of first sintilimab
treatment to the date of progression (event) or last follow-up (cen-
soring). The significance of mutation genes was computed using Fish-
er’s exact test between different PFS groups. Differences in ctDNA
between two groups were analyzed using the Mann-Whitney test.
Survival and response analysis was performed using the Kaplan�Me-
ier method with the log-rank test. All statistical analysis was con-
ducted using IBM SPSS software and GraphPad Prism. All tests were
two-sided and p-value <0¢05 was considered as statistically signifi-
cant.
2.8. Data availability

The supplementary materials provide all reported mutations. All
other relevant data can be obtained from the corresponding author.

3. Results

3.1. Genomic profiling of r/r cHL at baseline

Genomic profiling of ctDNA was performed on baseline plasma
samples from 61 patients with r/r cHL (Suppl. Table 1) at an average
sequencing depth of 1260 £ (range, 484�2231 £) (Suppl. Table 2).
DNA from granulocytes of the same patient was sequenced as the
germline control (Suppl. Table 3). Nonsynonymous somatic muta-
tions were observed in 50 out of 61 patients. A median of 15 somatic
mutations per sample (range, 1�234) were identified, for a total of
1416 (Suppl. Table 4). The median allele frequency of ctDNA muta-
tions was 3¢15% (range, 0¢49�60¢15%), and 97¢46% of the mutations
had an allele frequency >1%. The 25 genes found to be mutated in
more than 10% of patients (Suppl. Fig. 1) included many commonly
reported in studies of purified HRS cells in cHL (7), such as STAT6
(34¢43%), TNFAIP3 (31¢15%), SOCS1 (24¢59%), and B2M (22¢95%), indi-
cating the reliability of the non-invasive genotying using ctDNA as a
source. Two mutations, PCLO (22¢95%) and LRP1B (22¢95%), appear to
be unique to Chinese patients.

Next, we assessed whether mutations in individuals were associ-
ated with progression free survival (PFS). The patients were divided
into two groups, PFS < 12 months vs. PFS � 12 months, and baseline
mutation profiles were compared. CHD8mutation frequencies was sig-
nificantly different between the two groups (Fig. 2), detected only in
the PFS � 12 months group (Fisher p = 0.0287). However, comparison
of the mutations between responders and non-responders was limited
due to the small sample size of the non-responders (Suppl. Fig. 2).

3.2. Association between baseline ctDNA and clinical outcome

To investigate whether ctDNA could be used to predict immuno-
therapy response, we first tested the association between baseline
ctDNA and best radiographic response (Suppl. Table 5). Varied ctDNA
VAF were observed among patients, with a median value of 6.21 (95%
CI, 3.86�10.57). The median ctDNA VAF was significantly higher in
the responder group (CR + PR, n = 41, median = 8.72) than the nonre-
sponder group (SD+ PD, n = 9, median = 2.9) (Fig. 3a, p = 0.0070
Mann-Whitney test). Consistently, using receiver operating charac-
teristic (ROC) analysis, the median baseline ctDNA VAF can distin-
guish the different objective response groups (Fig. 3b; AUC = 0.7832
(95% CI: 0.6383 to 0.9281); p = 0.0083 Mann-Whitney test). Then, we
divided the ctDNA-positive patients into two groups based on the
median ctDNA VAF (high, n = 25; and low, n = 25). Patients with
higher baseline ctDNA VAF had a shorter TTR (Fig. 3c). However, the
baseline ctDNA VAF could not predict PFS (Fig. 3d).

3.3. Correlation between ctDNA change and efficacy of immunotherapy

To determine whether an early ctDNA change was associated with
the best radiographic response to sintilimab therapy, ctDNA analysis
was conducted on serial samples collected both at the baseline and
immediate before the third treatment from 29 patients. Patients
achieving CR and PR had a greater decline in ctDNA VAF after two
treatment cycles than those who relapsed (Fig. 4a, b). When 40%
ctDNA reduction was selected as the cutoff in our cohort, 79.31% (23/
29) of patients showed agreement between the change in ctDNA and
the best radiographic response, with CR or PR achieved in 90% (18/
20) patients who showed a ctDNA decrease of �40% (Fig. 4a). TTR
analysis further showed that patients with a ctDNA decrease �40%
achieved first response significantly earlier (median = 71 days) than



Fig. 2. The mutation profiling in relapse/refractory classical Hodgkin lymphoma before sintilimab treatment. A comparison between the progression-free survival (PFS) < 12 month
and PFS � 12 month groups is shown. The heatmap depicts individual nonsynonymous somatic mutations detected in ctDNA. The type of nonsynonymous somatic mutations is
shown in a different color. The number of the total mutations in any given patients is plotted above the heatmap. The p-value between PFS < 12 months vs. PFS � 12 months was
computed by Fisher’s exact test.
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the others (median = 216 days) (Fig. 4c; p = 0.0238 Mann-Whitney
test). However, the ctDNA reduction could not predict PFS (data not
shown).

The trend of change in ctDNA VAF in 34 patients (including the
above 29 patients, Supplementary Table 6) with serial evaluable sam-
ples from baseline to different cycles posttreatment was also
compared. Patients with tumor area decrease �60% (n = 17) showed
a more substantial ctDNA decline than those with tumor area
decrease <60% (n = 17) (Fig. 4d).

Next, we examed the agreement between ctDNA dynamics with
radiographic response changes (reflected by PET/CT scan) during
treatment in these 34 patients. A strong agreement during part or all



Fig. 3. Association between baseline ctDNA levels and clinical outcomes. (a) Baseline ctDNA VAFs in patients with complete remission (CR) + partial remission (PR) (n = 41, red) vs. sta-
ble disease (SD) + progressive disease (PD) (n = 9, blue). (b) Receiver operative curve (ROC) analysis illustrates the performance of ctDNA content in the different response group. (c)
Time-to-response (TTR) analysis of patients with different ctDNA VAF at baseline. (d) Progression-free survival (PFS) analysis of patients with different ctDNA contents at baseline.
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of the treatment cycle was observed in most of the patient (94.12%,
32/34) (Suppl. Table 6) and representative cases are shown in Fig. 5A-
C. For example, patient 7002 whose radiographic response was PR,
demonstrated a posttreatment decrease in ctDNA (Fig. 5a). Seven
patients initially responded to the therapy but later relapsed and pro-
gressed; as shown for patient 3018, the ctDNA VAF dropped at the
beginning of therapy but subsequently increased during later cycles,
again demonstrating consistency between ctDNA dynamics and
radiographic response (Fig. 5b). While in patient 19,002 and patient
23,010 (Suppl. Table 6), who did not respond to immunotherapy or
had SD initially but soon progressed later, respectively, both the
ctDNA VAF and tumor burden increased constantly during therapy.

3.4. Potential resistance mechanism to immunotherapy in cHL

In patients 8003 and 23,002, the B2M loss-of-function mutation
was shown at baseline and reoccurred in the progressive disease
cycle (Table 2). In the plasma samples from these two patients after
relapse, a homozygous nonsense mutation B2M in patient 23,002
was identified based on the adjusted variant allele frequency calcu-
lated according to the method described by Shin DS [20] (Suppl. Table
7). The adjusted variant allele frequency was greater than 85%, which
is the threshold proposed and validated in a study of anti-PD-1 ther-
apy in melanoma [21].
In addition, several potential resistance-related genes were only
found in the relapsed patients (Table 2). There was no report on the
association of these genes with resistance to anti-PD-1 immunother-
apy. Of note, two of the genes, TNFRSF14 and KDM2B, were identified
in more than one resistant patient, and the association of these two
genes with resistance will need to be confirmed in further study.

4. Discussion

Dynamic sampling of ctDNA provides genetic information pre-
and post-treatment which allows disease subtyping, study of genome
evolution patterns, and real-time monitoring of response or resis-
tance to therapy in cancers including hematological malignancies
[12,22�24]. Here, in a cohort of Chinese patients with r/r cHL treated
with sintilimab, we report that ctDNA can serve as a clinically informa-
tive biomarker for (1) genotyping; (2) response prediction and moni-
toring; and (3) resistance to PD-1 blockade immunotherapy.

To our knowledge, this is the first study to genotype r/r cHL in Chi-
nese patients. The most frequently mutated genes revealed by ctDNA
genotyping in the current study (Suppl. Fig. 1) are consistent with
those observed in purified HRS cells [25] and in ctDNA from Western
patients with newly diagnosed cHL [12]. Therefore, our results vali-
dated the utility of ctDNA as an alternative source for disease investi-
gation, especially given the challenges in obtaining rare malignant



Fig. 4. Agreement between ctDNA response and best radiographic response after two treatment cycles. (a) Agreement of ctDNA VAF change and best radiographic response. Dotted
lines indicate a decrease of ctDNA at 40% after two treatment cycles. (b) The maximum change of tumor area (mm2) post-treatment from baseline. Red outline indicates patients
who achieved a ctDNA decrease � 40%. (c) Time-to-response (TTR) analysis of patients with a ctDNA decrease � 40% vs. patients with a ctDNA decrease< 40%. (d) Percentage change
in ctDNA VAF from baseline during the first 8 treatment cycles of immunotherapy among patients with a � 60% decrease (n = 17) or a <60% decrease (n = 17) in tumor burden
defined by PET/CT scan.
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HRS cells from HL patients. Besides, we also identified other fre-
quently mutated genes in Chinese patients, PCLO and LRP1B, neither
of which have been previously reported in non-Chinese patients. It is
possible that PCLO and LRP1B were detected due to clonal evolution,
which was also reported previously during the treatment of cHL [12]
and diffuse large B-cell lymphoma (DLBCL) [23], since patients
included in the study cohort have experienced heavy treatment regi-
mens before enrollment in the trial. However, further investigation
will be needed to elucidate the potential roles of these genes in the
pathogenesis of cHL.

The mutation frequencies of CHD8 was significantly higher in
patients with PFS � 12 months than those with PFS < 12 months,
indicating that the mutation could serve as predictive biomarkers for
clinical benefit. There are few reports on the correlation of CHD8with
cancer. One study showed that CHD8 suppresses p53-mediated apo-
ptosis during early embryogenesis [26]. It is likely the CHD8mutation
may suppress the function of TP53 and thus mediate the therapeutic
effect of anti-PD-1 treatment.

Besides serving as an easily accessible and reliable source for gen-
otyping, ctDNA could be used to predict response, monitor response,
and study resistance mechanisms to anti-PD-1 therapy. First, we
found that baseline ctDNA VAF were strongly correlated with
response, including with TTR. This could be because ctDNA is a better
measurement of tumor cell turnover, which reflects real-time tumor
cell mortality, rather than tumor mass [27]. High baseline ctDNA VAF
could mirror high tumor antigen release, leading to strong immune
response against tumors which is blocked by the PD-1 pathway. Under
these conditions drugs blocking PD-1 action might be more effective.

Further, an association between ctDNA dynamics and clinical out-
come was observed. A decrease of ctDNA VAF �40% after two cycles
was found to be associated with superior radiographic response (i.e.,
CR or PR). This observation is similar to that reported in a small
cohort of cHL patients (n = 24) treated with chemotherapy, which
showed that a decrease in ctDNA after two cycles of ABVD of at least
2-log was associated with more favorable clinical outcome than those
with a smaller ctDNA reduction [12]. We also observed a strong
agreement between ctDNA dynamics and radiographic response dur-
ing therapy, consistent with that reported in DLBCL [10], indicating
that ctDNA could be used as a biomarker for the assessment of immu-
notherapy efficacy. The current standard for therapeutic response
assessment and disease monitoring for cHL is imaging. While it is an
essential clinical tool, imaging has its limitations, such as low



Fig. 5. Correlation of ctDNA response to radiographic response during sintilimab therapy. Plasma levels of ctDNA (red line) and measurements of radiographic tumor area (mm2)
(blue line) are plotted for three representative patients. (a) Patient 7002, a 36-year-old woman achieved persistent ctDNA response and radiographic response after treatment. (b)
Patient 3018, a 33-year-old man who achieved ctDNA and radiographic response after 2 treatment cycles, and then progressed after 12 cycles. (c) Patient 21,003, a 26-year-old
woman who showed an increase of ctDNA VAF and radiographic progression after 2 cycles, showed ctDNA decrease with radiographic responses after 8 cycles. ctDNA and radio-
graphic measurements for the remaining 31 patients in the study are presented in Supplementary Table 6.
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Table 2
Genetic alterations in ctDNA potentially associated with resistance to anti-PD-1 therapy.

Patient ID The best response Resistance PFS (day) Gene Mutations COSMIC ID

19,002 PD Primary 41 � � �
21,003 PD Primary 42 � � �
8003 PR Acquired 164 B2M c.261C>A (p.Y87*) �
23,002 PR Acquired 439 B2M c.2T>G (p.0?) 144,525
10,010 SD Acquired 107 TNFRSF14* c.216CA[2>1] (p.T73Sfs*3) �
7001 PR Acquired 252 TNFRSF14* c.56_62dupACGTCTT (p.V24Efs*55) �
23,003 SD Acquired 168 KDM2B* c.880C>T (p.R294*) 1,586,272
23,010 SD Acquired 169 KDM2B* c.3275G>A (p.W1092*) �
3013 PR Acquired 252 � � �
3018 PR Acquired 251 S1PR2* c.10198G>T (p.G3400*) �
13,002 PR Acquired 168 NFKB2* c.1408GC[5>4] (p.L473Afs*32) �
13,004 PR Acquired 100 RELN* c.10198G>T (p.G3400*) �
14,002 PR Acquired 103 � � �
26,002 SD Acquired 166 � � �

Abbreviations: PD, progressive disease; PFS, progression-free survival; PR, partial remission; SD, stable disease.
* Potential resistance-related genes, which have not been previously reported in an immunotherapy study.
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sensitivity/specificity when tumor size is<10 mm and difficult to dis-
tinguish disease progression from treatment effects, infection, or
inflammatory changes upon immunotherapy. In this circumstance, as
ctDNA reflects mainly malignant cell burden, it could serve as an
important dynamic biomarker to complement standard imaging for
monitoring response during anti-PD-1 immunotherapy.

The mechanisms of resistance to PD-1 therapy are very complex,
involving factors both intrinsic and extrinsic factors [28]. To date,
previous studies have demonstrated that loss-of-function mutations
of B2M, JAK1/2, or PTEN were associated with resistance to immuno-
therapy [20,21,29-31]. Subsequent efforts have confirmed that muta-
tions in B2M and JAK1/2 are associated with primary or acquired
resistance to immunotherapy in solid tumors [32]. In cHL, however,
the mechanisms of resistance to checkpoint inhibitor-based immu-
notherapy remain largely unknown [33]. In this study, using ctDNA
to probe the gene mutations that might be involved in mediating
resistance to sintilimab therapy, we identified B2M, TNFRSF14 or
KDM2B mutation in 2 of 12 patients with acquired resistance, respec-
tively. Noticeably, the B2M mutation in patient 23,002 is homozy-
gous, with an adjusted VAF% over 85%, the threshold validated for
homozygous mutation in melanoma treated with anti-PD-1 blockade
[20]. Unfortunately, we were unable to determine whether the B2M
mutation in patient 8003 is homozygous or heterozygous because of
insufficient tumor DNA quantity derived from ctDNA extraction.

No association between TNFRSF14 or KDM2B mutation with resis-
tance of immunotherapy has been previously reported. TNFRSF14 is
expressed ubiquitously in multiple tissues, with a relatively high
expression in peripheral blood T cells, B cells, and monocytes.
Although it is well known that TNFRSF14 stimulates T-cell immune
responses, the biological role of this protein in cancer cells might be
distinct from that in immune cells. TNFRSF14 mutation was reported
to be associated with inferior outcome in follicular lymphoma and
studies suggested that TNFRSF14 acts as a tumor suppressor [34,35],
which might contribute to the resistance to anti-PD-1 treatment.
KDM2B also acts as a tumor suppressor by controlling ribosome bio-
genesis in cancer cells [36,37], which supports our findings in this
study. Overall, our results are preliminary and further investigation is
anticipated to validate the roles of these genes in mediating resis-
tance to immunotherapy.

Study limitations include the lack of matched tumor biopsy, short
duration of follow-up and small sample size of ctDNA kinetics. The
study is also somewhat preliminary in that the patients are still being
followed up, and the association between ctDNA and clinical outcome
will be reanalyzed. Additionally, our study population may be biased
because patients who did not have detectable ctDNA at baseline
were excluded. It is worthy to mention that all the preliminary find-
ings reported in the current study will be further investigated in a
larger patient populations recruiting in an ongoing phase III study
(ORIENT-21, NCT04044222).

In summary, we demonstrated in this r/r cHL cohort of Chinese
patients that ctDNA can be a reliable biomarker for predicting and
monitoring response to sintilimab, and a tool for exploring treatment
resistance mechanisms. ctDNA could be incorporated into clinical
practice to complement PET/CT scan for monitoring early response to
anti-PD-1 treatment. Furthermore, our results suggest future
research directions for studying genes that might be involved in the
pathogenesis of cHL and resistance to anti-PD-1 treatment.
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