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Abstract

Diabetic Retinopathy (DR) is one of the leading causes of blindness in the United States and other 

high-income countries. Early detection is key to prevention, which could be achieved effectively 

with a fully automated screening tool performing well on clinically relevant measures in primary 

care settings. We have built an artificial intelligence-based tool on a cloud-based platform for 

large-scale screening of DR as referable or non-referable. In this paper, we aim to validate this tool 

built using deep learning based techniques. The cloud-based screening model was developed and 

tested using deep learning techniques with 88702 images from the Kaggle dataset and externally 

validated using 1748 high-resolution images of the retina (or fundus images) from the Messidor-2 

dataset. For validation in the primary care settings, 264 images were taken prospectively from 

two diabetes clinics in Queens, New York. The images were uploaded to the cloud-based software 

for testing the automated system as compared to expert ophthalmologists’ evaluations of referable 

DR. Measures used were area under the curve (AUC), sensitivity, and specificity of the screening 

model with respect to professional graders. The screening system achieved a high sensitivity of 

99.21% and a specificity of 97.59% on the Kaggle test dataset with an AUC of 0.9992. The 

system was also externally validated in Messidor-2, where it achieved a sensitivity of 97.63% and 

a specificity of 99.49% (AUC, 0.9985). On primary care data, the sensitivity was 92.3% overall 

(12/13 referable images are correctly identified), and overall specificity was 94.8% (233/251 

non-referable images). The proposed DR screening tool achieves state-of-the-art performance 
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among the publicly available datasets: Kaggle and Messidor-2 to the best of our knowledge. The 

performance on various clinically relevant measures demonstrates that the tool is suitable for 

screening and early diagnosis of DR in primary care settings.
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1. Introduction

Diabetic retinopathy is one of the leading causes of blindness (Fig. 1) in high-income 

countries. In the US, the number of patients suffering from DR is expected to reach 6 million 

by 2020 and 11.3 million by 2030 [1]. The total annual economic burden of eye diseases in 

the US is about $139B [1]. Worldwide, this cost could be 3 times or higher (comparable cost 

analysis can be found in Refs. [2–4]). Early detection of the disease is key to its effective 

treatment and subsequent reduction of associated economic burdens. Diabetic retinopathy 

is a diabetes complication that affects the eyes. It is caused by damage to the blood 

vessels of the light-sensitive tissue at the back of the eye (retina). Fig. 2 shows the fundus 

(retinal) images affected by different stages of DR. Heat maps have been generated using 

the Layer-wise Relevance Propagation method [5]. The grading is based on the following 

symptoms. A few microaneurysms without any other abnormalities indicates mild DR. 

Cotton-wool spots and hemorrhages indicate moderate DR. An eye with four quadrants with 

intraretinal hemorrhaging, two with venous beading or one with IRMAs indicates severe 

DR. The presence of neovascularization of the disc or elsewhere, or vitreous hemorrhage are 

indicative of proliferative DR. It is a method that identifies important pixels by running a 

backward pass in a neural network. In the backward pass, neurons that contribute the most 

to the higher-layer receive the most relevance from it. The final heat maps are obtained after 

averaging the individual maps from the five models in the deep learning (DL) ensemble. Fig. 

2 also shows heatmaps associated with the images.

Several studies and publications have proposed DR screening methods and tools. These 

studies have found that existing DR screening techniques are of varying accuracy and 

performance [6,7].

Deep learning is a popular tool that has been recently used for DR screening. Deep learning 

[8] is a class of machine learning techniques that allows systems to learn features directly 

from images without having to specify any rules or conditions about predictive parameters 

if there are many labeled images as input. Deep learning has also been applied in medical 

applications for detecting various diseases such as macular degeneration [9] and melanoma 

[10], among others. Our study focused solely on DR screening models.

At the very basic level in deep learning, there are input images, feature detectors, and feature 

maps. The detectors are then applied to images block by block to generate feature maps 

through a process called convolving. The same is repeated with feature detectors and going 

“deeper”. High-level features such as shapes are learned in the first few layers and more 

abstract features (such as optic discs or the drusen) are learned at deeper levels. Subsequent 
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improvements in deep learning architectures reducing the number of features, chances of 

overfitting, the complexity of the model, etc., resulted in highly efficient neural network 

architectures that can be exploited to be used in medical applications with high reliability 

and accuracy.

Gulshan et al. [11] published a paper proposing an algorithm for DR detection using deep 

learning that achieved a sensitivity of 97.5% and a specificity of 93.4% and concluded that 

further research was needed to determine the feasibility of applying that algorithm in a 

clinical setting. Abramoff et al. [12] proposed a similar algorithm to detect referable DR 

with an 87% sensitivity and a 90% specificity and showed the advantages of deep learning 

over other techniques. Ting et al. [13] proposed and validated a deep learning system 

(DLS) that used the results from AI to compare with those of professional human graders 

in detecting DR. The DLS, built using retinal images from multiethnic populations with 

diabetes, showed a sensitivity of 90.5% and a specificity of 91.6% for detecting referable 

DR. Gargeya et al. [14] proposed a similar deep learning-based model that has an AUC of 

0.94, a sensitivity 93% and a specificity of 87% on a publicly available dataset.

Cloud-based imaging and telemedicine platforms have helped increase the rate of diabetic 

retinal exams, as seen in the case of Gateway Medical Associates whose retinal exam 

compliance rate rose from 37% to 87% in just one year after adopting a telemedicine 

solution [15]. The same study reports an additional 14% of DR patients (who would 

be undiagnosed) would have benefitted from telemedicine. More studies [16,17] have 

concluded that telemedicine-based screening can identify up to 25% more DR cases in 

the diabetic population. Studies also showed that telemedicine could save healthcare costs 

significantly [18]. Considering the advantages of this technique, we have proposed a DR 

screening tool that takes advantage of the secure HIPAA compliant telemedicine platform 

and permits the patient to be screened for DR in primary care settings with subsequent 

referral to larger centers with retina specialists should it be indicated.

In this paper, we have demonstrated the effectiveness of an automated telemedicine-based 

DR screening tool that performs the screening with high accuracy compared to a retinal 

specialist. The tool showed high concordance with the evaluation of the ophthalmologist. 

Several novel features are included in this screening tool:

• We have used the probability values of each class in every network as 

features for input to the next classifier based on Logistic Model Tree, unlike 

other ensemble approaches that classify based on average or maximum of 

probabilities.

• In order to increase robustness and avoid problems with scale invariance, we 

incorporated different input image sizes and architecture combinations for every 

different network in the ensemble.

• Unlike traditional transfer learning techniques, where some of the nodes are 

frozen, all weights in the networks were allowed to continue to update, which 

allowed us to train the network much faster.
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The architectures were pre-trained on ImageNet [19] database, a popular image 

classification dataset often used as the gold standard for image classification problems. 

Initially, the tool was developed on the Kaggle DR (KG-set) dataset [20]. These results were 

then further validated with the external dataset, the Messidor-2 (MD-set) [21,22], and a pilot 

trial was conducted in a primary care clinic.

2. Methods

In this study, we used various deep learning and traditional machine learning techniques 

to build an accurate and deployable DR screening system, explained in the following 

paragraphs starting with data sources and continuing with explanations of individual 

architectures in the ensemble method, and finally describing the overall system deployed 

on a telemedicine platform.

2.1. Data sources

KG-set was used for building the training model. MD-set was used for further validation of 

the model.

The KG-set contained 88702 high-resolution fundus images of people with varying stages 

of DR disease taken from a wide variety of cameras and imaging conditions, furnished by 

EyePACS, the organization that both built the dataset and made it available. The Kaggle 

Diabetic Retinopathy Detection competition, the source of the dataset, was funded by the 

California Health Care Foundation. A clinician was recruited by EyePACS to grade each 

image on a scale of 0–4.0 refers to No DR, 1 Mild, 2 Moderate, 3 Severe, and 4 Proliferative 

DR.

The MD-set contained 1748 high-resolution fundus images from the Messidor research 

program funded by the French Ministry of Research and Defense within a 2004 TECHNO-

VISION program. The retinal images were captured without pharmacological dilation, 

using a Topcon TRC NW6 non-mydriatic fundus camera with a 45-degree field of view. 

The Messidor-2 dataset is a collection of Diabetic Retinopathy (DR) examinations, each 

consisting of two macula-centered eye fundus images (one per eye).

Part of the dataset (Messidor-Original) was kindly provided by the Messidor program 

partners. The remainder (Messidor-Extension) consists of examinations from Brest 

University Hospital. Some fundus images were obtained in pairs. Some others were single. 

In the original Messidor dataset, there were 1058 images from 529 examinations. In 

Messidor-Extension, diabetic patients were recruited in the Ophthalmology department of 

Brest University Hospital (France) between October 16, 2009, and September 6, 2010. Only 

macula-centered images were included in the dataset. Messidor-Extension contains 345 

examinations (690 images, in JPG format). Overall, Messidor-2 has 874 examinations (1748 

images).

Additionally, retinal images taken at the two primary care physician clinics (or PCP-clinics) 

were captured (241 images in one clinic and 23 images in the second clinic) using a 

non-mydriatic (no dilation needed) DRS automatic retinal camera from Centervue Inc. 
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with a 45-degree field of view. Only macula-centered images were included in the dataset. 

There are 13 referable images and 251 non-referable images, which were graded by an 

ophthalmologist. The grader and the algorithm were masked to each other. The grader had 

no information on what the algorithm automated grades were and vice versa.

Table 1 shows the number of images in the referable and non-referable DR categories. 

Further descriptions of KG-set and MD-set can be found in, [23].

The tool was built by using approximately 70% of the KG-set (i.e., training set), and the 

rest of the dataset was then used for testing (~12.5%) and validation (~17.5%), during the 

training phase.

2.2. Preprocessing

The retinal images from different sources and different imaging conditions have different 

sizes and qualities. To maintain uniformity, the images were rescaled so that circles have 

the same radius (500 pixels), after which the local mean color was subtracted. They were 

then mapped to 128 intensity levels. This preprocessing technique was found to be effective, 

through trial and error optimizing for ‘loss’ during training, when dealing with images from 

various sources taken under different lighting and environmental conditions. Preprocessing 

was done using the same python frameworks that the entire model is developed on, without 

using additional software or hardware. Fig. 3 shows an example of an image that is in its 

original RGB [24] form and the same image when preprocessed. For the experiment, we 

used both the original RGB images (i.e., color) and the preprocessed images.

2.2.1. Sample sizes—The training and test data were taken from publicly available 

datasets. The overall incidence of the diseases in the US is 3.4%, and the incidence in our 

primary care dataset is 4.9%. The power calculations showed that the sample size would be 

1281 with beta 0.2, alpha 0.05, and power 0.8.

2.3. Algorithms

A model for retinal fundus image classification must be robust in terms of both image 

variations and dataset variations. As an example, the features of a fundus image can be a 

small microaneurysm or a large soft exudate. Thus, the model should be capable of learning 

features on a wide scale in terms of size and location. Given the above, the selection of the 

image preprocessing techniques and neural network was made carefully.

Multiple different neural networks were used to learn features differently as one network 

may miss a feature that can be picked by the other network for the same image. In general, 

combining the results from different models to produce a final output is more effective 

in obtaining better performance than merely considering each of the constituent network 

architectures independently [25]. Five instances of networks were selected from three 

architectures (explained later) based on rigorous trial and error while optimizing for loss. 

A variety of combinations of network sizes, elements, input image sizes, and architectures 

were experimented with before deciding the final ensemble. While there is no definite 

underlying theoretical background for the chosen architectures, loss function was used to 

determine the best five architectures for the problem at hand. To increase the robustness, 
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different input sizes for the networks were chosen. Also, two types of images were fed into 

the models. As referenced earlier, one type was a set consisting of regular RGB images, and 

the other consisted of preprocessed images.

A 5-point scale [26] (No DR, Mild, Moderate, Severe, and Proliferative DR) is usually 

used for grading DR based on the presence and extent of microaneurysms, exudates, 

hemorrhages, and other abnormalities in the retina. By definition, No DR and Mild are 

considered non-referable, and the other categories are considered referable. Table 2 has a 

per-class distribution of images in the development dataset as per the 5-point scale, and 

the number of images in training, testing, and validation during model development. It is 

hypothesized that due to using five classes in model building, each class representing a point 

on the scale can ultimately result in models that can better predict the image being in one of 

the referable and non-referable cases.

In our study, we make use of architectures proposed by Chollet et al. [27] (known as 

Xception), Szegedy et al. [28] (known as Inception-V3), and another by Szegedy et al. 

[29] (known as Inception-Resnet-V2). Fig. 4 shows an overview of the framework for the 

screening system.

In Fig. 4, blocks of different colors are used to identify different stages in the overall 

architecture. For robustness, each of the five networks had a different combination of the 

type of input images (preprocessed images, RGB images), the type of architecture, and the 

input image size. The first value in the block refers to the name architecture (e.g., Xception), 

and the second value refers to the input image size (e.g., 699 × 699). The system consists 

of 5 neural networks made up of one of the three said architectures. The loss function 

used in each of the five networks was categorical cross-entropy. The learning rate was set 

at 0.0001. Images were randomly rotated, sheared, and zoomed for data augmentation in 

each of the five networks. The five models were trained individually for 500 epochs with 

an early stopping policy set to stop training when no improvement in validation loss is 

seen for 50 consecutive epochs. Artificial intelligence modules are built on machine learning 

libraries and technologies such as TensorFlow, Keras, and scikit libraries. The entire code 

is built using python language and platform. All the software used is open-source. The 

models were trained on NVIDIA Titan V and Tesla P100 GPUs for about seven days. 

Conventionally ensembling multiple models is done by averaging or taking the maximum 

or taking the most repeated value as the final output. In our study, we found through trial 

and error that we can enhance the overall model through further training by introducing 

a machine learning algorithm that combines the output probability values from the deep 

learning models and producing the final output. This approach consistently performed better 

in all metrics (specificity, sensitivity, accuracy) by about 1%–3% over other approaches such 

as averaging or taking maximum. Each of the five networks is a five-class classifier that 

gives probability scores for the five classes. Totally, 25 probability values were available 

from five architectures. These 25 values were concatenated to form a vector of length 25, 

which is then used as parameters (input variables) for a logistic model tree algorithm whose 

target variable is DR referable/non-referable.
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2.3.1. Neural network architectures and logistic model trees definitions

2.3.1.1. Xception.: Xception is a convolutional neural network architecture based entirely 

on depth-wise separable convolution layers. Mapping of cross-channel correlations and 

spatial correlations in the feature maps of convolutional neural networks can be entirely 

separated, the authors of the proposed model found. The model is named Xception 

(“Extreme Inception”) because it is a stronger version of the hypothesis underlying the 

Inception architecture. The Xception architecture has 36 convolutional layers forming the 

feature extraction base of the network. It is used extensively for image classification. 

The base formed with convolutional layers is followed by a logistic regression layer. 

Stochastic gradient descent [30] is used as the optimization algorithm in this neural network 

architecture.

2.3.1.2. Inception-V3.: Inception v3 is an architecture that has been shown to attain 

greater than 78.1% accuracy on the ImageNet dataset. It is based on the original paper: 

“Rethinking the Inception Architecture for Computer Vision” by Szegedy et al.

The model itself is made up of symmetric and asymmetric building blocks, including 

convolutions, average pooling, max pooling, concatenations, dropouts, and fully connected 

layers. Batch normalization is used extensively throughout the model and applied to 

activation inputs. In total, the architecture has a depth of 59 layers with over 23 million 

parameters. The model is pre-trained on the ImageNet database. The stochastic gradient 

descent [30] is used as the optimization algorithm in this neural network architecture.

2.3.1.3. Inception-Resnet-V2.: Inception-ResNet-v2 is a convolutional neural network 

that combines the principles of the original inception architecture and Resnet architecture. It 

is pre-trained on more than a million images from the ImageNet database. As a result, the 

network has learned rich feature representations for a wide range of images. The network 

has a minimum image input size of 299-by-299. In our study, we have used an input image 

size of 799 × 799. The network is 164 layers deep. The stochastic gradient descent [30] is 

used as the optimization algorithm in this neural network architecture.

2.3.1.4. Logistic model trees.: A logistic model tree (LMT) [28] is a classification model 

with a supervised training algorithm that combines logistic regression and decision tree 

learning. The LMT is based on the idea of a model tree that is a decision tree that has 

linear regression models at its leaves to provide a piecewise linear regression model (where 

ordinary decision trees with constants at their leaves would produce a piecewise-constant 

model). The Logit Boost algorithm is used to produce a model at every node in the tree, 

and the node is then split. Each LogitBoost invocation is started from its results in the 

parent node. Finally, the tree is pruned. We used the numerical optimization algorithm that 

approaches maximum likelihood iteratively.

The models were trained to classify the images into one of the five classes. The output of 

a model was an array of 5 numbers. Each number in the array was a probability value of 

the image being in that class (with the class being represented by the array index of the 

value). The arrays from all five models are then concatenated to form an array of length 25 

(5 probability values * 5 models) called the feature array. As a result, one feature array was 
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created per labeled image. This array is then used as an input to a classifier with a binary 

output value – referable or non-referable DR. The classifier is based on Logistic Model Tree 

[31], a classification model with an associated supervised training algorithm that combines 

logistic regression [32] and decision tree learning [33].

The idea of ensemble methods is that they perform much better than their constituent 

methods. The methods can be combined in many ways, like averaging the outputs, taking 

their median values, the most recurrent output, and many more. We take a step further to 

introduce a machine-learning algorithm to combine the models’ outputs. To compare the 

effect of ensembling the models and to set a baseline to assess our system, we analyze 

one single architecture – inception-V3 and measure its performance against the final system 

using the MD-set.

2.4. Telemedicine platform

The telemedicine platform (Fig. 5) integrates the server-side programs (the image analysis 

and deep-learning modules for DR screening) and local remote computer/mobile devices 

(for collecting patient data and images). The remote devices will upload images and data 

to the server to analyze and screen DR automatically. The telemedicine platform has been 

developed for web and Android platforms, the details can be obtained from Refs. [33–35]. 

The automatic analysis will be performed on the server, and a report will be sent to the 

patient/remote devices with an individual’s DR stage, risk, and further recommendations 

to visit a nearby ophthalmologist as needed. The entire process from data entry to image 

analysis report is determined to take only a few minutes, depending on the experience in 

handling the equipment, which saves time for the doctor and the patient.

Following login, the care provider at a remote location captures the retinal images from the 

patient and uploads the image(s) and clinical data into the webserver. The image is first 

analyzed for its quality by a proprietary AI algorithm developed by iHealthscreen Inc. The 

algorithm was built from a different set of fundus images than those used in this study. If 

the image is not of the desired quality or it is ungradable, the application throws an alert 

to retake the image. The client-side app will call the clinical decision support system to 

access the data, perform automated screening, and decide on a referral to an ophthalmologist 

if necessary. The automated evaluation of DR status and subsequent report generation is 

accomplished in under a minute and reported to the PCP clinic.

We have performed a cluster-bootstrap, biased-corrected, asymptotic 2-sided 95% CIs 

adjusted for clustering by patients were calculated and presented for proportions (sensitivity, 

specificity) and AUC, respectively. All hypotheses tested were 2-sided, and a P value of less 

than 0.05 was considered statistically significant. No adjustment for multiple comparisons 

was made because the study was restricted to a small number of planned comparisons. In 

addition to this, we have considered the entire dataset of Kaggle with 88702 images and 

Messidore 2 with 1748 images. The power calculation following the formula n = (Z2 *P 
*Q)/e2, shows that we need 233 subjects for validation on data taken prospectively [36]. 

The parameters: Where, n = sample size, P = proportion of actual referable cases with 

population, Q = proportion of actual non-referable cases with population, e = precision; P = 

= 0.19, Q = = 0.81, e = 0.05 (for 95% confidence interval, 5% plus or minus precision), Z = 
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1.96 based on the Z score with taking α = 0.05, n = 237. Thus, our primary care dataset was 

adequate with the numbers for external validation in a primary care dataset.

2.4.1. Measures—The model was evaluated based on its performance of detecting 

referable DR in the KG-set (test data). It was further validated on the external public dataset, 

MD-set. The metrics calculated were the accuracy, the sensitivity, the specificity, and the 

AUC for detecting referable DR. The large size of the KG-set test dataset afforded us the 

ability to test two operating points: one for high sensitivity and another for high specificity. 

Table 3 shows detailed results with these metrics.

2.4.2. Ethics statement—Informed consent was obtained from all participants in the 

primary care data (PCP). Mount Sinai institutional review board (IRB) approved our project. 

Images used in the figures are from the subjects in the publicly available datasets obtained 

upon request from the data providers for use in this research.

3. Results

As seen in Table 3, the screening system outperforms all existing screening systems and 

methods to the best of our knowledge on these public datasets. The AUC of 0.9992 (0.9981–

1.0) on the MD-set is state-of-the-art (refer to Fig. 6). In detecting referable DR, the system 

shows an accuracy of 99.08% (98.52%–99.48%), sensitivity of 97.63% (95.55%–98.91%), 

and specificity of 99.49% (98.95%–99.79%) for the Messidor-2 dataset. High sensitivity 

and high specificity operating points resulted in the same values for the metrics for the 

Messidor-2 test set. In KG-set test data, the accuracy was 97.94% (97.61%–98.16%) and 

98.21% (97.95%–98.45%) for high sensitivity and high specificity settings, respectively. The 

sensitivity in the high sensitivity setting was 99.21% (98.74%–99.55%), and the specificity 

in the high specificity setting was 99.22% (99.01%–99.39%).

We compared our model with a similar AI algorithm developed by iDX [37], which is 

recently FDA approved. We used the MD-set to compare these results with previously 

published results from iDX. On the three measures (Sensitivity, Specificity, and AUC) 

considered for comparison, our algorithm outperforms that of iDX. The proposed model 

achieves a specificity of 99% (Refer to Table 4), while iDX scores 87%. The AUC and the 

sensitivity are also higher compared to iDX’s model.

In the primary care settings, the system achieved a sensitivity of 92.3% overall (12 out of 13 

referable images are correctly identified) and an overall specificity of 94.8% (233 out of 251 

non-referable images).

In the KG-set, the large dataset and the availability allow us to compare controls (normal) 

vs. mild DR differentiation in the model. We have 8130 controls (normal) and 720 mild 

cases of retinopathy. Our system correctly classifies 98.01% (7969 out of 8130) of the 

controls as such and 91.9% of mild as such (662 out of 720).

The baseline model (inception-v3 based) achieves a sensitivity of 0.934 and a specificity of 

0.951 in the Messidor-2 (MD-set). The area under the curve (AUC) for this baseline model 

Bhuiyan et al. Page 9

Intell Based Med. Author manuscript; available in PMC 2022 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is 0.96. See Table 5 for more details on the comparison between the baseline model and the 

ensemble model.

The final ensemble method raises the sensitivity by about 6% points and the specificity by 

2.5% points compared to the baseline single architecture model. The AUC is also better, 

with 0.99 against 0.96. The differences in the performances demonstrate the advantages of 

ensemble methods over single models.

4. Discussion and conclusion

Ophthalmologists and Optometrists, who screen for Diabetic Retinopathy (DR), are often 

limited geographically. Visits to eye specialists are also time-consuming, and many patients 

miss their appointments. Hence, an automated screening tool within the primary care 

settings would be ideal for mitigating these issues and providing better care for DR. We 

have built and tested a telemedicine-ready and AI-based, fully automated DR screening tool. 

The model was built in the KG dataset. The external validation was done using the MD 

dataset. The external validation demonstrated the consistently high accuracy of the proposed 

DR screening tool, comparable to that of human graders. We have also demonstrated 

the advantages of our ensemble method over a single neural network architecture. This 

AI system should be tested prospectively in primary care settings, with moderate cost 

and non-mydriatic fundus cameras, on the compatible telemedicine platform that we have 

constructed, with performance evaluated on the diagnosis of referable and non-referable DR.

We note that the test performance is relatively better on standardized test data such as 

Kaggle and Messidor-2 data compared to the data we gathered from PCP clinics. We believe 

the discrepancy may be a result of several factors. The variation in the camera models and 

the environment (e.g., lighting setup) are big factors. Another factor could be the variation 

because of human graders’ input. The system is built on the Kaggle dataset, and that may 

result in performance skewed towards the Kaggle graders. This is a factor because there is 

a considerable difference in the way one grader might grade an image to another grader, as 

shown in the work by Krause et al. [38]. In that paper, it was shown that compared to the 

adjudicated grading (as opposed to individual grading or majority decision), for moderate 

or worse DR, the majority decision of ophthalmologists had a sensitivity of 0.838 and 

specificity of 0.981. Given this discrepancy, it is safe to the performance of our system is on 

par with human graders.

Our proposed system uses trial-and-error methods at different stages of system building. 

However, there is no standardized approach that has been proposed that we used in this 

study. Training a neural network takes an enormous amount of computing resources, 

and therefore, a systematic and exhaustive trial-and-error approach is impractical in this 

scenario. We trained multiple neural networks (about 40) that varied in structural differences 

such as input image size, optimization techniques, loss functions, etc. Five networks with the 

lowest losses were chosen for the next step. However, we do not propose a standardized 

approach based on our system for automation in the future, until such a time where 

computing resources are not major bottlenecks.
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Although the performance of our proposed DR screening system is shown to be very high 

in terms of accuracy, we believe more extensive validations are needed, which include data 

taken prospectively with various conditions for imaging/camera and patient diversity. This 

will test the reliability of the system performance in a real-world application. The system 

is designed to look for diabetic retinopathy signs only, which will not indicate a referral 

for any other abnormality in the eye. This is in contrast with the human screening of the 

retina, where the doctor or healthcare worker might detect other non-DR signs that may 

require referral to an ophthalmologist. Therefore, care must be taken to ensure the patient is 

informed that the system only detects diabetic retinopathy signs.

The system has shown to be effective in screening for diabetic retinopathy, which is 

manifested in abnormalities that can be picked up by deep learning. There are several 

other retinal diseases such as macular degeneration, hypertensive retinopathy, etc., whose 

abnormalities in the eye can be picked up and graded by automated systems in the same way. 

As part of the future work, we will explore an “all-in-one” system for retinal abnormalities 

which will greatly improve referral systems and aid in mass screenings of several potential 

diseases from a single screening.

If the promising performance of the tool is confirmed in the context of real-world 

image acquisition, then deployment in primary care settings for early diagnosis of DR is 

warranted. The physical system and the telemedicine software have been tested for usability, 

convenience, and security. The software application is HIPAA compliant and is built with 

a design policy of minimum interaction with the interface. By using such a secure, fast, 

reliable, and low-cost system, millions of eyes can potentially be saved from preventable 

vision loss with significant healthcare savings.
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Fig. 1. 
Normal vision (left) and what DR patient sees (right) (Credits: ÓNEI, Source: https://

nei.nih.gov/health/examples).
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Fig. 2. 
Five stages of DR progression with examples from the Kaggle Dataset. (A) Normal, 

(B) Mild, (C) Moderate, (D) Severe, and (E) Proliferative DR. Severe and Proliferative 

DR includes the heat map of the affected areas (hemorrhages, exudates, microaneurysms, 

neovascularization, etc.).
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Fig. 3. 
Original RGB fundus image (left), processed image (right).
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Fig. 4. 
The framework of deep learning-based DR screening system. The figure shows the two 

types of input images (original RGB and preprocessed), which are used to build five deep 

learning models differing in the type of architecture and input image size. The networks 

are trained and optimized and the resulting probabilities are then concatenated to form a 

feature vector, which is used as input to the Logistic model tree (trained separately, not in an 

end-to-end fashion) that forms the final classifier.
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Fig. 5. 
Proposed DR screening through telemedicine. The data flow beginning with image and data 

acquisition by the healthcare worker that is analyzed by a binary classifier for image quality. 

The image is further analyzed by a screening algorithm for referable DR cases. The data and 

results are stored on secure cloud platforms as part of the telemedicine platform.

Bhuiyan et al. Page 18

Intell Based Med. Author manuscript; available in PMC 2022 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
ROC Curves and Precision-Recall Curves for detecting referable DR in the two datasets 

(MD-set and KG-set). The corresponding AUCs are shown in the bottom right portion of 

the curve. The curves (orange lines) are not obvious because of very high AUCs, where 

they graze the y-axis making the orange line blend with the axis. (For interpretation of the 

references to color in this figure legend, the reader is referred to the Web version of this 

article.)
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Table 1

Number of images in referable and non-referable DR categories in MD-set, and KG-set.

Referable/non-referable MD-set PCP-clinic KG-set test & validation KG-set Training

Non-referable (%) 1368 (78.26%) 251 (95.07%) 8850 (81.15%) 50198 (80.45%)

Referable (%) 380 (21.74%) 13 (4.93%) 2056 (18.85%) 12198 (19.55%)

Total (%, 100 by definition) 1748 (100%) 264 (100%) 10906 (100%) 62396 (100%)
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Table 2

Number of Images in KG-set in each DR category (No DR, Mild, Moderate, Severe, and Proliferative DR) as 

graded in the Kaggle competition dataset and subsequent division into training, validation, and test datasets.

Classes Overall Training Validation Test

0 - No DR 65343 (73.66%) 45813 (73.42%) 11400 (74.02%) 8130 (74.55%)

1 - Mild DR 6205 (7%) 4385 (7.02%) 1100 (7.14%) 720 (6.6%)

2 - Moderate DR 13153 (14.8%) 9374 (15.02%) 2200 (14.29%) 1579 (14.47%)

3 - Severe DR 2087 (2.35%) 1500 (2.4%) 350 (2.27%) 237 (2.17%)

4 – Proliferative DR 1914 (2.15%) 1324 (2.12%) 350 (2.27%) 240 (2.2%)

Total 88702 (100%) 62396 (100%) 15400 (100%) 10906 (100%)
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Table 4

Comparison of Specificity, Sensitivity, and AUC of our proposed Referable DR model with those of iDX DR 

model on the Messidor-2 dataset.

Metric iHealthScreen iDX

Specificity 0.994 0.870

Sensitivity 0.976 0.968

AUC 0.99 0.98
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Table 5

The comparison of the baseline model (Inception-V3), which is a single model, and the final ensemble model 

compared side by side on the Messidor-2 dataset.

Metric Baseline (single architecture - Inception-V3) Ensemble Method

Sensitivity 0.934 0.994

Specificity 0.951 0.976

AUC 0.96 0.99
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