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Introduction: Coagulation is involved in fibroproliferative responses following acute

myocardial infarction (AMI). Left ventricular (LV) remodeling following AMI is closely

associated with progression to heart failure. This study aims to assess the association

between plasma tissue factor activity and LV remodeling in post-AMI patients.

Methods: We studied 228 patients with AMI and 57 healthy subjects. Patients

with AMI were categorized into two age- and sex-matched groups: patients

with adverse LV remodeling or reverse LV remodeling, defined by an increase

or decrease, respectively, in LV end systolic volume by ≥15% over 6 months. TF

activity was measured in plasma collected at baseline (within 72 hours of

revascularization), 1 month and 6 months post-AMI. Multiple level longitudinal

data analysis with structural equation (ML-SEM) model was used to assess the

impact of various clinical variables on TF activity in post-AMI.

Results: Plasma TF activity in post-AMI patients at baseline (29.05 ± 10.75 pM)

was similar to that in healthy subjects but fell at 1 month (21.78 ± 8.23, p<0.001)

with partial recovery by 6 months (25.84 ± 8.80, p<0.001) after AMI. Plasma TF

activity at 6 month post-AMI was better restored in patients with reverse LV

remodeling than those with adverse LV remodeling (27.35 ± 7.14 vs 24.34 ± 9.99;

p=0.009) independent of gender, age and relevant cardiovascular risk factors.

Conclusions: Plasma TF activity decreased after AMI but was better restored at

6 months in patients with reverse LV remodeling. The clinical significance of

changes in post-AMI plasma TF activity needs further investigation.
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Introduction

Thrombus formation, due to atherosclerotic plaque disruption

and exposure of subendothelial tissue factor (TF), is the key event

underpinning atherothrombosis in acute myocardial infarction

(AMI) (1). Following AMI, severe myocardial injury adverse left

ventricular (LV) remodeling is associated with progression to

heart failure. Remodeling is a complex process incorporating

changes in ventricular shape, size and function secondary to

haemodynamic stress, neurohormonal activation and pro-

inflammatory cytokines triggered by the acute loss of myocytes

(2). Interestingly, serum levels of interleukin-6 (IL-6) and TF are

highly correlated in patients with heart failure (3, 4), suggesting a

crosstalk between inflammation and coagulation during

LV remodeling.

TF is a transmembrane protein that primarily functions as

an initiator of the extrinsic coagulation cascade. It binds to

coagulation factor VIIa, resulting in activation of coagulation

factors IX and X, ultimately leading to fibrin formation (5, 6).

Apart from its role in hemostasis, TF promotes inflammation

and angiogenesis through different signal transduction pathways

(6–9). TF is mainly expressed in perivascular tissue, circulating

cells, and in blood as well as in the myocardium (5, 9, 10).

Besides the presence of cellular TF, circulating TF is also

detectable in extracellular vesicles in the bloodstream of

healthy individuals (11). Cardiovascular risk factors such as
Frontiers in Endocrinology 02
hypertension, diabetes, dyslipidemia, hypercholesterolemia and

smoking have been shown to increase levels of circulating TF

(12–14). Conversely, some drugs such as angiotensin-

converting-enzyme inhibitor (ACE inhibitor), HMG-CoA

reductase inhibitors (statins) and anti-platelet agents are

associated with decreased TF expression (12).

TF maintained in an encrypted state on the cell surfaces has

very little procoagulant activity until it is activated (15, 16).

Reported associations of plasma TF with adverse cardiac events

and mortality post-AMI (17–23) are based on the measurement

of TF antigen levels which do not fully reflect the functional

capacity of TF (24). Moreover, there are few data on the

association between plasma TF activity and LV dysfunction

post-AMI. We therefore profiled temporal changes in plasma

TF activity following AMI and evaluated their association with

LV remodeling.
Materials and methods

Study design and population

The present analysis is a sub-study of the IMMACULATE

registry study (Figure 1), a nested case-control studymatching 114

patients with adverse LV remodeling to 114 patients with reverse

LV remodeling who underwent urgent coronary angiography for
FIGURE 1

Study design flowchart.
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percutaneous coronary intervention (PCI) (25). The

IMMACULATE registry was a multicenter study enrolling

patients hospitalized for AMI as established by the presence of

ischemic chest pain or angina equivalent symptoms associated

with electrocardiographic and cardiac enzymatic changes.

Electrocardiographic changes included: an ST-segment elevation

of two or more contiguous leads in leads V2 – V3 of at least 0.2

mV in in men or 0.15 mV in women, or an elevation of at least 0.1

mV in other contiguous chest leads, or the limb leads. Patients

with clinically diagnosed non-ST-elevation MI (NSTEMI)

established by the presence of electrocardiographic changes of

ST-segment depression or prominent T-wave inversion and

positive biomarkers of cardiac necrosis (troponin, CKMB) were

also included in this study. Exclusions were age over 85 years,

valvular heart disease, cardiogenic shock, malignancy, renal

impairment (eGFR < 15 ml/min/1.73 m2), liver impairment,

anemia, HIV, hepatitis B or hepatitis C. Clinical outcomes

recorded at 1- and 6-months post-AMI after recruitment,

included cardiovascular death, heart failure, recurrent MI, and

ischemic stroke. At baseline and 6 months post-AMI, patients

underwent transthoracic echocardiography for assessment of

cardiac structure and function. Adverse LV remodeling was

defined as an increase in left ventricular end systolic volume

(LVESV) by ≥15% over 6 months and reverse LV remodeling as a

decrease in LVESV by ≥15% over 6 months. Blood samples were

collected at baseline (defined as within 24-72 hours of

revascularization), and subsequently at 1 month and 6 months

post-AMI. Samples were collected in 3.2% (w/v) sodium-citrate

anticoagulated tubes and spun for 10 minutes at 4000g to separate

plasma which was aliquoted and stored at -80°C until analysis.

A control group of 57 healthy subjects was recruited for this

study. The healthy subjects comprised 45.6% males (n = 26) with

a mean age of 35 years and 47 (82.5%) Chinese. All participants

provided written informed consent. The study was approved by

the National University of Singapore Institutional Review board

(NHG DSRB Ref: 2015/01156) and conducted according to the

principles of the Declaration of Helsinki.
Plasma tissue factor activity assay

Plasma TF procoagulant activity was measured using the

Tissue Factor Human Chromogenic Activity Assay Kit

(ABCAM, #ab108906) as previously described (26). Briefly, 10

µL plasma was added to assay mix comprising of 50 µL assay

diluent, 10 µL factor VII and 10 µL factor X and mixed. The

mixed sample was incubated at 37°C for 30 minutes and

subsequently 20 µL FXa substrate was added to the sample.

Absorbance at 405 nm was measured every 5 minutes for 35

minutes with a microplate reader. Standard curves were

prepared by serially diluting standard solution (500pM) 1:2

with sample diluent which correlated with TF activity.
Frontiers in Endocrinology 03
Data analysis

All statistical analyses were performed with SPSS version 25.0

(IBM Corp., Armonk, NY) and Stata MP 16.0 (Stata Corp., Texas,

USA). Statistical graphs were generated using GraphPad Prism 7.00

(GraphPad Software, San Diego, California, USA). P<0.05 was

considered statistically significant. No imputation of missing data

was performed as the number of missing data for the respective

variables (plasma TF activity at baseline = 2; diabetes = 1; smoker =

1; total cholesterol = 8; triglyceride = 7; high-density lipoprotein =

7; low-density lipoprotein = 10) was less than 5% of the sample size.

Continuous data were expressed asmean ± standard deviation

(SD) or median ± interquartile range (IQR). Categorical variables

were expressed as number with percentage (%). Differences

between groups were analyzed with Chi-square test or unpaired

Student’s t-test as appropriate. The differences between baseline

and follow-up measurements were established using paired t-test.

Plasma TF activity differences were tested in a univariable logistic

regression model as well as in a multivariable model adjusted for

known cardiovascular risk factors. Subsequently, the multilevel

structural equation model (ML-SEM) was performed to ascertain

the possible associations of clinical variables related to

cardiovascular disease on plasma TF activity post-AM. The

construction of this model takes into consideration the

longitudinal design and the sequential nature of the data, thus

allowing the accommodation of complex data interaction.
Results

Baseline characteristics of
post-AMI patients

In this matched nested case-control study, 114 post-AMI

patients were included for each category of LV remodeling:

adverse LV remodeling versus reverse LV remodeling (Figure 1).

As shown in Table 1, the mean age of the 228 post-AMI patients

was 54 years and 94.7% (n = 216) were male. There were no

significant differences in baseline variables between the patients

with adverse LV remodeling and patients with reverse LV

remodeling, except for those on warfarin treatment (12 out of

114 vs 2 out of 114; p = 0.006), beta-blocker (85 out of 114 vs 103

out of 114; p = 0.002), and the expected echocardiographic

changes after 6 months post-AMI (p < 0.001).
Temporal trends of plasma TF activity in
post-AMI patients

As shown in Table S1 and Figure 2, the baseline (within 72

hours post PCI for AMI patients) levels of plasma TF activity

in post-AMI patients were comparable to plasma TF activity in
frontiersin.org
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healthy subjects. Compared to baseline, plasma TF activity in

patients was lower at 1 month (21.78 ± 8.23 vs 29.05 ± 10.75 pM;

p<0.001) and 6 months (25.84 ± 8.80 vs 29.05 ± 10.75 pM;

p<0.001) post-AMI. TF activity in patients partially recovered at

6 months post-AMI although it remained lower than baseline

levels and that in healthy subjects.

Figure 2. Plasma TF activity in healthy subjects and post-

AMI patients.
Frontiers in Endocrinology 04
Plasma TF activity in patients with
adverse versus reverse post-AMI
LV remodeling

TF activity decreased at 1 month and partially recovered at 6

months post-AMI in both patients with adverse LV remodeling

and those with reverse LV remodeling (Figure 3). However,

plasma TF activity recovered more at 6 months in patients with
TABLE 1 Baseline characteristics of the Post-AMI patients.

Post-AMI

Adverse LV Remodeling Reverse LV Remodeling p-value

n = 114 n = 114

Demographic

Mean age (years, mean (sd)) 54 (8.5) 54 (8.5) 0.975

Male n (%) 109 (95.6) 107 (93.9) 0.553

Chinese n (%) 67 (58.8) 66 (57.9) 0.190

Malay n (%) 27 (23.7) 18(15.8)

Indian n (%) 16 (14.0) 27 (23.7)

Other n (%) 4 (3.5) 3 (2.6)

Medical history

Diabetes n (%) 23 (20.4) 22 (19.3) 0.842

Dyslipidemia n (%) 49 (43.0) 52 (45.6) 0.689

Hypertension n (%) 49 (43.0) 47 (41.2) 0.788

Smoking Status

Non-Smoker n (%) 36 (31.6) 37 (32.5) 0.860

Current Smoker n (%) 68 (59.6) 65 (57.0)

Ex-Smoker n (%) 10 (8.8) 12 (10.5)

Lipid levels at baseline

Total cholesterol (mg/dL, mean (sd)) 5.38 (1.3) 5.44 (1.3) 0.770

HDL cholesterol (mg/dL, mean (sd)) 1.08 (0.2) 1.19 (0.8) 0.161

LDL cholesterol (mg/dL, mean (sd)) 3.51 (1.2) 3.50 (1.2) 0.992

Triglycerides (mg/dL, mean (sd)) 1.89 (1.0) 2.15 (3.3) 0.421

Diagnoses

STEMI (%) 96 (84.2) 90 (78.9) 0.305

NSTEMI (%) 18 (15.8) 24 (21.1)

Medications

Aspirin (%) 110 (96.5) 112 (98.2) 0.408

P2Y12 inhibitor (%) 110 (96.5) 113 (99.1) 0.175

Statin (%) 112 (98.2) 111 (97.4) 0.651

Warfarin (%) 12 (10.5) 2 (1.8) 0.006

ACE inhibitor (%) 64 (56.1) 75 (65.8) 0.135

Beta-blocker (%) 85 (74.6) 103 (90.4) 0.002

Echocardiographic

EF at baseline (%, median (95% CI) 52.87 (50.18-54.87 49.91 (48.00-50.96) 0.052

EF at 6 months (%, median (95% CI) 50.36 (45.46-53.07 58.10 (56.55-60.62) < 0.001

Change in LVEDV (%, median (95% CI) after 6 months 28.80 (24.34-34.70) -11.76 (-16.21–9.86) < 0.001

Change in LVESV (%, median (95% CI) after 6 months 29.64 (27.32-31.69) -25.89 (-27.74-24.24) < 0.001

Change in EF (%, median (95% CI) after 6 months -2.70 (-5.60–0.45) 15.70 (11.58-20.30) < 0.001
fro
ntiersin.o
Continuous data are presented as mean ± SD, or median with 95% Confidence Interval (CI). Categorical variables are presented as %. HDL, high density lipoprotein; LDL, low density
lipoprotein; STEMI, ST-elevation myocardial infarction; NSTEMI, non-ST-elevation myocardial infarction; LVEDV, left ventricular end diastolic volume; LVESV, left ventricular end
systolic volume; EF, ejection fraction; sd, standard deviation.
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reverse LV remodeling than that in patients with adverse LV

remodeling (27.35 ± 7.14 vs 24.34 ± 9.99; p=0.009). Plasma TF

activity at 6 months post-AMI differed between those with

adverse versus reverse LV remodeling (OR 0.960, 95%

CI: 0.931-0.991; p=0.011) independent of cardiovascular

risk factors, including age, sex, ethnicity, hypertension,

dyslipidaemia, diabetes mellitus and smoking.
Clinical correlates of plasma TF activity

The clinical correlations of plasma TF activity in post-AMI

patients were identified using the ML-SEMmodel (Table 2). Out

of a total of 15 clinical variables, Indian ethnicity, current
Frontiers in Endocrinology 05
smoking, and prescription of P2Y12 inhibitors were associated

with higher plasma TF activity while warfarin treatment was

associated with lower plasma TF activity. Other variables

including age, gender, diabetes, dyslipidemia, hypertension,

total cholesterol, HDL cholesterol, LDL cholesterol,

triglycerides, aspirin, statin, beta-blockers and ACE inhibitors

were not significantly correlated with plasma TF activity.
Discussion

TF has been associated with AMI occurrence and post-AMI

adverse events including mortality (18–23). Although the

involvement of TF in AMI and post-AMI LV remodeling was
frontiersin.org
FIGURE 2

Plasma TF activity in healthy subjects and post-AMI patients. Plasma TF activity in healthy subjects (n = 57) and post-AMI patients (n = 228) was
presented as mean ± SD and statistically analyzed with unpaired and paired t-tests. NS, no significance.
FIGURE 3

Plasma TF activity in patients with adverse versus reverse LV remodeling during 6-months follow-up. Plasma TF activity of patients with post-AMI
adverse (n = 114) or reverse (n = 114) LV remodeling was presented as mean ± SD and statistically analyzed with unpaired t-test. NS, no significance.
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reported in preclinical animal models (9, 27), the contribution of

TF in post-AMI LV remodeling in human patients remains

unclear. In this study, temporal changes of plasma TF activity

showed a stronger recovery after the early post-MI fall of plasma

TF activity among patients with reverse LV remodeling,

independent of gender, age and relevant cardiovascular

risk factors.

Studies on the role of plasma TF in AMI have produced

conflicting results. While elevation in plasma TF levels were

observed in patients with ACS or AMI (17, 20–22, 28–31),

Roldan et al. reported no difference between AMI patients and

healthy subjects (24). The discrepancy among those studies may

be largely due to differences in experimental design and the

timing of blood samples. Recently we found that myocardial TF

expression decreased following AMI but partly recovered during

chronic phase of LV remodeling in an animal model (9).

Accordingly, we now demonstrate that plasma TF activity in

post-AMI patients follows a similar V-shaped temporal pattern

over 6-month follow-up. Similar dynamic change of plasma TF
Frontiers in Endocrinology 06
activity in post-AMI patients was also observed by Sambola et al.

(22). These findings suggest that the sampling time point could

significantly confound TF levels. Previous studies have reported

higher plasma TF levels in AMI patients than in healthy controls

in samples collected shortly after onset of AMI (prior to PCI)

(17, 19, 21) with no difference reported in samples collected 2-3

months after AMI (24). Standard interventions such as PCI and

medications including heparin, may partly account for the

similar plasma levels between healthy controls and post-AMI

patients within 3 days after PCI in the current study or 2-3

months after PCI as reported by Roldan et al. (24). Heparin has

been shown to induce synthesis and secretion of TF pathway

inhibitor (TFPI), a potent inhibitor of the extrinsic coagulation

cascade by inactivating coagulation factor Xa and TF-factor VIIa

(32, 33). As such, heparin administration may mask increases in

plasma TF activity in the acute phase of AMI (“baseline” in

our study).

The V-shaped dynamic change in plasma TF activity during

the 6-month follow-up after AMI is unexpected. The initial
TABLE 2 ML-SEM modeling for plasma TF activity in post-AMI patients.

TF activity

Coefficient p-value 95% Cl

Demographic

Age 0.007 0.883 -0.084 – 0.098

Female 2.692 0.101 -0.526 – 5.911

Chinese Ref Ref Ref

Malay 0.956 0.315 -0.910 – 2.823

Indian 2.446 0.010 0.578 – 4.313

Other 3.819 0.106 -0.813 – 8.450

Smoking Status

Non-Smoker Ref Ref Ref

Current Smoker 1.763 0.033 0.140 – 3.385

Ex-Smoker -0.386 0.777 -3.067 – 2.294

Medical History

Diabetes -0.298 0.770 -2.302 – 1.705

Dyslipidemia -0.161 0.842 -1.739 – 1.418

Hypertension 0.442 0.599 -1.206 – 2.089

Lipid levels at baseline

Total cholesterol -0.091 0.909 -1.648 – 1.467

HDL cholesterol 0.861 0.601 -2.365 – 4.088

LDL Cholesterol 0.184 0.832 -1.521 – 1.890

Triglycerides -0.037 0.849 -0.424 – 0.349

Medication

Aspirin 4.846 0.076 -0.500 – 10.192

P2Y12 inhibitor 8.938 0.005 2.726 – 15.151

Statin -1.986 0.530 -8.183 – 4.211

Warfarin -13.819 < 0.001 -17.403 – -10.236

Beta-blockers -0.182 0.906 -3.221 – 2.856

ACE Inhibitors 1.025 0.395 -1.349 – 3.399
Bolded values are those with p-value <0.05.
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decrease in plasma TF activity at 1-month post-AMI may be

partly caused by anticoagulant medications. Apart from early

use of heparin as discussed above, the majority of patients (>

97%) in our study were treated with dual antiplatelet therapy,

aspirin and P2Y12 inhibitors (clopidogrel, ticagrelor or

prasugrel) over the post MI period. Activated platelets release

extracellular vesicles that have been identified as a major source

of plasma TF (34). P2Y12 inhibitors such as Ticagrelor suppress

release of procoagulant extracellular vesicles from platelets

(35). However, antiplatelet treatment appeared associated

with higher plasma TF activity in post-AMI patients. This

discrepancy might be caused by different dosage or duration of

antiplatelet treatment during follow-up, and/or some unaware

confounding factors. Unfortunately, we have limited

information on antiplatelet treatment drug dosage, duration or

compliance of individual patients in this study. Aspirin therapy

may reduce blood counts of TF-bearing extracellular vesicles of

monocyte and smooth muscle cell origin (36). On the other

hand, smoking confers a hypercoagulable state and has been

shown to upregulate monocyte TF in patients with metabolic

syndrome (37) and is associated with higher plasma TF activity

in post-AMI patients in the current study. Of note, monocyte-

derived TF-bearing extracellular vesicles account for the second

largest pool of thrombogenic extracellular vesicles after platelet-

derived extracellular vesicles (38–40). Statins, which were

prescribed in 98% of post-AMI patients in the current study,

have also been reported to reduce blood counts of TF-bearing

extracellular vesicles (11, 41). In addition, Warfarin, may

contribute to lower plasma TF activity (42, 43) during follow-

up even though only 6% patients took it. Besides anticoagulant

medications, consumption of TF or TF-bearing extracellular

vesicles during thrombus formation and wound healing (44–

46) following AMI or PCI-induced endothelial injury may

reduce the circulating active TF levels. After 6 months post

PCI, there should be no more such consumption of TF thereby

allowing recovery of circulating concentrations. Early cessation

of heparin therapy and possible reduction in patient adherence

to oral anticoagulant medications during follow-up may partly

account for the restoration of plasma TF activity at 6 months

post-AMI. Although ACE inhibitors have been reported to

reduce TF expression (12), their usage is not associated with

plasma TF activity in post-AMI patients in the current study.

This is likely because TF antigen expression in vascular cells does

not always correlate well with TF activity (47). Moreover, beta-

blocker was used in more patients with reverse LV remodeling,

however, it did not exhibit obvious influence or confounding

effects on plasma TF activity in our study (Table 2).

Nevertheless, we observed that the dynamic change in plasma

TF activity during post-AMI follow-up differed between reverse

and adverse LV remodeling independent of other variables.

Further investigation to unravel the underpinning mechanisms

and their biological significance is warranted.
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Several limitations of this study should be noted. Limitations

include lack of blood collections at admission to enable capture

of the full temporal profile of plasma TF activity from prior to

PCI and introduction of pharmacotherapies. In addition, most

patients were male in the study and healthy controls were

younger than post-AMI patients. The tissue origins of TF

contributing to plasma TF activity in post-AMI patients

remains unclear and is beyond the scope of the current study.
Conclusions

In summary, we demonstrate that plasma TF activity in

post-AMI patients presents a V-shaped dynamic change over 6

months following PCI treatment - with a stronger restoration of

plasma TF activity in patients exhibiting reverse LV remodeling

during the 6 months follow-up period.
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