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With the development of high-throughput sequencing technology, the posttranscriptional
mechanism of alternative splicing is becoming better understood. From decades of
studies, alternative splicing has been shown to occur in multiple tissues, including the
brain, heart, testis, skeletal muscle, and liver. This regulatory mechanism plays an
important role in physiological functions in most liver diseases. Currently, due to the
absence of symptoms, chronic pediatric liver diseases have a significant impact on public
health. Furthermore, the progression of the disease is accelerated in children, leading to
severe damage to their liver tissue if no precautions are taken. To this end, this review
article summarizes the current knowledge of alternative splicing in pediatric liver diseases,
paying special attention to liver damage in the child stage. The discussion of the regulatory
role of splicing in liver diseases and its potential as a new therapeutic target is also included.
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INTRODUCTION

Chronic liver disease is an increasing health burden in children and adults. Although the incidence is
unclear, it is estimated that chronic liver disease has become the 11th leading cause of death among
adults (Vos et al., 2016; Gao et al., 2021). In addition, many children are hospitalized due to liver
diseases each year. In children and adults, nonalcoholic fatty liver disease (NAFLD) is known as a
frequently appearing chronic liver disease with a complex interplay between environmental and
genetic factors in industrialized countries (Vos et al., 2016; Gao et al., 2021). It is generally accepted
that pediatric liver diseases, including NAFLD, chronic viral hepatitis, and other chronic liver
diseases, may develop into chronic diseases, such as cirrhosis and hepatocellular carcinoma, in adults
(Della Corte et al., 2016; Nobili et al., 2019). In particular, the number of liver cancer cases has
increased rapidly since 1990 (Della Corte et al., 2016). In addition to liver-associated symptoms,
NAFLD is related to a risk increment of diabetes (type 2) and cardiovascular disease in adults (Draijer
et al., 2019). Furthermore, hepatic cholestasis and metabolic and autoimmune liver problems have
been demonstrated to be the most common causes of liver failure in children, leading to liver
transplantation at their final stage (Nikeghbalian et al., 2021). On the other hand, viral hepatitis,
alcoholic hepatitis, and hepatocellular carcinoma are more common in adults. In both children and
adults, the vast majority of patients are asymptomatic in the early stage of disease, and the prevalence
of these diseases is unknown, leading to delays in diagnosis and treatment. Furthermore, because
similar responses will be shown from different injuries of hepatic cells, different types of liver diseases
may show similar presentations among children (Della Corte et al., 2016). Moreover, nonspecific
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signs, including abdominal pain, fatigue, loss of appetite, pruritus,
or hepatomegaly, can also be present among patients. Thus,
prevention and early diagnosis are important to distinguish
these chronic liver diseases and will lead to cost-effective
treatments in pediatric settings.

Alternative splicing is the process to mediate pre-messenger
RNA maturation into mRNA, by removing introns and
reattaching exons (Webster, 2017). During this precise
molecular process, different transcripts are assembled with the
help of splice sites and associated sequences. Hence, alterations in
splicing factors, such as the usage of new splice sites or enhancer
sequences, as well as disruption of splicing sequences, can lead to
diseases including metabolic diseases, liver diseases, cancers, and
neurodegenerative diseases (Montes et al., 2019; Rahman et al.,
2020). For instance, mutations in spliceosome RNA genes were
detected in hepatocellular carcinoma, medulloblastoma, and
chronic lymphocytic leukemia (Jimenez et al., 2018; Suzuki
et al., 2019; Rahman et al., 2020). In addition, critical changes
were found in the function of RNA splicing in hepatic fat
metabolism of obesity (Pihlajamaki et al., 2011). Recent
studies have also demonstrated alterations in the splicing
machinery in inflammation, steatosis, and fibrosis in NAFLD
patients and animals (Zhu et al., 2016; Gerhard et al., 2018; Del
Río-Moreno et al., 2019; Hoang et al., 2019; Wang et al., 2019). In
this review article, we will summarize the appearance of
alternative RNA splicing in pediatric liver diseases and
highlight its roles in the development and progression of these
diseases (Table 1).

COMMON LIVER DISEASES IN CHILDREN
AND ADULTS AND THEIR RELATIONSHIP
WITH RNA SPLICING

Splicing Mutations Identified in Infantile
Cholestasis
Infantile cholestasis (IC) is an impairment of bile production or
flow occurring in the first months of life that affects 1:2,500 live
births (Pietrobattista et al., 2020). It is recognized as an important
cause of chronic liver disease in infants and young children,
including biliary atresia (BA) (35–41%), progressive familial
intrahepatic cholestasis (PFIC) (10%), Alagille syndrome
(2–6%), and other causes (Götze et al., 2015). This paragraph
will discuss the regulatory role of alternative splicing (AS) in PFIC
and Alagille syndrome. The association between AS and BA will
be stated later. PFIC patients diagnosed in childhood with
intrahepatic cholestasis frequently progress to end-stage liver
disease before adulthood (Bull and Thompson, 2018). There
are three major proteins affected in PFIC, including the bile
salt export pump (BSEP) encoded by ABCB11, multidrug
resistance protein 3 (MDR3) encoded by ABCB4, and a
membrane lipid composition protein (FIC1) encoded by
ATP8B1, while three other reported proteins may be affected
in PFIC patients, including tight junction protein 2 encoded by
TJP2, the farnesoid X receptor (FXR) encoded by NR1H4, and
myosin 5B encoded byMYO5B (Sambrotta et al., 2014; Qiu et al.,
2017; Keitel et al., 2019). To date, except for NR1H4, splicing

mutations have been found in other five genes associated with
PFIC (http://www.hgmd.org) (Liu et al., 2010; van der Woerd
et al., 2015; Khabou et al., 2016; Stenson et al., 2017; Al-Hussaini
et al., 2021). In particular, FIC1 is part of the p-type adenosine
triphosphatase type 4 subfamily involved in membrane
phospholipid transport (Paulusma et al., 2008). This protein is
found in the apical membrane of hepatocytes and is considered to
be a phospholipid translocase that carries phospholipids, such as
phosphatidylethanolamine (PE) and phosphatidylserine (PS),
from the ectoplasmic lobule of the outer tubule to the
cytoplasmic lobule of hepatocytes. FIC1 protects the tubule
membrane by maintaining plasma membrane asymmetry
(Vitale et al., 2019). Previous studies systematically described
14 mutations at the exon-intron boundary of ATP8B1 and found
that most of them caused aberrant splicing of its gene product
(van der Woerd et al., 2015). Furthermore, this study suggested
that compensatory modified U1 small nuclear RNAs (snRNA),
which are complementary to the mutated donor splicing site, are
highly effective in improving exon definition, implying the
therapeutic potential of these mutated loci.

Furthermore, BSEP is a binding cassette transporter for
adenosine triphosphate and is involved in the transfer of bile
salts from hepatocytes to bile ducts, a process which is essential
for maintaining the enterohepatic circulation of related bile salts
(Vitale et al., 2019). Mutations in BSEP disrupt the transportation
process of bile salts out of hepatocytes, resulting in increased
concentrations of intracellular bile salts to damage hepatocytes
(Vitale et al., 2019). Moreover, MDR3 (ABCB4) encodes a
phosphatidylcholine (PC) flippase with two transmembrane
and cytoplasmic nucleotide binding domains, respectively. This
protein is specifically localized at the tubular membrane of
hepatocytes to mediate PC transportation from hepatocytes to
bile ducts (Vitale et al., 2019). Over-expression of MDR3
increases the transport rate of fluorescin-labeled PC, but not
other phospholipids. The abnormal function of MDR3 leads to
the depletion of PC in the biliary tubules and elevated free
hydrophobic bile acids in the space, causing damage to bile
duct cells and the development of cholestasis (Henkel et al., 2019).

In addition, TJP2 is a tight junction protein that can interact
with actin cytoskeletons and liver-specific tight junction proteins,
such as CLDN1 and CLDN2 (Sambrotta and Thompson, 2015;
González-Mariscal et al., 2019). Tight junctions are able to
prevent biliary elements from leaking into the liver
parenchyma. However, upon TJP2 mutation, CLDN1 failed to
localize to its original position in the hepatic lobular parenchyma.
This mis-localization disrupts the tight junctions, causing the
leakage of bile salts with cytotoxicity into the paracellular space
and resulting in damage to bile duct cells and surrounding
hepatocytes (Sambrotta et al., 2014; Sambrotta and Thompson,
2015). Previous studies have reported that the mutant C. 2180-
5T>G caused the jump of exon 15 of TJP2 and the deletion of 32
amino acid residues in the framework (Zhang et al., 2020). Thus,
this mutation can serve as potential diagnostic targets of this
disease.

At last, the fifth protein is known as myosin 5B (MYO5B),
identified as a molecular motor associated with actin (Vitale et al.,
2019). Reports have indicated that MYO5B can interact with
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RAS-associated GTP-binding protein 11A (RAB11A), in order to
assist the polarization process of epithelial cells. Meanwhile, the
localization of BSEP at the tubule membrane is affected by the
activity of this interaction (Girard et al., 2014; Overeem et al.,
2020). Mutations in this gene have been linked to microvillus
inclusion body disease (MVID), which affects enterocytes,
leading to reducing bile acid uptake, diarrhea, malabsorption
(Van IJzendoorn et al., 2020; Overeem et al., 2020). Qiu et al.
reported that three classical splicingmutations are identified from
their study and this type of mutation is defined as severe
mutations. Taking into consideration the interaction between
MYO5B and RAB11A, the manipulation of this upstream signal
transduction module may provide additional targets for
therapeutic purposes. As a congenital disorder, Alagille
syndrome is characterized by eye and heart abnormalities,
skeletal deformities, cholestasis, and characteristic facial
features (Li et al., 1997). Nearly 94% of patients have
congenital cardiac diseases, and 21–31% of patients may be
candidates for liver transplantation (Li et al., 1997). Currently,
approximately 94% of Alagille syndrome patients have variants of
JAG1, while 1–2% of patients have NOTCH2 (McDaniell et al.,
2006). Both JAG1 and NOTCH2 are identified as single-channel
transmembrane proteins, containing 26 and 34 exons,
respectively. Specifically, the interaction between ligand JAG1
and NOTCH2 receptor requires several functional motifs, such as
the C2-like domain, delta-Serate-lag2 (DSL) domain, epidermal
growth factor-like (EGF-like) repeats of JAG1, and extracellular
EGF-like repeats on NOTCH2 (Chillakuri et al., 2013; Kopan and
Ilagan, 2009; Lindsell et al., 1995), and the mutation of this
pathway identified in children with Alagille syndrome. In
addition, only one NOTCH2 mutation of the splice site of
exon 33 (c.5930−1G→A) was identified in the patient with
Alagille syndrome, while more than 40 splicing mutations

were reported in the JAG1 gene with Alagille syndrome
(http://www.hgmd.cf.ac.uk/ac/gene.php?gene�JAG1)
(Mcdaniell et al., 2006; Chen et al., 2018). However, how these
mutations affect the interaction of this pathway remains to be
elucidated. Nevertheless, these reported splicing mutations may
serve as potential diagnostic targets for Alagille syndrome.

Transcriptome Studies of RNA Splicing in
Metabolic Liver Diseases
Metabolic liver diseases might be the second leading cause of liver
transplantation in children, including NAFLD, Wilson’s disease
(WD), alpha-1 antitrypsin, and glycogen storage disease (Elisofon
et al., 2020). NAFLD is the most common chronic liver disease in
children and adolescents worldwide, notified to be the second
most common cause of liver transplantation (Goldner and
Lavine, 2020). Approximately, 2.6–11.3% of children and
approximately 40–70% of obese children are diagnosed with
NAFLD worldwide (Goldner and Lavine, 2020). Consequently,
NAFLD affects public health, especially children and adolescents.

Several genetic variants, including genes encoding
transmembrane 6 superfamily member 2 (TM6SF2), patatin-
like phospholipase domain-containing 3 (PNPLA3),
glucokinase regulator (GCKR), and membrane bound O-acyl
transferase 7 (MBOAT7), contribute to the risk of NAFLD,
whereas protein phosphatase 1 regulatory subunit 3B
(PPP1R3B) has been documented to have a protective effect
against NAFLD (Valenti et al., 2010; Santoro et al., 2012;
Kozlitina et al., 2014; Mancina et al., 2016; Dongiovanni et al.,
2018; Li et al., 2020). However, other genetic variants, such asMer
tyrosine kinase (MERTK), interferon-λ4 (IFNL4), and 17-β
hydroxysteroid dehydrogenase 13 (HSD17B13), might modify
the fibrotic effect of NAFLD, which were highlighted as new

TABLE 1 | Studies reporting alterations of RNA splicing in pediatric liver diseases.

Study objects Methods References

Splicing mutations in ATP8B1 of PFIC The effect of premessenger RNA splicing on 14 ATP8B1 exon-intron boundarymutations
was studied using an in vitro microgene system

van der Woerd et al.
(2015)

Splicing variant in JAG1 The candidate variants were verified by Sanger sequencing, and the splicing effect of the
candidate variants was clarified by RNA detection

Chen et al. (2020)

The FXR splicing through transcriptional program in
NAFLD

The FXR variant gene was transferred into the liver of FXR (−/−) mice to evaluate its effect
in vivo

Correia et al. (2015)

Transcriptomic analysis in NAFLD Complete transcriptome analysis of intraperitoneal adipose tissue (IAT) in severely obese
adolescents was performed using RNA sequencing

Sheldon et al. (2016)

Alternative splicing of hepatitis B virus The regulation of splicing of HBV in chemically and surgically induced liver injury was
studied in transgenic mice with whole HBV genomes and hepatocellular carcinoma cells

Duriez et al. (2017)

Alternative splicing of AZIN1 in hepatitis C virus Seven splicing variants of AZIN1 (SV2-8) were cloned from human hepatic stellate cell line
LX2 by polymerase chain reaction

Paris et al. (2011)

The spliceosome factor SART1 in HCV SiRNA knockout and mRNA sequencing in Huh7.5.1 cells selection genes for mRNA
variation and their proteins, and HCV replication

Lin et al. (2015)

Transcriptome Analysis in Pediatric Hepatocellular
Carcinoma

The activity of YAP and the expression of Hippo pathway components in tumor and non-
tumor liver tissues of 7 children with HCC were detected

Laquaglia et al. (2016)

Transcriptome profiling of biliary atresia Liver samples from infants with biliary atresia were collected and transcriptome analysis
was performed using RNA-seq technique

Xiao et al. (2014)

Long noncoding RNA H19 (lncRNAH19) in biliary atresia Liver specimens from 53 BA patients and 11 control liver specimens were analyzed by
qRT-PCR, Western blotting, histology, and immunohistochemistry (IHC)

Xiao et al. (2019)

Transcriptomic of human hepatocellular carcinomas
and hepatoblastomas

The gene expression patterns and global genomic changes of HCC and HBS were
analyzed

Luo et al. (2006)
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candidate genes among Hispanic boys (Petta et al., 2016; Petta
et al., 2017; Wattacheril et al., 2017; Abul-Husn et al., 2018).
Furthermore, the hepatic expression of farnesoid X receptor
(FXR) was reduced in both animal models and NAFLD
patients, where hepatic FXR expression was reduced in
nonalcoholic steatohepatitis (NASH) (Yang et al., 2010). A
study showed that FXR splicing toward FXRα2 reduced
hepatic lipid accumulation through the transcriptional
program, which could greatly enhance the therapeutic effect
by improving pharmacological targeting of select FXR agonists
(Correia et al., 2015). This evidence suggests that FXR agonists
could be a potential therapy for NAFLD. Moreover, the intra-
abdominal adipose tissue (IAT) of severely obese adolescents with
NAFLD has unique transcriptome differences, providing
important molecular markers for identifying potential
therapeutic targets for childhood NASH (Sheldon et al., 2016).
In a previous study, reduced fatty acid desaturase 1 (FADS1)
function was related to NAFLD and responded to treatment in
children through FADS1 transcription levels (Nobili et al., 2018).
In short, the study between RNA splicing and NAFLD in children
was often conducted at the transcriptome level, while there was
much more documented evidence about alternative RNA splicing
in NAFLD in adults (Wu et al., 2021).

WD is characterized by a series of hepatic, neurological, and
psychiatric symptoms, which result from impaired copper
excretion at the bile location. It is an autosomal recessive
disorder caused by a mutation in the ATP7B gene (Shah et al.,
1997). Genetic prevalence is 3–4 times higher than clinical
estimates, although the initial prevalence of 1:30,000–1:50,000
remains valid in at least Asia, the United States, and Europe
(Sandahl et al., 2020). More than 70 splicing mutations have been
reported at this genetic locus worldwide, including exon skipping
and acceptor and donor splice site mutations (http://www.hgmd.
cf.ac.uk/ac/gene.php?gene�ATP7B) (Lovicu et al., 2009; Zappu
et al., 2012; Mameli et al., 2015; Stenson et al., 2017; Wang et al.,
2018), suggesting that this locus is a hotspot of splicing mutation.
Moreover, those splicing mutations of the ATP7B gene can be
used as the diagnostic targets for WD.

Splicing Regulation in Viral Hepatitis
Hepatitis B virus (HBV) and hepatitis C virus (HCV) are
responsible for a major burden of viral hepatitis worldwide.
The prevalence of chronic hepatitis B infection in children has
been reduced due to improved hygiene measures, blood supply,
and introduction of universal vaccination for this virus (Della
Corte et al., 2016). AS regulation of HBV transcripts has been
reported in vitro and in the liver of HBV-infected patients (Suzuki
et al., 1989; Wu et al., 1991). In particular, AS could regulate the
splicing of 3.5 KB HBV pregenomic RNA (pGRNA), which
encodes either capsid or polymerase proteins to facilitate viral
genome replication (Seeger and Mason, 2015).

The main HBV pGRNA splicing variant, single presplicing
genomic RNA (SP1RNA), harbors a deletion of 1/3 of the viral
genome and accounts for approximately 30% of the total HBV
pGRNA in hosts, suggesting the importance of AS regulation in
virus packaging, reverse transcription, and virus release (Terré
et al., 1991; Soussan et al., 2008; Bayliss et al., 2013). In particular,

host splicing factors, including SF1, hnRNPAB, PSF, LA, and
some SRSFs, have been demonstrated to participate in the
splicing regulation of HBV pGRNA (Soussan et al., 2008).

With the accurate screening of blood products and organ
donors, the prevalence of hepatitis C infection has been
significantly reduced, and vertical transmission is the main
source of infection (Della Corte et al., 2016). A single
nucleotide polymorphism (SNP) variant in the antizyme-
inhibitor-1 (AZIN1) gene called AZIN1 SV2 (AZIN1 splice
variant 2) leads to a novel alternative spliced isoform that
modifies the fibrogenic potential of hepatic stellate cells
(HSCs) in HCV cirrhotic livers (Huang et al., 2007; Paris
et al., 2011). Previous research indicated that the spliceosome
factor SART1 (squamous cell carcinoma antigen recognized by
T cells) regulates HCV replication by altering its expression and
splicing level (Lin et al., 2015).

Pediatric Liver Tumors
Malignant liver tumors are rare in children, accounting for only
1% of all malignancies (Spector and Birch, 2012). While more
than two-thirds of them are hepatoblastomas (HBs), 20% are
hepatocellular carcinomas (HCCs). The latter section will discuss
the relationship between AS and HB. Here, we only discuss AS in
HCC, which is typically in older children or adolescents and is the
major type of adult liver cancer (Crippa et al., 2017). At present,
hepatocyte proliferation and HCC development are closely
related to the transcriptional coactivator Yes-associated protein
and its targeted Hippo pathway in animal models (Dong et al.,
2007). Previous studies have shown that the mRNA expression of
Yes-associated protein (YAP) target genes (CCNE1, CTGF,
Cyr61) was increased in pediatric HCC, demonstrating an
enrichment of YAP nuclear localization and its activity in
moderately differentiated pediatric HCC (LaQuaglia et al.,
2016). However, the relationship between AS and HCC in
children has rarely been reported in comparison to adult patients.

LIVER DISEASES UNIQUELY PRESENT IN
CHILDREN AND THEIR SPLICING
REGULATION

Post-Transcriptional Regulation in Biliary
Atresia
BA is caused by bile duct occlusion or interruption from the
hilum to the duodenum and is becoming the most common
cholestatic liver disease leading to pediatric liver transplantation.
The incidence of BA ranges from 1 in 5,000 cases to 1 in 19,000
cases, with higher rates in Asia than in European countries
(Fawaz et al., 2017). A number of likely causal proteins of BA
have been identified in previous studies, including FOXA2 (Tsai
et al., 2015), CFC1 (Davit-Spraul et al., 2008), ZEB2 (Cui et al.,
2011), ZIC3 (Ware et al., 2004), HNF1B (Shaalan et al., 2019),
PKD1 L1 (Berauer et al., 2019),GPC1 (Cui et al., 2011), XPNPEP1
(Garcia-Barceló et al., 2010), ADD3 (Tsai et al., 2014), EFEMP1
(Chen et al., 2018), ARF6 (Ningappa et al., 2015), STIP1, and
REV1 (Rajagopalan et al., 2020), without splicing mutations
(Table 2). However, no genes have been identified as a
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TABLE 2 | Genetic manipulation of RNA splicing in pediatric liver disease.

Gene Related diseases Splicing mutation Potential function RNA splicing or
genetic variants

As potential
diagnostic/
therapeutic

targets

References

ATP8B1/
FIC1

Progressive Familial
Intrahepatic
Cholestasis type 1

14 splicing mutations exon skipping, donor,
acceptor, splice sites

Splicing mutations
associated with
PFIC

As novel therapeutic
targets

van der Woerd et al.
(2015)

ABCB11/
BESP

Progressive Familial
Intrahepatic
Cholestasis type 2

c.784 + 1G > C Splice sites Splicing mutations
associated with
PFIC

As diagnostic
targets

Sharma et al. (2018)

ABCB4/
MDR3

Progressive Familial
Intrahepatic
Cholestasis type 3

c.3487–16T>C; c.175C>T Without mention Splicing mutations
associated with
PFIC

As diagnostic
targets

Khabou et al. (2016)

TJP2 Progressive Familial
Intrahepatic
Cholestasis type 4

c.2180–5T>G Exon skipping Splicing mutations
associated with
PFIC

As diagnostic
targets

Zhang et al. (2020)

MY O 5B Progressive Familial
Intrahepatic
Cholestasis type 5

c.3538-1G>A; c.2414+5G>T;
c.4852 + 11A>G

Splice sites Splicing mutations
associated with
PFIC

As novel therapeutic
targets

Qiu et al. (2017)

JAG1 Alagille syndrome 49 splicing mutations include
c.2917–8C > A

Exon skipping, donor,
acceptor, splice sites

Splicing mutations
associated with
Alagille syndrome

As diagnostic
targets

Chen et al. (2020);
(http://www.hgmd.cf.ac.
uk/ac/gene.php?
gene�JAG1)

NOTCH2 Alagille syndrome c.5930-1G→A Splice acceptor Splicing mutations
associated with
Alagille syndrome

As diagnostic
targets

Mcdaniell et al. (2006)

PNPLA3 Nonalcoholic fatty
liver disease

Without mention Without mention Genetic variants
associated with
NAFLD

Uncertainty Valenti et al. (2010)

TM6SF2 Nonalcoholic fatty
liver disease

Without mention Without mention Genetic variants
associated with
NAFLD

Uncertainty Kozlitina et al. (2014)

GCKR Nonalcoholic fatty
liver disease

Without mention Without mention Genetic variants
associated with
NAFLD

Uncertainty Santoro et al. (2012)

MBOAT7 Nonalcoholic fatty
liver disease

Without mention Without mention Genetic variants
associated with
NAFLD

Uncertainty Mancina et al. (2016)

MERTK Nonalcoholic fatty
liver disease

Without mention Without mention Genetic variants
associated with
NAFLD

Uncertainty Dongiovanni et al. (2018)

IFNL4 Nonalcoholic fatty
liver disease

Without mention Without mention Genetic variants
associated with
NAFLD

Uncertainty Petta et al. (2017)

HSD17B13 Nonalcoholic fatty
liver disease

Without mention Without mention Genetic variants
associated with
NAFLD

Uncertainty Abul-Husn et al. (2018)

FXR Nonalcoholic fatty
liver disease

FXR splicing toward FXRα2
reduced hepatic lipid
accumulation through the
transcriptional program

Enhance the
therapeutic effect by
improving
pharmacological
targeting of select FXR
agonists

RNA splicing
associated with
NAFLD

As therapeutic
targets

Correia et al. (2015);
Sheldon et al. (2016)

ATP7B Wilson’s disease 71 splicing mutations include
c.51 + 4 A→ T; c. 2,121 + 3
A→G; c.2447 + 5 G→A; 1946 +
6 T→C; c.52–2,671_368del3039

Exon skipping,
acceptor, and donor
splice

Exon skipping,
acceptor, and
donor splice site
associated
with WD

As diagnostic
targets

Lovicu et al. (2009);
Zappu et al. (2012);
Mameli et al. (2015);
Wang et al. (2018);
(http://www.hgmd.cf.ac.
uk/ac/gene.php?
gene�ATP7B)

CCNE1 Hepatocellular
carcinomas

Without mention mRNA expression was
increased in the
pediatric HCC

YAP target gene
mRNA expression
was increased in
the pediatric HCC

Uncertainty Laquaglia et al. (2016)

(Continued on following page)
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definite cause of isolated BA cases so far (Girard and Panasyuk,
2019). Nevertheless, the top 10 upregulated loci identified by
transcriptome approach from BA samples, including CSRNP1,
IL6R, CPB2, TTR, TD O 2, SERPINC1, C6, DHTKD1, IGFBP1,
and RDH16, might deepen our understanding of the
transcriptional and post-transcriptional mechanisms among
BA patients (Xiao et al., 2014).

Recently, long noncoding RNAH19 (lncRNAH19) was
proposed to have a positive correlation with the BA-related
severity of liver fibrosis (Xiao et al., 2019). Moreover, H19, a
molecular sponge of the microRNA let-7 family, activates its
downstream target, high mobility group member AT-hook 2
(HMGA2), during biliary tract proliferation, suggesting its crucial

role in BA bile duct cell proliferation and cholestatic liver injury.
Thus, lncRNAH19 may emerge as a valuable target for early
diagnosis and the development of novel therapeutic procedures
for BA patients.

Furthermore, recent studies have shown that the abnormal
expression of long noncoding RNA Alu-mediated p21
transcription regulator (APTR) in the liver of BA infants may
be pivotal for liver fibrosis in these patients (Makhmudi et al.,
2020). Moreover, potential determinants of prognosis in Kasai
portal enterostomy (KPE), such as phosphoenolpyruvate
carboxykinase (PCK1) and matrix metalloproteinase-7
(MMP7), were determined by RNA sequencing data
(Ramachandran et al., 2019). In particular, the abundance of

TABLE 2 | (Continued) Genetic manipulation of RNA splicing in pediatric liver disease.

Gene Related diseases Splicing mutation Potential function RNA splicing or
genetic variants

As potential
diagnostic/
therapeutic

targets

References

CTGF Hepatocellular
carcinomas

Without mention mRNA expression was
increased in the
pediatric HCC

YAP target gene
mRNA expression
was increased in
the pediatric HCC

Uncertainty Laquaglia et al. (2016)

Cyr61 Hepatocellular
carcinomas

Without mention mRNA expression was
increased in the
pediatric HCC

YAP target gene
mRNA expression
was increased in
the pediatric HCC

Uncertainty Laquaglia et al. (2016)

FOXA2 Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Tsai et al. (2015)

CFC1 Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Davit-Spraul et al. (2008)

ZEB2 Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Cui et al. (2011)

ZIC3 Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Ware et al. (2004)

HNF1B Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Shaalan et al. (2019)

PKD1L1 Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Berauer et al. (2019)

GPC1 Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Cui et al. (2013)

XPNPEP1 Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Garcia-Barceló et al.
(2010)

ADD3 Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Tsai et al. (2014)

EFEMP1 Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Chen et al. (2018)

ARF6 Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Ningappa et al. (2015)

STIP1 Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Rajagopalan et al. (2020)

REV1 Biliary atresia Without mention Without mention Likely causal
genes of BA

Uncertainty Rajagopalan et al. (2020)

lncRNAH19 Biliary atresia Without mention Suggesting its crucial
role in BA bile duct cell
proliferation and
cholestatic liver injury

It was proposed to
have a positive
correlation with
the BA-related
severity of liver
fibrosis

A valuable target for
early diagnosis and
the development of
novel therapeutic
procedures

Xiao et al. (2019)

CTNNB1 Hepatoblastoma Without mention Without mention Genetic variants
associated
with HB

As therapeutic
targets

Crippa et al. (2017); Sha
et al. (2019)
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MMP7 was higher in patients with failed jaundice clearance after
KPE and in patients with end-stage liver disease (ESLD) than in
the control group. In contrast, successful KPE treatment could
induce PCK1 expression, and the abundance of PCK1 in patients
with uncleared jaundice after KPE was repressed. Therefore, the
abundance of MMP7 and PCK1 could be used as indicators for
KPE outcome prediction and disease progression for clinicians.

Splicing Mutation in Hepatoblastoma
Hepatoblastoma (HB) is the most common pediatric liver tumor,
which typically occurs before the age of three and can be congenital
(Trobaugh-Lotrario et al., 2013). The incidence of HBs has increased
due to the greater numbers of premature births and infants with
birth weights lower than 1,500 g (Feng et al., 2019). A β-catenin-
encoding protein, CTNNB1, is the most frequently mutated HB
gene, accounting for 50–90% of diagnosed HB cases (Crippa et al.,
2017). Several genes, such as Spondin2, Edil3, Glypican 3,
Osteopontin, and PEG10, were highly elevated, whereas Ficolin 3
was downregulated in human HCC and HB cases (Luo et al., 2006).
However, several genes, including IGF2, fibronectin, DLK1, TGFb1,
MALAT1, and MIG6, were overexpressed in HB versus HCC.

HB is genetically characterized by abnormal activation of the
Wnt/β-catenin signaling pathway (Sha et al., 2019). Generally,

extensive evidence has suggested that mutations in the β-catenin
gene exon 3 are responsible for the activation of theWnt/β-catenin
signal transduction pathway inHB. Furthermore, the accumulation
of β-catenin proteins resulted from increased translocations to the
nucleus and cytoplasm and is positively correlated to cancer
severity. Therefore, the abundance of β-catenin and target genes
from its signaling pathway can be used as diagnostic and prognostic
markers for pediatric liver tumors. In addition, several research
groups have proposed the therapeutic effects of HB by specific
inhibition of Wnt/β-catenin pathway, through a number of post-
transcriptional measures such as short interfering miRNA, RNAs
(siRNA), and bioactive small molecules. Hence, the Wnt/β-catenin
signaling pathway is a valuable target for the development of
therapeutic measures of HB (Koch et al., 1999; Takayasu et al.,
2001; Koch et al., 2005; Cairo et al., 2008; Eichenmüller et al., 2014;
Sumazin et al., 2017; Sha et al., 2019). However, HB has the lowest
mutation burden among all known cancer types, and the genetic
determinants of HB remain to be further investigated (Gröbner
et al., 2018). Less than 5 mutations per hepatoblastoma were
identified by studies using whole-exome sequencing, suggesting
that this low mutation frequency of HB hindered the potential
targets that are responsible for HB progression (Eichenmüller et al.,
2014; Jia et al., 2014; Sumazin et al., 2017).

FIGURE 1 | Summary of splicing-related loci in pediatric liver diseases. Shared loci by adults and children are presented as blue in color in brackets. Specific loci to
children or adults are presented in the left and right panels, respectively.
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FUTURE PERSPECTIVES

There are many types of liver diseases in children, but many of
them are rare in the world population. To date, much less
research has been conducted on the association between RNA
splicing and liver diseases in children than in adults (Figure 1).
Furthermore, specific disease types at the child stage have also
been reported to have splicing regulation on their potential
genomic loci. In this review article, we found that there are
many studies that performed their research on pediatric NAFLD
in comparison to adult cases. This might be due to the longer life
span of this disease at the child stage, which will greatly impact
their life (Draijer et al., 2019). It has been expected that more
targeted chemical drugs, such as FXR agonists, can be developed
based on splicing variants to treat NAFLD. Although there have
been no randomized controlled trials (RCTs) in children, this
may be a major area for subsequent exploration (Jia et al., 2014).
Intriguingly, most splicing mutations reported thus far lack
functional studies at the molecular level, including those
identified in PFIC, Alagille syndrome, and WD. Therefore, an
in-depth study should be carried out to verify their roles in the
corresponding diseases, evaluate the potential of these targets for
drug development, and establish a noninvasive early diagnosis

method. Specifically, these splicing events could be controlled by
their upstream regulators, which have been demonstrated in adult
and animal studies (Wu et al., 2021). Moreover, BA and HB,
which occur in infancy or young children, seriously impact the
health of children at this stage. Therefore, the molecular
mechanism of these splicing variants in pediatric liver diseases
requires further investigation.
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