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Though providing vital means for the visualization, diagnosis, and quantification of decision-making processes for the treatment of
vascular pathologies, vascular segmentation remains a process that continues to be marred by numerous challenges. In this study,
we validate eight aneurysms via the use of two existing segmentation methods; the Region Growing Threshold and Chan-Vese
model. These methods were evaluated by comparison of the results obtained with a manual segmentation performed. Based upon
this validation study, we propose a newThreshold-Based Level Set (TLS) method in order to overcome the existing problems.With
divergentmethods of segmentation, we discovered that the volumes of the aneurysmmodels reached amaximumdifference of 24%.
The local artery anatomical shapes of the aneurysms were likewise found to significantly influence the results of these simulations.
In contrast, however, the volume differences calculated via use of the TLSmethod remained at a relatively low figure, at only around
5%, thereby revealing the existence of inherent limitations in the application of cerebrovascular segmentation. The proposed TLS
method holds the potential for utilisation in automatic aneurysm segmentation without the setting of a seed point or intensity
threshold. This technique will further enable the segmentation of anatomically complex cerebrovascular shapes, thereby allowing
for more accurate and efficient simulations of medical imagery.

1. Introduction

Specification of intracranial aneurysm morphology and
hemodynamic analysis requires segmentation of vascular
geometries from three-dimensional (3D) medical images,
produced via CTA orMRA. Methods for such manipulations
of medical images are directly linked to the accuracy of
aneurysm model construction, particularly regarding the
geometry of complex shapes and volumes. In most cases,
this process involves extraction of the 2D image from CTA
or MRA, followed by reconstruction of the 3D aneurysm
surface model. As such, several approaches exist and are
currently utilized in cerebrovascular segmentation. On one
hand, the fuzzy-based approach has been adapted for detect-
ing malformed and small vessels in MRA images [1], while
region growing approaches are popular in medical image
segmentation due to their simplicity and computational
efficiency [2]. Major problems, however, include leakage
when the boundary is blurred and sensitivity to seed position.
Utilization of implicit active contourmethodswithin the level
set framework seems to be widespread in medical image

segmentation [3–5] as the method does not suffer from
parameterization surface problems [6] and has the capability
to handle complex geometries and topological changes [7, 8].
More recently, active contour methods have also appeared in
the modeling of intracranial aneurysms and cerebrovascular
segmentation [9, 10]. Law and Chung proposed a method
based upon multirange filters and local variances to perform
the segmentation of intracranial aneurysms on Phase Con-
trast Magnetic Resonance Angiography data [11]. Hernandez
and Frangi have developed a segmentation method for
intracranial aneurysms based on Geometric Active Regions
(GAR), using CTA and 3D Rotational Angiography data
[12], whilst several Geodesic Active Contours (GAC) based
methods have since been adapted for segmentation of brain
aneurysms from CTA data [13, 14]. These methods either
require sufficient training sets or they are reliant on boundary
information obtained from medical imaging. Furthermore,
boundary-based active contour level set methods may easily
leak when the target boundary is not clearly defined.Though
Firouzian et al. proposed a Geodesic Active Contours based
level set method which employs region information and
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intensity, it requires a user-defined seed point in order to
calculate intensity threshold [15].

Despite the availabity of many image segmentationmeth-
ods, with varying approaches and algorithms, there is no
dominant method in terms of effectiveness, across all areas
[16–18]. Our previous study indicated that the volume of
the aneurysm models depends strongly on the different
segmentation methods. The segmentation method likewise
influences the local geometric shapes of the aneurysms [19].
Validation will thus become necessary, comparing segmenta-
tion methods and adjusting the parameters of these segmen-
tation techniques in order to assure the quality of patient-
specific cerebral-vascular hemodynamic analysis. Although
a number of commercial software packages for segmentation
are available in the market, there is a conspicuous lack
of discussion of methodology and information regarding
validation processes.

In this paper, the authors propose a new Threshold-
Based Level Set method for cerebral aneurysms.This method
is based on the Geodesic Active Contours model [20]
and Chan-Vese model (CV) [21] integrating both region
and boundary information to segment cerebral aneurysms
through the use of a global threshold and gradientmagnitude
to form the speed function.The initial threshold is calculated
from the Chan-Vese model and is then iteratively updated
throughout the process of segmentation. Upon reaching the
aneurysm boundary, the change in the threshold value will
decrease because of the contrast between aneurysm and
nonaneurysm intensities and the iteration will stop. The
algorithm may then be implemented in an automatic or
semiautomatic manner depending on the complexity of the
aneurysm shape.

The results of 3D automatic aneurysm segmentations,
from the Region Growing Threshold (RGT), the Chan-
Vese model (CV), and the Threshold-Based Level Set (TLS),
are compared to results obtained via manual segmentation,
performed by an expert radiologist over eight data sets of
CTA imagery. Evaluationwas based on six validationmetrics:
volume difference (VD), Jaccard’s measure (volume overlap
metric, JM), false positive ratio (rfp), false negative ratio
(rfn), Hausdorff distance (maximum surface distance, HD),
and mean absolute surface distance (MASD). This study
will also discuss the impact of parameter adjustments on
segmentation results.

2. Methods

2.1. RegionGrowingThreshold Connecting (RGT). TheRegion
Growing Threshold method starts with a seed(s), selected
within the area of the object to be segmented. It requires two
intensity values for the pixel of the object, a low threshold
𝑇
1
, and high threshold 𝑇

2
values. Neighboring pixels whose

intensity values fall within this range are accepted and
included in the region. When no more neighbor pixels
are found that satisfy the criterion, the segmentation is
considered to have been completed. The selection criterion
is described by the following equation:

𝐼 (𝑋) ∈ [𝑋 − 𝑇
1
, 𝑋 + 𝑇

2
] , (1)

where 𝑇
1
and 𝑇

2
represent the low and high thresholds of

the region intensities, 𝐼(𝑋) represent the image, and 𝑋 the
position of the particular neighboring pixel being considered
for inclusion in the region. Problems surrounding RGT
include threshold selection and sensitivity to seed position
[22].

2.2. Chan-Vese Model (CV) [21]. The Chan-Vese model is
based upon the Mumford-Shah functional [23]. The associ-
ated evolution PDE in the level set framework is

𝜕𝜑

𝜕𝑡
=

∇𝜑
 [𝜆2 (𝐼 − 𝜇out)

2

− 𝜆
1
(𝐼 − 𝜇in)

2

− 𝛼

+ 𝛽div(
∇𝜑

∇𝜑


)] ,

(2)

where 𝜇in is the mean of the target object of intensity, 𝜇out
represents the mean of the background of intensity, and
𝜆
1
, 𝜆
2
𝛼, and 𝛽 are positive constants. The Chan-Vese model

does not require a term related to the image gradient. Instead,
region intensity information is utilized for the target objects
of segmentation. This model has exhibited significant effec-
tiveness in segmentation of images with blurred boundaries.

2.3. Threshold-Based Level Set (TLS). The Threshold-Based
Level Set combines both the Geodesic Active Contour and
the Chan-Vese model within the level set framework.

Under the level set scheme, the contour is seen to deform
by the function; 𝜕Γ(𝑡)/𝜕𝑡 + 𝐹|∇𝜑| = 0, with an embedded
surface Γ(𝑡) represented as the zero level set of 𝜑 by Γ(𝑡) =

{𝑥, 𝑦 ∈ 𝑅 | 𝜑(𝑥, 𝑦, 𝑡) = 0}.
𝐹 represents a function for speed, which drives the Γ(𝑡)

surface evolution in the normal direction. It is clear that 𝐹
exerts a direct impact upon the quality of medical image
segmentation. The associated evolution PDE in the level set
framework is represented as follows:

𝜕𝜑

𝜕𝑡
=
∇𝜑

 (𝛼 ( 𝐼 − 𝑇) + 𝛽div(𝑔
∇𝜑

∇𝜑


)) , (3)

where 𝐼 represents the image to be segmented,𝑇 the intensity
threshold, 𝑔 is the image gradient, 𝜅 = div(∇𝜑/|∇𝜑|)
the curvature, 𝛼 the image propagation constant, and 𝛽

represents the spatial modifier constant for the curvature 𝜅.
𝛼 and 𝛽 serve to weight the relative influence of each of these
terms on the movement of the surface contour.

The first term of the RHS of the formula, 𝛼(𝐼−𝑇), defines
the region where 𝑇 is an automatically defined parameter
indicating the lower boundary of the intensity level for the
target object. In this work, the target aneurysm is always
assumed to possess a relatively higher intensity level than its
background. It can thus be seen that this first term forces the
contours to enclose regions with intensity levels greater than
𝑇. When the contour lies within the aneurysm region, (𝐼 −
𝑇) ≥ 0, it expands in the normal direction. When (𝐼 −

𝑇) < 0, the contour lies beyond the aneurysm region and
thus shrinks with a negative speed. This process stops when
the contours converge to the aneurysm boundary, with the
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Table 1: Validation results of segmentation methods.
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Average

VD (%)
GT 0 0 0 0 0 0 0 0
TLS 1.55 4.69 4.48 0.46 2.92 0.12 3.55 2.27 2.51
RGT 7.65 4.47 8.86 1.37 5.52 6.09 3.21 10.90 6.01
CV 11.63 18.23 5.60 4.04 2.47 2.51 24.18 14.02 10.34

JM (%)
GT 100 100 100 100 100 100 100 100
TLS 91.87 89.66 88.57 93.25 91.64 92.35 91.55 93.79 91.59
RGT 90.12 88.24 87.02 93.00 91.39 90.90 94.27 89.58 90.57
CV 88.24 84.02 86.73 89.53 91.85 91.82 76.96 89.59 87.34

rfp (%)
GT 0 0 0 0 0 0 0 0
TLS 4.97 2.91 3.20 1.65 3.60 3.99 4.06 2.11 3.31
RGT 0.64 3.80 14.72 0.92 9.22 1.64 5.95 0.13 4.63
CV 11.84 18.02 13.26 5.38 4.60 5.54 28.75 11.62 12.38

rfn (%)
GT 0 0 0 0 0 0 0 0
TLS 3.57 3.25 1.51 5.21 1.40 3.97 4.73 4.23 3.48
RGT 9.26 8.40 0.17 6.15 0.18 7.61 0.12 10.30 5.27
CV 1.32 0.84 1.78 5.66 3.93 3.09 0.92 0.00 2.19

HD (pixel)
GT 0 0 0 0 0 0 0 0
TLS 0.51 0.65 0.68 1.17 0.79 1.89 0.65 0.79 0.89
RGT 0.77 0.64 0.89 1.41 0.55 1.86 0.49 0.76 0.92
CV 0.75 1.17 1.04 2.09 1.19 0.51 1.00 0.95 1.09

MASD (pixel)
GT 0 0 0 0 0 0 0 0
TLS 0.08 0.08 0.07 0.09 0.07 0.05 0.07 0.10 0.08
RGT 0.10 0.10 0.12 0.10 0.10 0.07 0.07 0.10 0.10
CV 0.06 0.06 0.07 0.11 0.08 0.05 0.07 0.10 0.08

image 𝐼 reaching a threshold of 𝑇. If we isolate this first term
of the RHS of (3), it becomes the selection criteria for the
lower threshold in the Region Growing Threshold method.
The second term in the formula would likewise become the
Geodesic Active Contour term.

2.3.1. Method for Automatic Threshold Selection. TheThresh-
old-Based Level Set requires an appropriate estimate of the
threshold value from proper segmentation of the aneurysm,
obtained using Chan-Vese model and the statistical data
specifically, confidence interval (CI) and confidence level
(CL).

2.3.2. Confidence Interval (CI) and Confidence Level (CL).
The confidence level (CL) represents how often the true
percentage of a population lies within the confidence interval
(CI). Based on Chebyshev’s inequality [24] a general rela-
tionship for symmetric distribution between CI and CL can
be established. The inequality for symmetric distribution is
given as

𝑃 (
𝑋 − 𝜇

 ≥ 𝑘𝜎) ≤
1

𝑘2
𝑘 > 0, (4)

where 𝑋 is the random variable population, 𝜇 is the popula-
tion mean, and confidence interval is represented by 𝑘 times
𝜎 standard deviation. Equation (4) indicates that more than
(1 − (1/𝑘

2
) × 100) percent of the population lies between 𝑘

standard deviations from the population mean.
For nonsymmetric distribution, the one-tailed version of

the inequality is used. This is given by

𝑃 (𝑋 − 𝜇 ≥ 𝑘𝜎) ≤
1

1 + 𝑘
2

𝑘 > 0. (5)

For this inequality, it follows that when 𝑘 = 1, more than 50%
of the population is located one standard deviation away from
the mean.

2.3.3. Initial Threshold Selection. According to the theory
of confidence interval, the lower bound threshold of the
aneurysm can be defined by

𝑇
𝑖
= 𝜇
𝑎
− 𝑘
𝑖
𝜎
𝑎

𝑖 ≥ 0. (6)

The threshold 𝑇 represents the difference between the mean
of the intensity of the aneurysm (𝜇

𝑎
) and 𝑘 times its standard
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deviation (𝜎
𝑎
). The intensities of the aneurysm and its

background regions are different, with the lowest intensity
threshold of the aneurysm being the same as the highest
intensity threshold of the background. Thus, the relationship
𝜇
𝑏
+ 𝑘
𝑏
𝜎
𝑏
= 𝜇
𝑎
− 𝑘
𝑎
𝜎
𝑎
would apply. The confidence levels for

both the aneurysm and its background are considered to be
the same; 𝑘

𝑏
= 𝑘
𝑎
= 𝑘, thereby allowing 𝑘 to be expressed as

𝑘 =
𝜇
𝑎
− 𝜇
𝑏

𝜎
𝑎
− 𝜎
𝑏

. (7)

We have utilized the Chan-Vesemodel method to perform an
initial segmentation. From the results obtained, the initial 𝑘

0

was seen to be calculated via (7). The initial 𝑇
0
can likewise

be found using (6).

2.4. Data Acquisition. Clinical studies were performed with
the consent of the patient in relation to acquisition of
aneurysm images.These protocols were approved by the local
institutional review board and the regional research ethics
committee, with eight data sets of patients harboring internal
carotid artery aneurysms acquired by 3D CTA scans (GE
Healthcare).

Cross-sectional images were acquired by a CT angiogra-
phy scanner with multidetector-row capability, a table speed
of 9mm/s, and zero-degree table (and gantry tilt). Scanning
was initiated from the common carotid artery and continued
parallel to the orbitomeatal line to the level of the Circle of
Willis, during this intravenous injection of contrast material
was administered at a rate of 3.5mls/s. Aneurysm image was
512 × 512 pixel field, while slices of continuous thickness were
used to segment and reconstruct 3D vascular geometry. Pixels
are expressed in Hounsfield Units (HU).

2.5. Experiment Setting. For quantitative evaluation, manual
segmentation of eight aneurysms using open source software,
3D Slicer, was conducted by an expert radiologist.The results
were utilized as a ground truth (GT) for the comparison of
other methods. A region of interest (ROI), a good represen-
tation of the targeted region for segmentation, was selected
depending on the aneurysm size. All the experiments were
performed on cropped data sets to reduce calculation time
and memory usage, with preparatory work being completed
prior to the conduction of the experiments.

2.5.1. Parameter Setting

The Threshold-Based Level Set. The initial zero level set is a
rectangular prism surface, constructed by the subtraction of
two pixels on either side of the ROI. Thus, three parameters
needed to be set: 𝛼, 𝛽 from (3) and 𝑐 from (8). All eight
experiments utilized a fixed setting of 𝛼 = 10, 𝛽 = 3, and
𝑐 in the range between 0.1 and 0.01. The role of this will be
analyzed in Section 4.

The Chan-Vese Model. The initial zero level set is a cuboid
surface, constructed in the same manner as the TLS, with the
parameters in (2) fixed for all cases; 𝜆

1
= 𝜆
2
= 0.001, 𝛼 = 0,

and 𝛽 = 0.3.
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Figure 1: Aneurysm volume against segmentation methods.

The Region Growing Threshold. According to each case, an
initial seed point is required to determine the starting loci
within the specific aneurysm. For low and high intensity
thresholds 𝑇

1
and 𝑇

2
in (1), 𝑇

1
was selected to utilize the

threshold of the TLS result for each case, with𝑇
2
representing

the highest intensity of the aneurysm.

2.6. Evaluation

(i) Aneurysm volume was calculated through the use
of the boundary geometry, segmented using various
methods. The volume difference (VD) was calculated
using the equationVD = |(𝑉

2
−𝑉
1
)/𝑉
1
|×100%, where

𝑉
1
represents the volume of GT and𝑉

2
represents the

volume of the TLS, RGT, or CV methods.

(ii) Jaccard’s measure (JM) is a volume overlap metric,
used to count the percentage of voxel intersections for
the paired segmentations.

This can be seen as JM = 2 ∗ |𝑆
1
∩ 𝑆
2
|/𝑆
1
∪ 𝑆
2
, where

𝑆
1
represents the voxels created by the GT and 𝑆

2
the

voxels generated through the use of the TLS, RGT, or
CV methods.

(iii) False positive ratio (rfp) represents the percentage of
the extra voxels of 𝑆

2
, located outside of 𝑆

1
. When the

rfp equates to zero, no voxels in 𝑆
2
will be located

outside of 𝑆
1
. Accordingly, rfp = (|𝑠

2
| − |𝑠
1
∩ 𝑠
2
|)/|𝑠
1
|,

where 𝑆
1
represents the voxels created by the GT and

𝑆
2
represents the voxels generated by the TLS, RGT,

or CV methods.

(iv) False negative ratio (rfn) represents the percentage of
the lost voxels of 𝑆

2
, which cover the internal surface

of the 𝑆
1
.

This may be seen as rfn = (|𝑠
1
| − |𝑠
1
∩ 𝑠
2
|)/|𝑠
1
|, where

𝑆
1
represents the voxels created by the GT and 𝑆

2
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Figure 2: 3D geometries of segmentation results comparison, from left to right: CV, RGT, and TLS.

Bleb

Figure 3: Segmentation results comparison (Case 1, aneurysm with bleb), from left to right: GT, CV, RGT, TLS, and photo from open head
surgery.

represents the voxels generated by the TLS, RGT, or
CV methods.

(v) Hausdorff distance (HD) measures the maximum
surface distance. This measure is extremely sensitive
to outliers and may not reflect the overall degree of
correlation.

(vi) Themean absolute surface distance (MASD) indicates
the average degree of difference between two surfaces
and does not depend on aneurysm size [15].

3. Results

The calculated values of VD, JM, rfp, rfn, HD, and MASD
for the eight cases considered are tabulated in Table 1. The
average values are also shown. Figure 1 depicts the volume
of the aneurysm. The minimum VD can be seen in the TLS
method. The average value of VD is seen to be 2.51%. The
maximum VD, however, is seen for Case 7 using the CV
method. The values of JM indicate that the TLS method
has the highest overlap rate in comparison to the other two
methods, with an average of 91.59%. A study of rfp and rfn
indicates a 3.31% overflow and 3.48% absence on average for
the TLS method. The largest rfp and the smallest rfn were
found to occur via the use of the CV method. These results
likewise indicate that the largest volume was generated by the
CV method, when compared to all other methods.

Results obtained for the surface distancemetrics (HD and
MASD) indicate the reliability of all segmentation methods,
with the HD values for the TLS method being between 0.51
to 1.89 pixels and the maximumMASD being 0.08.

Figure 2 shows the 3D geometry of Case 4, restructured
via three segmentation methods. Only TLS was effective in

fully reconstructing the parent artery and aneurysm, while
the other two methods were not able to construct a portion
of the artery. One reason for this is that the aneurysm size in
Case 4 is larger in comparison to other cases. Another point
is that the distal parent artery itself is curved to lie proximally
to the aneurysm. These results likewise indicate that the TLS
method may be utilized in the segmentation of aneurysms
with blurred boundaries.

Figure 3 represents the segmented aneurysm surfaces of
Case 1, where only TLS is able to restructure the bleb located
at the top of the aneurysm. The resulting image is similar to
the picture taken during open-skull surgery.

4. Discussion

4.1. TLS Boundary Detect Function. In this study, the TLS
method utilizes a boundary feature map:

𝑔 (|∇𝐼|) =
1

1 + 𝑐|∇𝐼|
2
, (8)

where 𝑔 is for the detection of vascular boundaries, |∇𝐼|
represents a gradient magnitude, and 𝑐 is a constant that
controls the slope of the boundary detect function,𝑔(|∇𝐼|). At
the region of the artery and aneurysm, the boundary intensity
gradient was seen to increase significantly. Thus, a relatively
low 𝑐 value was sufficient for the adjustment of the decreasing
speed of 𝑔, in order to ensure that the search for the boundary
surface was stopped at the arterial boundary. Figure 4 shows
the process of selection for the value of 𝑐 in Case 1; the results
indicating that both VD and JM converged to a constant and
MASD ceased all fluctuation when 𝑐 was taken to equate to
0.5.
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4.2. TLSThreshold. Theconvergence history of threshold𝑇 is
shown in Figure 5, with the 𝑇 volumes exhibiting a tendency
to converge after 15 iterations. The stability of the 𝑇 volume
against a range of value of 𝑐 was likewise tested. The volume
was found to be very stable for the range of 𝑐 between 0.5
and 0.7. We thus suggest that the value of 𝑐 is set at a volume
between 0.5 and 0.7 for accurate boundary detection. As it is
only TLS that does not require selection of any seeds during
segmentation, it is suitable for the performance of automatic
segmentations.

5. Conclusion

Various methods of segmentation generate a range of geo-
metric models with changes in shape and volume, with
the occurrence of uncertain results having the reductive

potential to negatively affect clinical treatment decisions.
Through analysis of eight cerebral aneurysm models, this
study indicated that limitations continue to surround current
segmentation methods. The validation of the methods and
analysis of errors seem vital. In this study, the TLS method
was proposed to improve cerebrovascular aneurysm segmen-
tation application. It is a technique with the ability to segment
aneurysms anatomically without the setting of a seed point
or intensity threshold. The method is also suitable for the
segmentation of complex cerebrovascular anatomical shapes.
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