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Osmotolerance is one of the critical factors for successful survival and colonization of

microbes in saline environments. Nonetheless, information about these osmotolerance

mechanisms is still inadequate. Exploration of the saline soil microbiome for its

community structure and novel genetic elements is likely to provide information

on the mechanisms involved in osmoadaptation. The present study explores

the saline soil microbiome for its native structure and novel genetic elements

involved in osmoadaptation. 16S rRNA gene sequence analysis has indicated

the dominance of halophilic/halotolerant phylotypes affiliated to Proteobacteria,

Actinobacteria, Gemmatimonadetes, Bacteroidetes, Firmicutes, and Acidobacteria. A

functional metagenomics approach led to the identification of osmotolerant clones SSR1,

SSR4, SSR6, SSR2 harboring BCAA_ABCtp, GSDH, STK_Pknb, and duf3445 genes.

Furthermore, transposon mutagenesis, genetic, physiological and functional studies in

close association has confirmed the role of these genes in osmotolerance. Enhancement

in host osmotolerance possibly though the cytosolic accumulation of amino acids,

reducing equivalents and osmolytes involving BCAA-ABCtp, GSDH, and STKc_PknB.

Decoding of the genetic elements prevalent within these microbes can be exploited either

as such for ameliorating soils or their genetically modified forms can assist crops to resist

and survive in saline environment.

Keywords: metagenome, halotolerance, SSU rRNA, soil microbiome, soil ecology

INTRODUCTION

Soil is a rich and dynamic ecosystem, containing a vast number of microorganisms (van Veen
et al., 1997). Geological activities like weathering of rocks, winds and poor agricultural practice are
continuously increasing salt contents of the soils (Jiang et al., 2007; Canfora et al., 2014). Enhanced
soil salinity modulates the microbial community structure and its physiological activity (Jiang et al.,
2007; Canfora et al., 2014; Shrivastava and Kumar, 2015). The majority of microbes surviving
in salt stress conditions demonstrate osmotolerance for varying duration, which may extend
even to their entire lifespan (Roberts, 2005). The salt stress tolerance mechanisms are complex
phenomena where pathways are coordinately linked (Culligan et al., 2012). These metabolic
strengths tomitigate osmotic stress, seem to be genetically evolved through horizontal gene transfer
(Koonin and Wolf, 2012; Yan et al., 2015; Gupta et al., 2017). Description of these osmotolerance
mechanisms is crucial for comprehensive understanding of the biology of saline soil microbes,
and exploiting them for their applications in improving soil quality and crop yields (Xiao and
Roberts, 2010; Zhengbin et al., 2011; Culligan et al., 2012, 2013, 2014; Fernandes, 2014). A variety
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of culture dependent studies have been carried out to decode
the gene(s) involved in osmotolerance within halophilic or
halotolerant microbes (Zuleta et al., 2003; Klähn et al., 2009;
Naughton et al., 2009; Meena et al., 2017). These studies have
deciphered the role of proteins, Na+/H+ pumps, compatible
solutes in salt stress tolerance (Sakamoto and Murata, 2002;
Roberts, 2005). However, culture independent approach provides
a vast opportunity for searching salt tolerant gene (s) (Singh
J. et al., 2009; Mirete et al., 2015; Kumar J. et al., 2016;
Chauhan et al., 2017; Gupta et al., 2017). Only a few studies
have used metagenomic approach to decode the microbial salt
stress tolerance mechanisms from various environments like
pond water (Kapardar et al., 2010a,b), brines and moderate-
salinity rhizosphere (Mirete et al., 2015), human gut microbiome
(Culligan et al., 2012, 2013, 2014). Incidentally, the number of
genes/pathways identified for salt stress tolerance are far below
than the number of microbes which have been identified to
reside within these environments (Humbert et al., 2009; Mirete
et al., 2015). Hereby, the current study was proposed to identify
the genetic machinery used by microbes as survival strategies
in salt stress condition using functional metagenomic approach.
The current study led to the identification of a number of
osmotolerant genes that could be used to develop strategies to
ensure survival of microbes under saline conditions.

MATERIALS AND METHODS

Saline Soil Sample Collection and
Metagenomic DNA Isolation
Saline soil samples were collected in sterile containers after
carefully removing the surface layer (up to 10 cm) from
Village Malab, District Nuh situated at 28.0107◦N, 77.0564◦E.
Metagenomic DNA was extracted from 5 g of the soil sample
(Supplementary Methods).

Bacterial Strains and Growth Conditions
Bacterial strains and plasmids used in the study are listed in
Table 1. The oligonucleotides used in the study (GeNoRime,
Shrimpex Biotech services Pvt. Ltd. India) are listed in
Supplementary Table S1. Escherichia coli (DH10B) and E. coli
(MKH13) strains were cultured in Luria-Bertani (LB) medium.
Further, E. coli (DH10B) and E. coli (MKH13) strains containing
pUC19 vector were cultured in LB medium supplemented with
ampicillin (100 µg ml−1). All overnight cultures were grown in
LB broth at 37◦C with constant shaking at 200 rpm.

Phylogenetic Reconstruction of Saline Soil
Metagenome
Saline soil metagenomic DNA was used to amplify the SSU
rRNA gene (Supplementary Methods). The amplified product
was used for next generation sequencing (NGS) with the aid of
Roche 454 GS FLX+ platform (Morowitz et al., 2011; Gupta
et al., 2017). Finally, Quantitative Insights IntoMicrobial Ecology
(QIIME) 1.9.0 pipeline was implemented for SSU rRNA sequence
data analysis (Caporaso et al., 2011). SSU rRNA gene sequence
data was curated for quality, length and ambiguous bases as a
quality filtering step. Each sample was pre-processed to remove

sequences with length less than 200 nucleotides and more
than 1,000 nucleotides and sequences with minimum average
quality <25. Reads with ambiguities and barcode mismatch were
discarded. Reads were assigned to operational taxonomic units
(OTUs) using a closed reference OTU picking protocol using
QIIME. The uclust was applied to search sequences against a
subset of the Greengenes database, version 13_8 filtered at 97%
sequence identity. The OTUs were classified taxonomically by
using the Greengenes reference database at various taxonomic
ranks (phylum, class, order, family, genus, and species).

Metagenomic Library Screening and
Characterization of Salt Resistant Clones
Plasmid borne saline soil metagenomic library was prepared in
E. coli DH10B using pUC19 vector (Supplementary Methods)
(Chauhan et al., 2009, 2017) and manually screened for salt stress
tolerant clones (Kapardar et al., 2010a,b). Salt stress resistant
clones were screened by plating the soil metagenomic library
(∼165,000 clones with an average insert of 1.89Kb) on LB
agar medium supplemented with ampicillin (100 µg ml−1)
and NaCl [5.8% (w/v)]. The 5.8% of NaCl (w/w) is a lethal
concentration for E. coli DH10B cells and will allow the growth
of only osmotolerant clones. RFLP analysis of salt stress tolerant
clones was performed after digesting their recombinant plasmid
DNA with EcoRI & HindIII at 37◦C for 12 h. The minimum
inhibitory concentration assay and growth inhibition studies
were performed to analyze the salt stress tolerance property
(Kapardar et al., 2010a,b). Growth inhibition assays of salt
sensitive E. coli MKH13 clones were performed with 3% NaCl
(w/v) & 3.7% KCl (w/v), while 5.8% NaCl (w/v) & 5.5 % of KCl
(w/v) were used for E. coli DH10B clones. Graphs (created using
Origin61) are presented as the average of triplicate experiments,
with error bars being representative of the standard error of the
mean.

Genetic and Physiological Characterization
of Salt Tolerance Genes
The plasmid insert from salt resistant recombinant clones
were sequenced using Sanger sequencing chemistry with
primer walking approach at Eurofins Genomics India Pvt. Ltd
(Bangalore, India). Sequence assembly was performed with Seq-
Man sequence assembly software Lasergene package, version
5.07 (DNA Star, USA). Putative open reading frame (ORF)
was predicted using an ORF finder tool at NCBI (http://www.
ncbi.nlm.nih.gov/gorf/gorf.html) and checked for the database
homology with Basic Local Alignment and Search Tool
(BLAST) (http://www.ncbi.nlm.nih.gov/blast). Encoded protein
sequences were analyzed for the presence of conserved domains
(CDD) (Marchler-Bauer et al., 2014), topology prediction
(HMMTOP) (Tusnády and Simon, 2001), phylogenetic analysis
(MEGA7) (Kumar S. et al., 2016), and various physiological
parameters (Tsirigos et al., 2015). Transposon mutagenesis
of pSSR1, pSSR4, pSSR6, and pSSR21 was carried out with
EZ-Tn5TM<Kan-2> Insertion kit (Epicenter Biotechnologies)
following manufacturer’s instructions. Transposon mutants of
pSSR1, pSSR4, pSSR6, and pSSR21 were screened for the salt
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TABLE 1 | Bacterial strains and plasmids used in present study.

Strains, plasmids, and

transposons

Genotype or characteristics Source or reference

E. coli (DH10B) F- endA1 recA1 galE15 galK16 nupG rpsL 1lacX74 880lacZ1M15 araD139 1(ara, leu)7697 mcrA

1(mrr-hsdRMS-mcrBC) λ-

Lucigen corporation, Parmenter

St. Middleton, USA

E. coli (MKH13) MC41001(putPA)101D(proP)2D(proU) (Haardt et al., 1995)

pSSR1 pUC19 harboring a metagenomic DNA fragment of 2939 bp Present study

SSR1 E. coli (DH10B) containing pSSR1 Present study

pSSR4 pUC19 harboring a metagenomic DNA fragment of 2945 bp Present study

SSR4 E. coli (DH10B) containing pSSR4 Present study

pSSR6 pUC19 harboring a metagenomic DNA fragment of 1456 bp Present study

SSR6 E. coli (DH10B) containing pSSR6 Present study

pSSR21 pUC19 harboring a metagenomic DNA fragment of 2352 bp Present study

SSR21 E. coli (DH10B) containing pSSR21 Present study

pSSR1C1 pUC19 recombinant plasmid harboring putative BCAA_ABCTP of pSSR1 cloned at EcoR1 and HindIII of

pUC19 MCS (Multiple cloning site)

Present study

SSR1C1 E. coli (MKH13) harboring pSSR1C1 Present study

pSSR4C1 pUC19 recombinant plasmid harboring putative GSDH of pSSR4 cloned at EcoR1 and HindIII of pUC19

MCS

Present study

SSR4C1 E. coli (MKH13) harboring pSSR4C1 Present study

pSSR21C1 pUC19 recombinant plasmid harboring putative duf3445 gene of pSSR21 cloned at EcoR1 and HindIII of

pUC19 MCS

Present study

SSR21C1 E. coli (MKH13) harboring pSSR21C1 Present study

pUC19 Plasmid cloning vector Ampr Thermo Scientific

Transposon EZ

Tn5TM <Kan-2>

Tn5TM Transposon Kanr Epicenter Biotechnologies

Madison, Wisconsins, USA

stress resistant and sensitive phenotypes to identify the active
osmotolerant genomic regions within the cloned DNA fragment
in pSSR1, pSSR4, pSSR6, and pSSR21. Salt tolerant active
loci encoding putative BCAA-ABCtp, GSDH, STK_Pknb, and
DUF3445 genes of pSSR1, pSSR4, pSSR6, and pSSR21 were
subcloned in pUC19 vector (E. coliMKH13 host) using standard
molecular cloning techniques. The growth studies of subclones
were performed to analyze their salt stress maintenance property
in the presence of salt stressors NaCl [3.0% (w/v)] and KCl [3.7%
(w/v)]. All assays were performed in triplicates for calculation of
standard deviation. A parametric t-test was used to calculate the
p-value.

Elemental Quantification of Na+ in Salt
Tolerant Clones
Elemental Quantification of intracellular Na+ in E. coli MKH13
carrying the empty vector (pUC19) and salt tolerant recombinant
subclones (SSR1C1, SSR4C1, SSR6C1, SSR21C1) was measured
with inductively coupled plasma spectroscopy-atomic emission
spectroscopy (ICP-AES) analysis (Mirete et al., 2015) at SAIF,
IIT Bombay, India. Results were expressed as mg of Na+ g−1

dry weight of cells. A parametric t-test was used to calculate the
p-value.

Data Availability
Sequence reads generate in present study has been deposited in
the NCBI SRA under accession number SRS2727172.

RESULTS

Phylogenetic Reconstruction of Saline Soil
Metagenome
Physico-chemical properties of saline soil showed that the
pH of soil was 9.0 ± 0.025, while its electrical conductivity
(EC) was 6.5 ± 0.023. Elemental analysis of soil showed the
excessive presence of salts, sodium (105 ppm), potassium
(155 ppm), and lithium (188 ppm), confirming its moderate
saline nature. A good quality (A260/280 >1.8), high molecular
weight (>23Kb) metagenomic DNA was extracted from the
saline soil sample. Saline soil metagenomic DNA was used
to analyze its SSU rRNA gene sequences to decode its native
microbiome structure. Clustering of SSU rRNA gene identified
a total of 487 OTUs distributed across seven microbial phyla
(Figure 1). Out of 487 OTUs, we observed 153 unique OTUs
(Supplementary Table S2). The inferred phylogeny of the
soil microbiome based upon 153 unique OTUs (Figure 1)
was comparable to the taxonomic classifications against
with greengenes database, with most of the diversity of the
microbiome being attributed to phyla Proteobacteria. The
phylogeny was visualized by iTOL (Letunic and Bork, 2016). The
dominant microbial phyla were Proteobacteria, Actinobacteria,
Gemmatimonadetes, Bacteroidetes, Firmicutes, and Acidobacteria
(Figure 1). Among these phyla, the majority of sequences were
affiliated to Proteobacteria (43.7%) having a representation
of Alphaproteobacteria (38.9%), Betaproteobacteria (7%),
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FIGURE 1 | Cladogram of operational taxonomic units (OTUs) identified by SSU rRNA gene sequence analysis.

Deltaproteobacteria (10.7%), and Gammaproteobacteria
(43.2%); followed by Actinobacteria (21.8%) showing presence
of Acidimicrobiia (72.47%) and Nitriliruptoria (18.8%);
Bacteroidetes (18.1%) having a proportionate representation
of Rhodothermi (51.9%), Flavobacteriia (25.96%), Cytophagia
(19.3%), and Gemmatimonadetes (11.3%) with a percentage
representation of Gemm-2 (60.17%), Gemm-4 (12.3%), Gemm-
1 (3.5%). Simultaneously, a minor fraction of sequences
was affiliated to Acidobacteria (2.5%), Firmicutes (2.1%),
and Nitrospirae (0.6%) microbial groups within saline soil
microbiome. The taxonomic classification of saline soil
microbiome confirms that a majority of microbial taxa belongs
to phylum Proteobacteria (Figure 1) (Supplementary Table S2).

Screening of Salt Stress Resistant Clones
from Saline Soil Microbiome
A saline soil metagenomic library was constructed with a total
representation of 312MB of cloned soil microbiome DNA.
Primary screening of a saline soil metagenomic library at 5.8%
NaCl (w/v) led to the identification of 24 salt stress tolerant
clones. However, RFLP analysis indicated the presence of only
four unique recombinant plasmids, labeled as pSSR1, pSSR4,
pSSR6, and pSSR21. Minimum inhibitory concentration analysis

showed almost two fold higher salt stress tolerance of SSR1, SSR4,
SSR6, and SSR21 clones in comparison to the control E. coli
(DH10B) (Supplementary Figure S1). The SSR1, SSR4, SSR6,
and SSR21 also showed a statistically significant (P = 0.0009,
P = 0.0003, P = 0.0014, P = 0.004) growth advantage in
the presence of NaCl [4.0% (w/v)] (Figure 2A) and KCl [5.5%
(w/v)] (P = 0.0045, P = 0.0008, P = 0.0486, P = 0.0022) as
compared to E. coli (DH10B) strain carrying empty plasmid
vector (pUC19) (Figure 2B), whereas no significant growth
difference was observed between SSR1, SSR4, SSR6, SSR21, and
native host E. coli (DH10B) carrying pUC19 in the presence of
LB broth only (Figure 2C). Simultaneously pSSR1, pSSR4, pSSR6,
and pSSR21 successfully complemented salt stress tolerance
property within salt sensitive E. coli (MKH13) strain and showed
a statistically significant growth advantage in the presence of
NaCl [3.0% (w/v)] (P = 0.0007, P = 0.0002, P = 0.0003,
P = 0.0001) (Figure 3A) and KCl [3.7% (w/v)] (P = 0.0003,
P= 0.0008, P= 0.0003, P= 0.0023) (Figure 3B), as compared to
E. coli (MKH13) strain carrying empty plasmid vector (pUC19).
At the same time, no significant growth difference was observed
between E. coli (MKH13) strain harboring pSSR1, pSSR4, pSSR6,
pSSR21 as compared to E. coli (MKH13) strain carrying empty
plasmid vector in the presence of LB broth only (Figure 3C).
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FIGURE 2 | Characterization of salt stress tolerant clones for osmotolerance property. Growth of E. coli (DH10B) metagenomic clones SSR1 (•), SSR4 (N), SSR6

(H),SSR21(◭), and E. coli (DH10B) host strain carrying empty plasmid vector (�) in (A) LB broth supplemented with 4.0% NaCl (w/v), (B) LB broth supplemented with

5.5% KCl and (C) LB broth.

FIGURE 3 | Complementation of osmotolerance property of salt stress tolerant clones. Growth of E. coli (MKH13) metagenomic clones harboring pSSR1 (•),

pSSR4(N), pSSR6(H), pSSR21(◭), and E. coli (MKH13) host strain carrying empty plasmid vector (�) in (A) LB broth supplemented with 3.0% NaCl(w/v), (B) LB broth

supplemented with 3.7% KCl,(C) LB broth.

Genetic and Physiological Characterization
of Salt Stress Tolerant Clones
Salt Tolerant Clone SSR1

Sequence assembly of pSSR1 resulted into a contig of 2,938 bp
with a 66.87%G+C content. Cloned insert shared 76% homology
with a halophilic proteobacterial lineage Haliangium ochraceum,
indicating its plausible affiliation within proteobacterial clade.
The gene prediction analysis indicated the presence of three
complete and one truncated ORF, encoding proteins of 93, 114,
383, and 149aa respectively. Translated nucleotide sequences
of these ORFs were subjected to BLASTP (maximum e-value
cutoff of 1e-34) analysis to identify the homologous sequence
in the database (Table 2). Transposon mutagenesis analysis
confirmed functionally active locus for osmotolerance property
encompassing ORF3 (positioned between 927 and 2,078 bp)
(Figure 4). ORF3 encoded transmembrane protein shared
homology with a transmembrane ABC transporter ATP-binding
protein of Betaproteobacteria bacterium SG8_39 (74%) and
branched-chain amino acid ABC transporter substrate-binding
protein of Oceanibacterium hippocampi (71%). Pfam database
search identified the presence of a periplasmic ligand-binding
domain of the ABC (ATPase Binding Cassette) type active
transport systems, known to be involved in the transport of
three branched chain aliphatic amino acids (leucine, isoleucine
and valine) (Davidson et al., 2008). STRING analysis also
predicted ORF3 as part of an interactive periplasmic binding

protein dependent transport system. Further, NsitePred web
server identified strong nucleotide binding sites (ATP Binding
site at Gly14 and ADP binding site at Gly12) within ORF3
encoded protein. This nucleotide binding site could be NBD,
a common feature for ATP binding proteins, as predicted by
its functional assignment. In consideration of physiological role
and all structural features of ORF3 encoded protein, it is a type
of ABC transporter ATP-binding protein involved in salt stress
maintenance possibly through energy dependent interaction with
ABC membrane transporters involved in the exchange of the
solutes across membrane, thus labeled as putative branched chain
amino acid (BCAA) ABC transporter gene (BCAA_ABCTP).
The putative BCAA_ABCTP gene was subcloned (pSSR1C1) to
confirm its osmotolerance property. Time dependent growth
curve analysis of SSR1C1 harboring BCAA_ABCTP showed a
significant growth advantage in the presence of NaCl [3.0%
(w/v)] (P = 0.0006) (Figure 5A) and KCl [3.7 % (w/v)] (P
= 0.0005) (Figure 5B) as compared to salt sensitive E. coli
mutant MKH13 carrying only the empty vector (pUC19), while
no significant difference was observed on LB only (Figure 5C).
The intracellular elemental analysis in the presence of ionic
stressor NaCl [3.0% (w/v)] showed that SSR1C1 has effectively
reduced intracellular sodium ion concentration (P = 0.0134) in
comparison to E. coli mutant MKH13 (Figure 5D). A reduced
intracellular sodium concentration within SSR1C1 could be seen
as a result of its transporter property, as predicated through
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FIGURE 4 | Transposon insertion map of pSSR1, pSSR4, pSSR6, and pSSR21. T indicates a transposon insertion site identified within transposon positive mutants

(no effect on plasmid derived osmotolerance property) while ↑ indicate transposon insertion site identified within transposon negative mutants (loss of plasmid derived

osmotolerance property).

FIGURE 5 | Physiological Characterization of BCAA_ABCTP, GSDH, STK_Pknb, and duf3445 for osmotolerance. Growth curve analysis of osmotolerant phenotype

SSR1C1 (•), SSR4C1 (N), SSR21C1 (H), and E. coli (MKH13) host strain carrying empty plasmid vector (�) in (A) LB broth supplemented with 3% NaCl (w/v), (B) LB

broth supplemented with 3.7 % KCl (w/v), and (C) LB only. Intracellular Na+ estimation in E. coli (MKH13) strain harboring pSSR1C1, pSSR4C1, pSSR6, and

pSSR21C1 and E. coli (MKH13) host strain carrying empty plasmid vector (D).

genetic characterization. The growth pattern of SSR1C1 was
found similar to the native SSR1 that confirms that salt tolerance
of salt tolerant clone SSR1 was due to SSR1C1 cloned insert
encoding a branched chain amino acid (BCAA) ABC transporter
protein.

Salt Tolerant Clone SSR4

The pSSR4 harbors a G+C rich (G+C% = 63.63) insert of
2,945 bp. The cloned sequence did not share any homology at
the nucleotide level in existing database sequences. A total of
three ORFs were predicted within the cloned insert, encoding
proteins of 207, 507, and 210 amino acids respectively (Table 2).
Transposon mutagenesis analysis identified the functionally
active locus within the sequence region (235 bp), encompassing
ORF1 (Figure 4). ORF1 encodes a cytosolic protein homologous
to hypothetical protein of Anaerolineae bacterium SG8_19 and
Glucose/sorbosone dehydrogenase-like protein of Pelobacter
carbinolicus. A Pfam analysis of ORF1 encoded protein
indicates it as a glucose/sorbosone dehydrogenase protein having
conserved domains for the protein family GSDH. It indicates that
the ORF1 possibly encodes a glucose/sorbosone dehydrogenase
involved in salt stress tolerance, possibly through the cytosolic
accumulation of reducing equivalents (NADPH and GSH).
Predicted GSDH gene was amplified from pSSR4 and subcloned

to validate its osmotolerance property. Time dependent growth
curve assay of SSR4C1 showed a significant growth advantage
NaCl [3.0% (w/v)] (P = 0.0004) (Figure 5A) and KCl [3.7 %
(w/v)] (P = 0.0006) (Figure 5B) as compared to salt sensitive
E. coli mutant MKH13 carrying the empty vector (pUC19),
while no significant difference has been observed on LB only
(Figure 5C). The growth pattern of SSR4C1 was similar to
SSR4. It also confirmed that the salt tolerance property of salt
tolerant clone pSSR4 was possibly due to GSDH gene encoding
glucose/sorbosone dehydrogenase protein.

Salt Tolerant Clone SSR6

Sequence assembly of pSSR6 generated a G+C rich (65.66%)
contig of 1,456 bp. The blastn analysis identified its low similarity
to Betaproteobacteria GR16-43 genome sequences, indicating
its affiliation from proteobacterial clade. The cloned sequence
encodes only one complete ORF (ORF1), encoding a cytosolic
protein of 345 amino acids with a G+C content of 65.79%
(Table 2). Transposon mutagenesis analysis also confirmed the
functionally active locus within ORF2 (Figure 4). Homologs
of translated ORF2, corresponds to putative serine/threonine
protein kinase of Woeseia oceani and Mycobacterium smegmatis
str. MC2 155. A pfam database search of ORF2 encoded protein
indicates it as a putative serine/threonine protein kinase having
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conserved domains for the protein family STKc_PknB, i.e., the
catalytic domain of bacterial Serine/Threonine kinases, PknB
family. Ser/Thr protein kinase homologs were found to be
involved in osmosensory signaling in microbes (Hatzios et al.,
2013). These identified proteins were important for the survival
and in stress responses (Donat et al., 2009). The intracellular
elemental analysis in presence of the ionic stressor NaCl [3.0%
(w/v)] showed that SSR6 effectively reduced intracellular sodium
ion concentration (P = 0.0200) in comparison to E. coliMKH13
(Figure 5D). A reduced intracellular sodium concentration
within SSR6C1 could be due to enhanced ion transporter activity
under the influence of signals generated by putative STKc_PknB
of pSSR6 under the osmotic stress.

Salt Tolerant Clone SSR21

The pSSR21 was found to have a G+C rich (69.98%) insert
of 2352 bp. The blastn analysis identified its homology with
an Actinomycetes strain Allokutzneria albata. Gene prediction
has indicated the presence of three ORFs in pSSR21, encoding
proteins of 309, 337, and 84 amino acids respectively. Among
three identified ORFs, only ORF2 was complete, while other two
ORFs (ORF1 and 3) were truncated. Transposon mutagenesis
analysis has identified the functionally active locus within ORF2
sequence region (1,220 and 1,330 bp). The database homologs
of ORF2 corresponds to hypothetical protein A3F84_26310 of
Candidatus Handelsmanbacteria bacterium (Table 2). The pfam
analysis identified the presence of conserved domains in the
protein family DUF3445, i.e., protein of unknown function
(DUF3445). The G+C content of ORF2 was found to be
69.96% and the predicted functionally active region, ORF2 was
subcloned. Time dependent growth curve assay of SSR21C1
showed a significant growth advantage NaCl [3.0% (w/v)]
(P = 0.0005) (Figure 5A) and KCl [3.7% (w/v)] (P = 0.0045)
(Figure 5B) as compared to salt sensitive E. coli mutant MKH13
carrying only the empty vector (pUC19), while no significant
difference has been observed on LB only (Figure 5C). Elemental
Quantification of intracellular Na+ in E. coli MKH13 carrying
the empty vector and salt tolerant recombinant subclones
SSR21C1 clearly showed that the cloned gene insert (duf3445)
within SSR21C1 has significantly reduced the concentration of
intracellular Na+ ion (P = 0.0174) (Figure 5D).

DISCUSSION

Metagenomics has the potential to advance our knowledge by
studying the genetic components of uncultured microbes (Singh
A. H. et al., 2009; Mirete et al., 2015; Chauhan et al., 2017;
Yadav et al., 2017). Looking at the perspectives of metagenomics,
it was used to explore soil microbiome for its composition
and genetic/physiological mechanisms allowing successful
adaptation of microbes in saline environments. Simultaneously,
these genes could be utilized as potential candidate to develop
ever demanding drought resistant transgenic crops (Zhengbin
et al., 2011) or osmotolerant microbes for food processing
(Fernandes, 2014) and waste water treatment applications
(Xiao and Roberts, 2010). Metagenomic analysis based on
SSU rRNA gene has identified dominance of Proteobacteria,

Actinobacteria, Bacteroidetes, and Gemmatimonadetes in saline
soil microbiome. These results are in parallel with the outcome
of previous studies defining microbial community composition
of saline soil environment (Zhang et al., 2003; Ma and Gong,
2013; Canfora et al., 2014; Kadam and Chuan, 2016). Canfora
et al. has reported a correlation in abundance of a microbial
group with respect to soil salinity. They had indicated a relative
abundance of Proteobacteria with Bacteroidetes were positively
and Acidobacteria was negatively correlated with salinity
(Canfora et al., 2014). Similarly Actinobacteria was also been
reported as another dominant microbial phylum in saline
ecosystems (Kadam and Chuan, 2016). Gemmatimonadetes is
another well-known hypersaline microbial phylum associated
with biogeochemical transformations (Zhang et al., 2003). The
existence of halophilic subcomponents within the identified
microbial phylum, possibly making them capable to proliferate
in a saline environment. These studies explain the abundance
of Proteobacteria, Actinobacteria, Gemmatimonadetes, and
Bacteroidetes in the studied ecosystem. Evolution of novel
genetic features is a key to their successful survival in a changing
environment (Gupta et al., 2017; Kumar Mondal et al., 2017).
These saline microorganisms could have evolved salt stress
tolerant genetic machinery to adapt and survive under salt
induced osmotic stresses (Meena et al., 2017). A number of
genetic elements were decoded for osmotolerance property from
cultured and uncultured microbial representatives (Kapardar
et al., 2010a,b; Culligan et al., 2012, 2013, 2014; Kim and Yu,
2012; Mirete et al., 2015). However, there is a disparity in a
number of reported salt tolerance genes with a number of
microorganisms from an ecosystem (Humbert et al., 2009;
Mirete et al., 2015). This divergence could be allied with a
number of factors like unculturability (Kim and Yu, 2012), lack
of good quality genomic/metagenomic DNA (Kumar J. et al.,
2016) and issues with foreign gene expression (Prakash and
Taylor, 2012). An additional effort was made in the current
study to decode osmotolerance genes prevalent in these saline
soil microorganisms using functional metagenomics. It leads to
the identification of four unique osmotolerant clones harboring
DNA insert showing affiliation within halophile genomes.
Genetic and physiological analysis has identified genes encoding
putative proteins like membrane bound branched chain amino
acid (BCAA) ABC transporter protein (BCAA_ABCTP),
Glucose/sorbosone dehydrogenase, cytosolic STKc_PknB and
DUF protein are responsible for osmotolerance property
within salt stress tolerant clones. Among these, the role of the
branched chain amino acid (BCAA) ABC transporter protein
and glucose/sorbosone dehydrogenase in osmotolerance are
well documented (Takami et al., 2002; Brosnan and Brosnan,
2006), while the scanty information is available about role
for STKc_PknB and DUF3445 protein in stress maintenance
(Hatzios et al., 2013).

ABC branched chain amino acid (BCAA) transporters are
widely distributed in various marine microbes likeOceanibacillus
iheyensis (Takami et al., 2002), Salinispora, Bacillus, and
Roseobacter strains (Penn and Jensen, 2012). BCAA_ABCTP
proteins are involved in the transport of branched chain
aliphatic amino acids such as leucine, isoleucine and valine at

Frontiers in Microbiology | www.frontiersin.org 8 February 2018 | Volume 9 | Article 159

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Ahmed et al. Osmotolerance Genes from Saline Soil

high salt concentration. In the presence of 2-oxoglutarate and
pyridoxal-5-phosphate, these branched chain amino acids are
further converted to L-glutamate by branched chain amino acid
transferase (Hutson, 2001). Accumulated glutamate acts as an
osmoprotectant upon hyper-osmotic shock and activates sets of
genes that allow the host to achieve long-term adaptation to
high osmolarity (Gralla and Vargas, 2006). They also account
for a significant proportion of the genes observed in the
marinemetagenome. Branched chain amino acid transporters are
probably an important marine adaptation because accumulated
glutamate may function as a counter ion for K+, which balances
the electrical state of the cytoplasm (Penn and Jensen, 2012).
Previous studies have reported a regulatory relationship between
K+ and glutamate accumulation in response to osmotic stress
in enteric bacteria and haloalkaliphilic archaea Natronococcus
occultus (Kokoeva et al., 2002). Similarly, T. consotensis, a
halotolerant bacterium accumulates glutamate to maintain
electrical equilibrium within the cell in response to high salt
concentrations (Rubiano-Labrador et al., 2015). This background
information explains the possible physiological role of the
BCAA_ABCTP gene of pSSR1 to increase host osmotolerance.

Glucose/Sorbosone dehydrogenase (GSDH) is responsible for
the production of NADPH through oxidative cleavage of glucose
(Oubrie et al., 1999). Under salt stress condition, NADPH acts as
reducing potential for output of reduced glutathione (GSH) and
involved in activity of membrane bound NADPH oxidase, which
results in accumulation of hydrogen peroxide (H2O2) (Wang
et al., 2008). H2O2 acts as a signal in regulating G6PDH activity
and expression of this enzyme in the glutathione cycle through
which the ability of GSH regeneration was increased under salt
stress (Wang et al., 2008). Thus, G6PDH plays a critical role
in maintaining cellular GSH levels under long-term salt stress
conditions (Wang et al., 2008). It indicates that GSDH of pSSR4
is involved in salt stress tolerance possibly through the cytosolic
accumulation of reducing equivalents (NADPH and GSH).

While in case of pSSR6 only one ORF was identified,
sharing homology with Serine/Threonine kinases. This encoded
protein also possesses two conserved domains for the protein
family STKc_PknB, i.e. the catalytic domain of bacterial
Serine/Threonine kinases, PknB and similar proteins; STKs
and TOMM_kin_cyc, i.e., TOMM system kinase/cyclase fusion
protein. STKs are well known for activating genetic locus
concerned with osmosensing (Hatzios et al., 2013) and inducing
topological changes such as DNA supercoiling (Gupta et al.,
2014). These osmosensing signal and DNA supercoiling could
initiate uptake of the osmolyte glycine betaine, proline (Csonka,
1989) or initiates the expression of genetic elements required to

cope with osmotic stress (Higgins et al., 1988). This could be
the possible mechanism by which putative STK_PknB of pSSR6
might be extending osmotolerance to the host E. coli.

The pSSR21 ORF2 encodes a protein sharing homology
with a hypothetical protein of Candidatus Handelsmanbacteria
possessing a conserved domain for DUF3445 superfamily,
i.e., an uncharacterized protein family having conserved RLP
sequence motif (Bateman et al., 2010). However, its physiological
characterization and intracellular ion concentration analysis
indicates that it extends host osmotolerance property by

maintaining low intracellular ion concentration even in the
presence of an ionic stressor. However, a detailed mechanism still
needs to be elucidated.

CONCLUSION

In this study, the functional metagenomic approach was
used to decipher salt stress tolerant genes in the saline soil
microbiome. Identification of salt tolerant genes BCAA_ABCtp,
GSDH STK_Pknb, and duf3445 has enriched our understanding
about the survivability and adaptability of microbes in the highly
saline soil ecosystem. These salt tolerant genes can be used for
crop improvement and for producing bioactive molecules under
high salt conditions, which reduces the chances of contamination
by other microbes.
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