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Abstract Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has

remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we

establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell

quiescence. We find that mitotically dividing germ cells—including germline stem cells—become

quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block

to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we

demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance:

The signaling pathway required for stem cell maintenance under fed conditions—GLP-1/Notch

signaling—becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can

itself maintain stem cells, independent of the signaling pathway otherwise essential for such

maintenance.

DOI: 10.7554/eLife.10832.001

Introduction
Stem cells in adult tissues were once thought to exist primarily in a state of cell-cycle quiescence.

Such quiescence was viewed as an inherent property of the stem cell fate and thus essential for a tis-

sue’s long-term self-renewal (Hall and Watt, 1989; Potten and Loeffler, 1990). More recently, how-

ever, it has become clear that adult stem cells are not universally quiescent but instead cycle in

accordance with the needs of the tissue: Some types of stem cells proliferate continuously, whereas

others switch from quiescence to rapid proliferation in response to certain stimuli (e.g. wounding or

hormones) (Wabik and Jones, 2015). In mammals, for example, hematopoietic and neural stem cells

reversibly switch between quiescence and active proliferation in response to tissue injury

(Doetsch et al., 1999; Harrison and Lerner, 1991; Lugert et al., 2010), and mammary stem cells

expand transiently during pregnancy and the estrus cycle (Asselin-Labat et al., 2010; Joshi et al.,

2010). Though periods of sustained stem cell proliferation enable rapid tissue growth or turnover,

they challenge the view of quiescence as a prerequisite for the stem cell fate. Thus, a long-standing

question has remained unanswered: Does cell-cycle quiescence play a role in stem cell maintenance?

Understanding the relationship between cell-cycle quiescence and stem cell maintenance has

been difficult because tractable models of facultative stem cell quiescence have been lacking. Pertur-

bations affecting the cell cycle can in some cases impact stem cell maintenance (Orford and Scad-

den, 2008; Pietras et al., 2011; Yilmaz et al., 2012), but whether quiescence can maintain stem

cells independent of the signals otherwise required for their maintenance has been untested. Such a

test requires a system in which cell-cycle quiescence can be readily induced, and in which the signals

otherwise required for stem cell maintenance can be readily removed. In this study, we establish the
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adult germline of Caenorhabditis elegans as a model fitting these criteria. We describe a previously

uncharacterized state of cell-cycle quiescence among adult germline stem cells, emerging under

conditions of starvation. We then test whether this quiescence can maintain stem cells, independent

of the signal required for their maintenance under conditions of active proliferation.

The adult germline of C. elegans presents a tractable model for studying stem cell behavior

because of its simple, linear organization (Figure 1A). Mitotically dividing germ cells—including

germline stem cells—reside in the distal region of the gonad (the ‘progenitor zone’). Differentiating

germ cells, in meiotic prophase, are located more proximally. (Here, we use the term ‘progenitor

zone’ rather than the earlier term ‘mitotic zone’ or ‘proliferative zone’ to reflect the facultative nature

of germ cell divisions.) The progenitor zone has been studied under fed conditions and is composed

of a distal pool of germline stem cells and a more proximal pool of cells that have begun to differen-

tiate (Cinquin et al., 2010). This proximal pool comprises cells dividing mitotically, as well as cells

completing their final passage through interphase in preparation for entry into the meiotic cell cycle.

We collectively refer to these cells as ‘transient progenitors’, to reflect their continued mitotic divi-

sions and transitional state (Figure 1A). Under fed conditions, cells throughout the progenitor zone

cycle asynchronously and continuously (Crittenden et al., 2006; Fox et al., 2011; Jaramillo-

Lambert et al., 2007; Morgan et al., 2010), with transient progenitors undergoing one or two

rounds of division as they pass through the proximal progenitor zone (Fox and Schedl, 2015).

Prior to this work, germ cell proliferation in C. elegans adults had not been examined in detail

under food-limited conditions. However, the effects of such conditions have been examined during

larval development in C. elegans, as well as in adult Drosophila, and in both contexts, germ cells

respond robustly to nutritional cues. In Drosophila, nutrient limitation or changes in nutrient-sensing

pathways slow germ cell proliferation, reduce germline stem cell number, or both (Armstrong et al.,

2014; Drummond-Barbosa and Spradling, 2001; Hsu et al., 2008; LaFever et al., 2010;

McLeod et al., 2010; Roth et al., 2012; Sheng and Matunis, 2011). These effects are mediated in

part by changes in the somatic gonad (Yang and Yamashita, 2015), including changes in the size of

the somatic niche supporting germline stem cells (Bonfini et al., 2015; Hsu and Drummond-Bar-

bosa, 2011). In C. elegans, primordial germ cells are born in the early embryo and arrest in the G2

phase of the cell cycle until newly hatched larvae begin to feed (Butuci et al., 2015;

Fukuyama et al., 2006; Fukuyama et al., 2012). This response to feeding has been hypothesized to

involve food-related signals traveling through soma-to-germline gap junctions, which are required

early in larval development for germ cell proliferation and survival (Starich et al., 2014). Later in

eLife digest Adult stem cells can divide to produce cells that can develop into one of many

different specialist cell types in a tissue, and so are vitally important for tissue repair and

maintenance. Some types of adult stem cells exist primarily in a non-dividing state known as

quiescence, which for a long time was thought to be essential for maintaining the stem cell state.

However, researchers have discovered some adult stem cells that are either not quiescent, or only

enter this state rarely.

Until now, biologists have lacked an experimental model in which the role of quiescence in

maintaining stem cells can be easily investigated. Seidel and Kimble have now investigated the role

of quiescence in the germline stem cells – which give rise to egg and sperm cells – of the

roundworm Caenorhabditis elegans. The results of the study revealed that although the germline

stem cells divide continuously when the worms are well fed, starving the worms causes these stem

cells to become quiescent.

Maintaining C. elegans germline stem cells in a stem cell state normally involves a process called

Notch signaling, which cells use to communicate with each other. However, Seidel and Kimble found

that the germline quiescence caused by starvation maintains the stem cell state even when Notch

signaling is prevented. This suggests that, in the absence of food, quiescence alone can maintain

germline stem cells, although how it does so remains a question for future work. One possibility is

that quiescence stabilizes other molecules involved in the Notch signaling pathway or prevents the

production of proteins that enable a stem cell to develop into a specialized cell.

DOI: 10.7554/eLife.10832.002
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development, germ cells stop dividing if animals enter the non-feeding dauer larval stage

(Narbonne and Roy, 2006). Even in non-dauer larvae, germ cells proliferate less when food is

scarce, an effect mediated in part by communication between food-sensing neurons and the somatic

gonad (Dalfo et al., 2012; Korta et al., 2012). In adult C. elegans, decreased food intake slows

mitotic and meiotic progression and oogenesis (Gerhold et al., 2015; Lopez et al., 2013;

Salinas et al., 2006; Seidel and Kimble, 2011), and limited observations suggest that germ cell pro-

liferation is also reduced (Salinas et al., 2006). More strikingly, full starvation from the L4 larval stage

causes dramatic germline shrinkage in adult hermaphrodites, and this shrinkage is reversible upon

re-feeding (Angelo and Van Gilst, 2009; Seidel and Kimble, 2011). These observations motivated

us to examine in greater detail how mitotically dividing germ cells in adult C. elegans respond to

food removal.

Here, we report that in the absence of food, mitotically dividing germ cells in adult C. elegans

stop dividing and become quiescent. This quiescence is characterized by a dramatic slowing of S

phase, cell-cycle arrest in G2, and the ability to re-enter M phase rapidly in response to re-feeding.

We investigate these cell-cycle responses in wildtype animals and in germline tumors, and we test

whether this cell-cycle quiescence requires factors controlling larval or behavioral responses to food.

We next investigate the control of stem cell maintenance under starved conditions. We uncover a

major difference in the requirement for GLP-1/Notch signaling in the maintenance of actively prolif-

erating versus quiescent germline stem cells. This work establishes the C. elegans germline as a

model of facultative stem cell quiescence and demonstrates the utility of such a model in clarifying

the role of quiescence in maintaining the stem cell state.

Figure 1. Fed versus starved adult hermaphrodite gonad of Caenorhabditis elegans. (A) Schematic of an adult

hermaphrodite gonadal arm, with the progenitor zone at its distal end and maturing gametes at its proximal end.

Germline stem cells and transient progenitors are located in the distal and proximal progenitor zone, respectively.

Cells in both pools cycle asynchronously, although they are partially connected via a cytoplasmic core. Filled

circles, germ cell nuclei in the progenitor zone. Open circles, germ cell nuclei in meiotic prophase, including

developing oocytes. Gonads in males and larval hermaphrodites are organized similarly, although their proximal

germ cells differentiate as sperm. This same gonad organization is also seen in starved animals of any stage or sex

for time intervals examined in this work. (B) Images of distal gonads dissected from adult hermaphrodites and

stained with DAPI to visualize DNA (magenta) and anti-phospho-histone H3 to visualize M-phase chromosomes

(green). M-phase cells are outlined and numbered. Left, fed early adult hermaphrodite. Right, hermaphrodite

starved from early adult for 8 hr. (See Materials and methods for definition of ‘early adult’.) Asterisks, distal gonad

ends. Images are maximum-intensity z-projections.

DOI: 10.7554/eLife.10832.003
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Results

M-phase entry in adult germ cells responds rapidly to starvation and
re-feeding
To investigate how starvation affects germ cell division in adults, we removed food from early adult

hermaphrodites and males and monitored the number of germ cells in M phase over the following

10.5 hr. Cells in M phase were identified by staining for phospho-histone H3 (Figure 1B), a marker

of M phase (Hans and Dimitrov, 2001). Food removal caused a drop in the number of M-phase cells

(Figure 2A), and this response was fast: In hermaphrodites, the number of M-phase cells per pro-

genitor zone dropped from an average of 7.6 before food removal to 2.1 after 30 min without food

(n = 7 replicates of 220–551 gonadal arms per replicate per time point) (Figure 2A). The number of

M-phase cells continued to decline thereafter, and after 3.5 hr without food, M-phase cells were vir-

tually absent (Figure 2A). This drop in M-phase cells did not occur in hermaphrodites fed

Figure 2. Mitotic divisions in adult progenitor zones respond quickly to food removal and re-feeding. Time courses showing the number M-phase cells

per progenitor zone after food removal or re-feeding. Time zero indicates the start of food removal or re-feeding. Animals in A, B and D, E were

starved from early adult. Animals in C were starved from mid L4. Animals in F were starved from mid L4 for 24 hr or from early L4 for 72 hr.

Independent replicates are overplotted with transparency. For each replicate, lines connect means, and shaded areas show interquartile ranges. Sample

sizes indicate numbers of gonadal arms. Source data are available in Figure 2—source data 1.

DOI: 10.7554/eLife.10832.004

The following source data and figure supplement are available for figure 2:

Source data 1. Counts of M-phase cells for starvation and re-feeding time courses of wildtype animals.

DOI: 10.7554/eLife.10832.005

Figure supplement 1. Comparison of numbers of M-phase cells in fed, starved, and re-fed animals.

DOI: 10.7554/eLife.10832.006
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continuously (Figure 2—figure supplement 1B, D), nor in hermaphrodites exposed to a mock star-

vation procedure (Figure 2—figure supplement 1C). In males, M-phase cells also disappeared rap-

idly in response to food removal, although the initial drop in M-phase cells was not monotonically

decreasing (Figure 2B). We conclude that in adults of both sexes, germ cells stop dividing quickly in

the absence of food.

We next investigated how germ cell division responds to re-feeding. We removed food from early

adult hermaphrodites and males, allowed animals to remain in starvation for 12 hr, then re-fed ani-

mals, and monitored the number of M-phase cells, as above. In hermaphrodites, this treatment trig-

gered a burst of M-phase cells 1.5 hr after the start of re-feeding (Figure 2D). Males showed a similar

response to re-feeding, but the burst of M-phase cells occurred 1 hr earlier (Figure 2E). In both sexes,

these bursts included some individual germlines having approximately twice as many M-phase cells as

were observed among continuously fed animals (Figure 2—figure supplement 1E, F). These results

demonstrate that in both sexes, germ cells resume mitotic division rapidly in response to re-feeding.

The faster response in males is consistent with germ cells in males having a faster cell-cycle under con-

tinuously fed conditions (Morgan et al., 2010). Further, the higher maxima of M-phase cells in re-fed

versus continuously fed animals is consistent with germ cells collecting at the G2-to-M transition dur-

ing starvation and entering M phase semi-synchronously upon re-feeding.

Cessation of M-phase entry in response to starvation coincides with
the molt into adulthood
We next extended our results to adult hermaphrodites starved from the L4 larval stage. This exten-

sion was motivated by the need to perform certain later experiments in such animals, as starvation

from L4 prolongs the amount of time that adult hermaphrodites can be maintained without food

(Angelo and Van Gilst, 2009; Seidel and Kimble, 2011). We removed food from mid-L4 hermaph-

rodites and monitored the number of cells in M phase, as above. In starved L4s, M-phase cells per-

sisted for ~4–5 hr after food removal, with the average number of M-phase cells only moderately

reduced relative to fed animals (Figure 2C). Thereafter, the number of M-phase cells declined rap-

idly, and after 10.5 hr without food, M-phase cells had virtually disappeared (Figure 2C). The disap-

pearance of M-phase cells coincided with the molt into adulthood (~5–8 hr after food removal), and

the coincidence of these events persisted even under conditions where the timing of this molt was

changed: Hermaphrodites starved from early L4 molted into adulthood ~12–20 hr after food

removal, and gonads in these animals contained, on average, 1.6 M-phase cells per progenitor zone

before the molt (n = 57, gonads collected 10.5 hr post food removal) and 0.0 M-phase cells after

the molt (n = 63, gonads collected 24 hr post food removal). These results demonstrate that germ

cells in hermaphrodites starved from L4 do not immediately stop dividing in response to food

removal, but germ cell division eventually ceases, at or near the molt into adulthood. This finding

suggests that mitotically dividing germ cells in L4s are not equivalent to those in adults, a result con-

sistent with previous studies (Crittenden et al., 2002; Dalfo et al., 2012; Gerhold et al., 2015;

Michaelson et al., 2010).

Longer starvation does not delay M-phase entry upon re-feeding
In other systems, re-entry into the mitotic cell cycle following a period of quiescence occurs more

slowly after longer periods of quiescence (Lum et al., 2005; Soprano, 1994). We therefore tested

whether longer periods of starvation would delay mitotic re-entry upon re-feeding. We repeated the

re-feeding time course in two types of animals having experienced longer starvation: Adult her-

maphrodites starved from mid-L4 for 24 hr and adult hermaphrodites starved from early L4 for

72 hr. In both types of animals, re-feeding triggered a burst of M-phase cells 1.5 hr after re-feeding

(Figure 2F), similar to the re-feeding response in animals starved for only 12 hr (compare Figure 2D

versus F) . We conclude that the timing of M-phase entry upon re-feeding is largely unaffected by

the duration of preceding starvation, at least during the first 72 hr of starvation.

During starvation, germ cells progress slowly through S phase and
arrest in G2
We next examined how starvation affects progression of germ cells through G1, S phase, and G2.

First, we monitored cell-cycle progression in fed animals. By labeling germlines with the thymidine
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analog 5-ethynyl-20-deoxyuridine (EdU) and monitoring the fraction of EdU+ M-phase cells over

time, we estimated a median cell-cycle length in fed early adult hermaphrodites of ~6.2 hr, with S

phase lasting ~4.4 hr, G2 lasting ~1.3 hr, and G1 and M phase together lasting ~30 min (Figure 3—

figure supplement 1). We also measured cell-cycle length in fed hermaphrodites aged 24-hr post

mid-L4 (~12–16 hr past the early adult stage). For this age group, we estimated a median cell-cycle

length of ~9.8 hr, with median G1, S-phase, and G2 lengths of <30 min, ~6.8 hr, and ~2.3 hr, respec-

tively, but with a long-tailed distribution of G2 lengths (Figure 3—figure supplement 1). Our esti-

mates of median cell-cycle length are within the range reported by others (Crittenden et al., 2006;

Fox et al., 2011; Jaramillo-Lambert et al., 2007; Morgan et al., 2010), and the long-tailed distribu-

tion of G2 lengths is consistent with estimates of maximal cell-cycle length being considerably longer

than estimates of median cell-cycle length (Crittenden et al., 2006; Fox et al., 2011; Jaramillo-

Lambert et al., 2007; Morgan et al., 2010).

Second, we monitored cell-cycle progression during starvation. We removed food from animals

of both sexes and, after varying amounts of time, calculated the fraction of progenitor-zone cells in

G1, S phase, and G2. S-phase cells were identified by EdU labeling, and G1 versus G2 cells were dis-

tinguished by nuclear size (see ‘Use of nuclear size to distinguish G1 versus G2 cells’ in Materials and

methods and Figure 3—figure supplement 2). The following time points were collected: Animals

starved from early adult for 3.5, 6.5, and 10.5 hr; animals starved from mid-L4 for 10.5 and 24 hr;

and animals starved from early L4 for 10.5, 24, 48, and 72 hr. For all three age groups and for both

sexes, G1 cells disappeared following food removal, and the timing of their disappearance coincided

with the disappearance of M-phase cells (Figure 3A). This result demonstrates that during starvation,

G1 cells continued to initiate S phase without a pronounced delay. Our second observation was that

for all age groups and sexes, the fraction of S-phase cells decreased over time during starvation,

and the fraction of G2 cells increased (Figure 3A). However, S-phase and G2 fractions changed

more slowly during starvation than expected from measurements of S-phase length in fed animals

(Figure 3A). (For example, in hermaphrodites starved from early adult, S-phase fractions changed

very little during the 7 hr between time points 3.5 hr and 10.5 hr [Figure 3A], indicating that pro-

gression through S phase during this time period was minimal. By contrast, cells in fed adult her-

maphrodites complete S phase in a median of ~4.4–6.8 hr [Figure 3—figure supplement 1].) We

conclude that during starvation, germ cells do not pause in G1 and instead continue through S

phase and arrest in G2. However, S-phase progression occurs much more slowly than under fed

conditions.

Re-feeding restores the rate of progression through S phase and G2
We next examined the effect of re-feeding on cell-cycle progression through S phase and G2. We

re-fed starved animals and determined the length of time until all germ cells entered M phase. This

analysis is complementary to our initial monitoring of M-phase cells (Figure 2) because our initial

monitoring allowed us to detect the earliest germ cells to enter M-phase upon re-feeding, whereas

this analysis allowed us to detect the slowest such cells. To detect M-phase entry of all cells, we

blocked M-phase exit using a temperature-sensitive mutation in emb-30, which encodes a compo-

nent of the anaphase-promoting complex (Furuta et al., 2000). emb-30(tn377ts) hermaphrodites

were starved at the permissive temperature (15˚C), then shifted to the restrictive temperature

(25˚C), and re-fed. At the time of re-feeding, germlines contained a mixture of S-phase and G2 cells

(data not shown). In response to re-feeding, germ cells entered M phase, as expected, but were

unable to complete the metaphase-to-anaphase transition, thus enabling us to quantify the accumu-

lation of M-phase cells: Two hours after re-feeding, 55% of cells, on average, had entered M phase

(n = 60 gonadal arms); after 4 hr, this number reached 99% (n = 66 gonadal arms) (Figure 4B). (This

analysis is restricted to the distal-most 50 germ cells, because germ cells located more proximally

sometimes directly entered the meiotic cell cycle upon re-feeding. See Figure 4.) Therefore, virtually

all mitotically dividing germ cells completed the remainder of S phase and G2 within 4 hr of re-feed-

ing, a time shorter than the time required to complete all of S phase and G2 in continuously fed

adult hermaphrodites (~4.4–6.8 hr for S-phase, plus ~1.3–2.3 hr for G2). Thus, not only does re-feed-

ing trigger germ cells arrested in G2 to enter M phase, but re-feeding also restores the rate of pro-

gression through S phase and earlier stages of G2.
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Figure 3. Starvation slows S-phase and causes germ cells to arrest in G2. (A) Time courses showing the proportion of progenitor-zone cells in G1, S-

phase, or G2, for animals starved from early adult or from mid or early L4. Animals starved from mid L4 were adults at the 10.5- and 24-hr time points.

Animals starved from early L4 were adults at the 24-, 48-, and 72-hr time points. n = 19–40 gonadal arms per time point. (B) Time courses showing the

number of cells in the progenitor zone, for the same gonads used in A. Within each plot, lines connect means, and shaded areas show interquartile

ranges. (C) Schematic summarizing the effect of starvation on the mitotic cell cycle of germ cells. Cell-cycle length under fed conditions was measured

in adult hermaphrodites (Figure 3—figure supplement 1). Source data are available in Figure 3—source data 1.

DOI: 10.7554/eLife.10832.007

The following source data and figure supplements are available for figure 3:

Source data 1. Counts of cells in each phase of the cell cycle for starvation time courses of wildtype animals.

DOI: 10.7554/eLife.10832.008

Source data 2. Counts of cells in each phase of the cell cycle for fed adult wildtype hermaphrodites.

DOI: 10.7554/eLife.10832.009

Source data 3. EdU labeling in fed adult wildtype hermaphrodites.

DOI: 10.7554/eLife.10832.010

Figure 3. continued on next page
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Starvation-induced quiescence does not require proximity to the
germline stem cell niche
Mitotically dividing germ cells in adults are confined to the distal gonad, where they contact a single

somatic cell—the distal tip cell (or pair of distal tip cells, in males) (Figure 1A). The distal tip cell

forms the niche for germline stem cells (Kimble and Seidel, 2013) and influences how germ cells

respond to physiological cues (Dalfo et al., 2012). We therefore tested the effect of proximity to

the distal tip cell on cell-cycle responses to food removal and re-feeding. We monitored M-phase

cells, as above, in two mutant backgrounds in which mitotically dividing germ cells fill the gonad (i.e.

germline tumors): (i) glp-1(oz112gf)/Notch gain-of-function mutants, in which constitutive GLP-1/

Notch signaling maintains all germ cells in the mitotic cell cycle (Berry et al., 1997) and (ii) gld-3

(q730) nos-3(q650) loss-of-function mutants, in which meiotic entry is inhibited irrespective of GLP-1/

Notch signaling (Byrd et al., 2014; Eckmann et al., 2004). Germ cells in both genotypes of germline

tumors responded normally to starvation and re-feeding: Outside the region normally corresponding

to the progenitor zone (i.e. outside the distal-most 20 rows of germ cells), M-phase cells disap-

peared quickly in response to food removal and re-bounded 1 to 2 hr after re-feeding (Figure 5).

These results demonstrate that proximity to the distal tip cell—the germline stem cell niche—is not

required for a normal starvation and re-feeding response. Additionally, these results refine our

understanding of the control of germ cell fate: Constitutive GLP-1/Notch signaling or combined loss

of gld-3 and nos-3 does not promote germ cell proliferation per se, but rather promotes an undiffer-

entiated fate in which cells divide only in the presence of food.

Starvation-induced quiescence maintains germline stem cells
independent of GLP-1/Notch
In multiple types of stem and progenitor cells, cell-cycle quiescence correlates with the capacity for

long-term self-renewal (Cheung and Rando, 2013; Orford and Scadden, 2008). We therefore inves-

tigated how quiescence affects the maintenance of C. elegans germline stem cells. Under fed condi-

tions, maintenance of these stem cells requires GLP-1/Notch signaling (Austin and Kimble, 1987).

The glp-1 gene, which encodes one of two Notch receptors in C. elegans, is expressed in the pro-

genitor zone, and the receptor is activated by ligands expressed in the adjacent distal tip cell

(Henderson et al., 1994; Kimble and Crittenden, 2007; Nadarajan et al., 2009). We used the tem-

perature-sensitive glp-1 allele q224ts to test whether GLP-1/Notch signaling is similarly required for

maintenance of germline stem cells under starved conditions. The q224ts allele is the strongest of all

known temperature-sensitive glp-1 alleles and behaves like a null at the restrictive temperature

(Austin and Kimble, 1987; Kodoyianni et al., 1992).

In fed animals, removal of GLP-1/Notch signaling causes germline stem cells to be lost:

Germline stem cells fail to self-renew, and instead all germ cells enter the meiotic cell cycle

(Austin and Kimble, 1987; Cinquin et al., 2010; Fox and Schedl, 2015). We tested whether the

loss of GLP-1/Notch signaling produces these same effects in starved animals. We removed food

from glp-1(q224ts) hermaphrodites at the permissive temperature (15˚C), shifted starved animals to

the restrictive temperature (25˚C) for 8 hr, and then evaluated germ cell fate. Cell fate was assessed

by staining for the meiosis-associated protein GLD-1 (Jones et al., 1996) and by scoring cells for the

‘crescent’ chromosome morphology indicative of meiotic chromosome pairing (Dernburg et al.,

1998). This morphology is readily distinguishable from the ‘non-crescent’ morphology found in

mitotic interphase. In fed controls, incubation at the restrictive temperature caused all germ cells to

enter the meiotic cell cycle: Chromosomes adopted the ‘crescent’ shape (Figure 6A), and GLD-1 lev-

els in the distal-most germ cells rose (Figure 6I). In starved animals, by contrast, meiotic entry did

not occur: 99% (n = 214) of progenitor zones retained germ cells with a interphase chromosome

Figure 3. Continued

Source data 4. Propidium iodide intensities versus nuclear volume in the progenitor zone.

DOI: 10.7554/eLife.10832.011

Figure supplement 1. Measurements of cell-cycle length in fed animals.

DOI: 10.7554/eLife.10832.012

Figure supplement 2. G1 versus G2 cells can be distinguished by nuclear size in EdU-labeled gonads.

DOI: 10.7554/eLife.10832.013
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Figure 4. Re-feeding restores the rate of progression through S phase and G2, as well as the meiotic entry of transient progenitors. (A) Images of distal

gonads dissected from emb-30(tn377ts) adult hermaphrodites and stained with DAPI to visualize DNA (magenta) and anti-GLD-1 (green). Animals were

starved at 15˚C, shifted to 25˚C, and then either re-fed or maintained in starvation. Time = 0 hr indicates the time at which re-feeding was started or

starvation continued. Top, starved adult hermaphrodite, Time = 0 hr. Middle, re-fed adult hermaphrodite, Time = 6 hr. Bottom, adult hermaphrodite

maintained in starvation, Time = 6 hr. Dashed lines, ‘crescent’/‘non-crescent’ boundaries (defined by the second distal-most ‘crescent’ cell—see

Materials and methods section). Arrowhead, an example of a metaphase-arrested cell having a high level of GLD-1. Asterisks, distal gonad ends.

Images are maximum-intensity z-projections. (B) Time course showing the proportion of cells in M-phase (among the distal-most 50 germ cells) for

emb-30(tn377ts) adult hermaphrodites treated as in A. n = 31–66 gonadal arms per time point. (C) Number of cells distal to the ‘crescent’/‘non-

crescent’ boundary for the same gonads used in B. (D) Cell-cycle behavior, among cells distal to the ‘crescent’/‘non-crescent’ boundary, for the same

gonads used in B. Cells from individual gonadal arms are plotted along lines, with color indicating cell-cycle phase (interphase or M-phase) and

location determined by each cell’s position along the distal-to-proximal axis of distal gonad. For each time point, this axis is scaled relative to the mean

number of cells distal to the ‘crescent’/‘non-crescent’ boundary. (E) Summary of the effects of re-feeding and continued starvation on germ cells in

emb-30(tn377ts) hermaphrodites in the distal versus proximal progenitor zone. Source data are available in Figure 4—source data 1.

DOI: 10.7554/eLife.10832.014

Figure 4. continued on next page
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morphology (Figure 6C), and GLD-1 levels in the distal-most germ cells remained low (n = 47 of 47

gonadal arms) (Figure 6I). Importantly, germ cells in starved animals retained the capacity for mitotic

cell division, because when starved animals were re-fed at the restrictive temperature, their germ

cells re-entered M phase (Figure 6G). Germ cells in starved animals also retained the capacity for

long-term self-renewal, because when starved animals were instead returned to the permissive tem-

perature and re-fed for 2–3 days, 91% (n = 148) of progenitor zones retained germ cells in the

mitotic cell cycle (Figure 6C). Similar results were observed when incubation at the restrictive tem-

perature was extended to 16 hr or 24 hr (Figure 6D). These results demonstrate that starved animals

maintain germline stem cells independent of GLP-1/Notch. In other words, starvation inhibits the

meiotic entry of germline stem cells, even in the absence of GLP-1/Notch. Similar to cell-cycle quies-

cence, this inhibition of meiotic entry was reversible upon re-feeding, because when starved glp-1

(q224ts) animals were re-fed at the restrictive temperature, all germ cells eventually entered the mei-

otic cell cycle (Figure 6H).

Quiescence induced by non-starvation conditions maintains germline
stem cells independent of GLP-1/Notch
To further investigate the relationship between cell-cycle quiescence and stem cell maintenance, we

asked, apart from starvation, do other conditions that inhibit germ cell division also maintain germ-

line stem cells independent of GLP-1/Notch? To answer this question, we performed temperature-

shift experiments in glp-1(q224ts) hermaphrodites under two additional conditions: High NaCl and

absence of sperm, each of which causes a twofold drop in the germ cell mitotic index

(Morgan et al., 2010; Salinas et al., 2006). Animals exposed to high NaCl (300 mM) or lacking

sperm (via loss-of-function mutation in fog-1) were grown at the permissive temperature, shifted to

the restrictive temperature for 8 hr, and then returned to the permissive temperature for 2–3 days.

Following this treatment, germ cell fate (mitotic versus meiotic) was evaluated by scoring germ cells

for the ‘crescent’ chromosome morphology indicative of meiotic prophase (described above). For

both high NaCl and absence of sperm, 48–79% (n = 129–231) of gonadal arms retained germ cells in

the mitotic cell cycle (Figure 6E–F). To control for possible pleiotropic effects of the mutation used

to eliminate sperm (q785), sperm was introduced to fog-1(q785); glp-1(q224ts) animals by mating

with wildtype males, and these animals were examined in parallel. In such animals, incubation at the

restrictive temperature caused all germ cells to enter the meiotic cell cycle (data not shown; n = 37

gonadal arms, scored immediately following incubation at the restrictive temperature). Thus, three

stress conditions that inhibit or reduce germ cell division (starvation, high NaCl, and absence of

sperm) also permitted maintenance of germline stem cells independent of GLP-1/Notch. This com-

monality suggests that cell-cycle quiescence itself is an effector of stem cell maintenance

(Figure 6J). Nonetheless, such maintenance is not simply a function of inhibiting passage through

M-phase, because stem cell maintenance in the absence of GLP-1/Notch was not permitted by cell-

cycle arrest caused by RNAi knockdown of cyclin-dependent kinase 1 (cdk-1) (Figure 6B), a result we

confirmed by visualizing formation of the synaptonemal complex (Figure 6—figure supplement 1).

Starvation inhibits the meiotic entry of transient progenitors
The results above demonstrate that starvation inhibits the meiotic entry of germline stem cells, even

in the absence of GLP-1/Notch. We therefore hypothesized that starvation might also control the

meiotic entry of transient progenitors, located in the proximal progenitor zone (Figure 1A). No

markers currently exist to distinguish transient progenitors from germline stem cells, and the bound-

ary between these pools of cells is not clear, but the two pools can be distinguished under fed con-

ditions by restricting movement of cells out of the progenitor zone (Cinquin et al., 2010). Under

such conditions, transient progenitors enter the meiotic cell cycle, whereas germline stem cells do

not (Cinquin et al., 2010). To compare meiotic entry of transient progenitors under fed versus

starved conditions, we re-fed starved animals and restricted cell movement during re-feeding; we

Figure 4. Continued

The following source data is available for figure 4:

Source data 1. Temperature-shift experiments of emb-30(tn377ts) hermaphrodites.

DOI: 10.7554/eLife.10832.015
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then compared meiotic entry after re-feeding to meiotic entry after continued starvation. Meiotic

entry was assessed by staining for GLD-1 and by scoring cells for the ‘crescent’ chromosome mor-

phology indicative of meiotic prophase (described above). Cell movement was restricted by per-

forming this experiment in emb-30(tn377ts) hermaphrodites at the restrictive temperature (25˚C), a
condition that induces metaphase arrest (also described above, under ‘Re-feeding restores the rate

of progression through S phase and G2’) (Furuta et al., 2000). emb-30(tn377ts) animals were

starved at the permissive temperature (15˚C), shifted to the restrictive temperature (25˚C), and then

re-fed for 6 hr or maintained in starvation. Our primary result from this experiment was that re-feed-

ing and continued starvation affected meiotic entry differently. After 6 hr of re-feeding, cells in the

proximal (but not distal) progenitor zone entered the meiotic cell cycle: GLD-1 levels in the proximal

half of the progenitor zone rose (Figure 4A), and the boundary between ‘crescent’ and ‘non-cres-

cent’ germ cells moved distally, such that the number of cells distal to this boundary was reduced by

about half (Figure 4C). After 6 hr of continued starvation, by contrast, very little meiotic entry was

observed: GLD-1 levels in the proximal progenitor zone remained largely unchanged (Figure 4A),

and the number of cells distal to the ‘crescent’/’non-crescent’ boundary was only slightly reduced

(Figure 4C). Our inference from these results is that the proximal half of the progenitor zone was

composed of transient progenitors at the start of re-feeding, and that 6 hr of re-feeding—but not 6

hr of continued starvation—allowed for their timely progression into the meiotic cell cycle. We con-

clude that starvation slows or blocks the meiotic entry of transient progenitors, similar to its effect

on the meiotic entry of germline stem cells.

Figure 5. Ectopic mitotic divisions outside the progenitor zone respond normally to food removal and re-feeding. Time courses showing the number of

M-phase cells—outside the distal-most 20 rows of germ cells—after food removal or re-feeding in adult glp-1(oz112gf) hermaphrodites or adult gld-3

(q730) nos-3(q650) hermaphrodites. Time zero indicates the start of food removal or re-feeding. Lines connect means, and shaded areas show

interquartile ranges. n = 50–249 gonadal arms per time point. Source data are available in Figure 5—source data 1.

DOI: 10.7554/eLife.10832.016

The following source data is available for figure 5:

Source data 1. Counts of M-phase cells for starvation and re-feeding time courses of glp-1(oz112gf) and gld-3(q730) nos-3(q650) hermaphrodites.

DOI: 10.7554/eLife.10832.017
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Figure 6. Quiescence induced by three different conditions maintains germline stem cells independent of GLP-1/Notch. (A–F) Distance between the

gonad distal tip and the first ‘crescent’ germ cell for adult hermaphrodites of the genotypes and treatments shown. Animals were grown at 15˚C,
shifted to 25˚C for 8, 16, or 24 hr, and then returned to 15˚C for 2–3 days. Gonads were collected prior to the temperature shift (15˚C), immediately

following the temperature shift (25˚C for 8 hr, 25˚C for 16 hr, or 25˚C for 24 hr), and following the 15˚C recovery period (. . . + 15˚C for 2–3 days). Data

are plotted as vertical histograms, with black circles denoting means. n = 55–488 gonadal arms per time point. (G) Time course showing the number of

M-phase cells per progenitor zone in glp-1(q224ts) hermaphrodites starved from early adult, shifted to 25˚C for 8 hr, and then re-fed at 25˚C. Lines
connect means, and shaded areas show interquartile ranges. (H) Time courses showing distance between the gonad distal tip and the first ‘crescent’

germ cell. Top, hermaphrodites starved from early adult, shifted to 25˚C for 8 hr, and then re-fed at 25˚C. Bottom, hermaphrodites fed continuously

and shifted to 25˚C at the early adult stage. Data are plotted as vertical histograms, with lines connecting means. Sample sizes in G, H indicate number

of gonadal arms. (I) Images of distal gonads dissected from adult hermaphrodites and stained with DAPI to visualize DNA (magenta) and anti-GLD-1

(green). Gonads were dissected before and after 8 hr at 25˚C. Left-hand panels, fed adult hermaphrodites. Right-hand panels, hermaphrodites starved

from early adult. Asterisks, distal gonad ends. (J) Schematic summarizing the effect of cell-cycle quiescence on germline stem cell maintenance. Under

conditions of active proliferation, GLP-1/Notch is required for germline stem cell maintenance. Under quiescent conditions, GLP-1/Notch is

dispensable. Source data for A–F are available in Figure 6—source data 1. Source data for G, H are available in Figure 6—source data 2.

DOI: 10.7554/eLife.10832.018

Figure 6. continued on next page
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Starvation-induced quiescence is distinct from cell-cycle arrest induced
by DNA damage
As a first step towards understanding the regulation of cell-cycle quiescence induced by starvation,

we compared this quiescence to cell-cycle arrest caused by DNA damage, another perturbation

causing G2 arrest (Gartner et al., 2000; Kuntz and O’Connell, 2009). Following three criteria, star-

vation-induced quiescence was distinct from cell-cycle arrest caused by DNA damage. First, DNA

damage strongly up-regulates inhibitory phosphorylation of CDK-1 (Figure 7A; Figure 7—figure

supplement 1; Craig et al., 2012). By contrast, starvation-induced quiescence did not up-regulate

this phosphorylation (Figure 7A). Second, DNA damage causes germ cell nuclei to enlarge

(Figure 7A; Gartner et al., 2000), a phenotype replicated by RNAi knockdown of cdk-1

(Jeong et al., 2011). By contrast, starvation-induced quiescence did not cause nuclei to enlarge

(Figure 7A). Third, cell-cycle arrest in response to DNA damage requires the p53 homolog cep-1

(Derry et al., 2007). By contrast, starvation-induced quiescence did not require cep-1 (Figure 7B).

We conclude that starvation and DNA damage induce cell-cycle arrest differently.

Starvation-induced quiescence does not require factors affecting larval
and behavioral responses to food
As a second step towards understanding the regulation of starvation-induced quiescence, we tested

whether this quiescence requires factors influencing the larval germline’s response to food

(Dalfo et al., 2012; Michaelson et al., 2010), including factors controlling germ cell quiescence dur-

ing the two larval diapause states—L1 diapause (Fukuyama et al., 2006; Fukuyama et al., 2012)

and the mid-larval dauer diapause (Narbonne and Roy, 2006). Food was removed from early adult

hermaphrodites homozygous for mutations in the transforming growth factor beta (TGF-b) pathway,

the insulin/insulin-like growth factor 1 (IGF-1) pathway, or the AMP-activated protein kinase (AMPK)

pathway. M-phase cells were then monitored after food removal. Additionally, to test for a require-

ment for factors affecting behavioral responses to food, this same experiment was performed in ani-

mals defective for neuropeptide processing, neuropeptide secretion, or chemosensation, as well as

in animals exposed to exogenous serotonin, which in some contexts acts as a food signal

(Luedtke et al., 2010). In all experiments, M-phase cells disappeared quickly in response to food

removal (Figure 7B). We conclude that each of the genes tested is not individually required for star-

vation-induced quiescence in adult germ cells; likewise, quiescence is not affected by exogenous

serotonin. These findings suggest that quiescence in adults is controlled differently than cell-cycle

responses in the larval germline and is largely independent of behavioral responses to food. These

results are consistent with adult versus larval germ cells responding to food removal differently

(Figure 2A versus C) and with reduced insulin/IGF-1 signaling or TGF-b signaling not affecting the

germ cell mitotic index in fed adult hermaphrodites (Dalfo et al., 2012; Michaelson et al., 2010).

Similarly, these results are consistent with no requirement for daf-16/FOXO in reducing the prolifera-

tion of Drosophila germline stem cells in response to poor diet (Hsu et al., 2008).

Discussion
This work establishes the adult germline of C. elegans as a model of facultative stem cell quiescence

in vivo and demonstrates that cell-cycle quiescence can maintain the stem cell fate, independent of

a key signaling pathway otherwise required for this fate. Briefly, we find that in the absence of food,

adult germ cells in C. elegans stop dividing and become quiescent (Figure 8). This quiescence is

characterized by a slowing of S phase and a block to M-phase entry, such that cells arrest in the G2

Figure 6. Continued

The following source data and figure supplement are available for figure 6:

Source data 1. Temperature-shift experiments of glp-1(q224) hermaphrodites.

DOI: 10.7554/eLife.10832.019

Source data 2. Time courses of temperature-shifted glp-1(q224) hermaphrodites.

DOI: 10.7554/eLife.10832.020

Figure supplement 1. Cell-cycle arrest caused by cdk-1 RNAi does not maintain germline stem cells in the absence of GLP-1/Notch.

DOI: 10.7554/eLife.10832.021
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phase of the cell cycle. Further, this quiescence maintains germline stem cells independent of GLP-

1/Notch, a signal required for stem cell maintenance under conditions of active proliferation. Re-

feeding causes germ cells to exit quiescence rapidly, and a requirement for GLP-1/Notch signaling

similarly resumes.

Figure 7. Starvation-induced quiescence is distinct from the DNA damage response and does not require factors involved in larval or behavioral

responses to food. (A) Images of distal gonads dissected from adult hermaphrodites and stained with DAPI to visualize DNA (magenta) and anti-

phosopho-CDK-1 (green, Santa Cruz #sc-28435-R) to visualize inhibitory phosphorylation of CDK-1. The phospho-specificity of anti-phosopho-CDK-1 is

shown in Figure 7—figure supplement 1. Top row, fed adult hermaphrodite. Center row, adult hermaphrodite starved from early adult for 8 hr.

Bottom row, fed adult hermaphrodite treated with UV light to induce DNA damage. Asterisks, distal gonad ends. Arrowheads, example of an enlarged

nucleus having elevated phospho-CDK-1. Similar results were observed using a different phospho-CDK-1 antibody (Calbiochem #219440, data not

shown). (B) Time courses showing the mean number of M-phase cells per progenitor zone after food removal for hermaphrodites of the genotypes

shown. Animals were starved from early adult. Grey curves represent seven replicates of wild type, reproduced from Figure 2A. Time zero indicates the

start of food removal. Lower right corner, wildtype hermaphrodites exposed to 20 mM serotonin at the onset of food removal (0 hr) or 3 hr later. n =

46–452 gonadal arms per time point. Source data are available in Figure 7—source data 1.

DOI: 10.7554/eLife.10832.022

The following source data and figure supplement are available for figure 7:

Source data 1. Starvation time courses of mutants and of wildtype hermaphrodites exposed to exogenous serotonin.

DOI: 10.7554/eLife.10832.023

Figure supplement 1. Validation of phospho-specificity of anti-phosopho-CDK-1.

DOI: 10.7554/eLife.10832.024
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Cell-cycle quiescence promotes stem cell maintenance
Cell-cycle quiescence was once thought to be a near universal feature of stem cells in adult tissues

(Hall and Watt, 1989; Potten and Loeffler, 1990). This view arose from the theory that biological

systems ought to protect stem cells from the risks of DNA replication and led to the notion of quies-

cence as an inherent property of the stem cell fate. According to this model, tissues were maintained

by a hierarchy of relatively quiescent master stem cells and their faster cycling but short-lived daugh-

ters. In recent years, however, work in several mammalian and invertebrate tissues has shown that

quiescence is not a prerequisite for the stem cell fate (Barker et al., 2010a; Crittenden et al., 2006;

Doupe and Jones, 2013; Fuchs, 2009; Maciejowski et al., 2006; Simons and Clevers, 2011).

Some types of stem cells do not exhibit quiescence under conditions assayed (e.g. Barker et al.,

2010b; de Navascues et al., 2012; Snippert et al., 2010), and still others vary their cell-cycle length

in accordance with the physiological circumstances surrounding them (e.g. Harrison and Lerner,

1991; Hartman et al., 2013; Lugert et al., 2010; Qiao et al., 2007). Nevertheless, genetic or envi-

ronmental perturbations that impact the cell cycle can also affect stemness (Orford and Scadden,

2008; Pietras et al., 2011; Yilmaz et al., 2012). Thus, a long-standing question in the field of stem

cell biology has remained: Does cell-cycle quiescence play a role in maintaining the stem cell fate?

Our results answer this question by showing that quiescence itself alters the genetic requirements

for stemness: Actively dividing germline stem cells in C. elegans require GLP-1/Notch signaling for

their maintenance (Austin and Kimble, 1987); we find that cell-cycle quiescence—induced by starva-

tion, high NaCl, or absence of sperm—relieves this requirement (Figure 6J). Thus, cell-cycle quies-

cence maintains germline stem cells independent of the signal required for such maintenance under

conditions of active proliferation.

The molecular mechanisms maintaining stem cells during periods of cell-cycle quiescence remain

to be determined. Acting downstream of GLP-1/Notch signaling to maintain germline stem cells are

the PUF-family translational repressors FBF-1 and FBF-2 (Crittenden et al., 2002) and the proteins

of unknown molecular function LST-1 and SYGL-1 (Kershner et al., 2014). Quiescence might stabi-

lize these stem cell regulators—for example, by inhibiting the protein degradation machinery linked

to the cell-cycle. Alternatively, quiescence might substitute for the repressive effects of FBF-1 and

FBF-2 by repressing translation on a global level. Global repression of translation is a conserved

stress response (Spriggs et al., 2010), and the stress of starvation represses translation of at least a

few genes in C. elegans (Lascarez-Lagunas et al., 2014). Another possibility is that stem cell mainte-

nance might be regulated by a metabolite or metabolic process whose levels change during

Figure 8. Summary of the effects of starvation on germ cell division, stem cell maintenance, and meiotic entry.

Under fed conditions, mitotic cell divisions occur throughout the progenitor zone (Crittenden et al., 2006;

Maciejowski et al., 2006); GLP-1/Notch is required for stem cell maintenance (Austin and Kimble, 1987); and

transient progenitors enter the meiotic cell cycle if their movement out of the progenitor zone is restricted

(Cinquin et al., 2010). Under starved conditions, germ cells become quiescent; GLP-1/Notch is dispensable for

stem cell maintenance; and the meiotic entry of transient progenitors is slowed or blocked.

DOI: 10.7554/eLife.10832.025

Seidel and Kimble. eLife 2015;4:e10832. DOI: 10.7554/eLife.10832 15 of 28

Research article Cell biology Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.10832.025
http://dx.doi.org/10.7554/eLife.10832


quiescence. Such connections between metabolism and developmental processes have been

observed in a variety of vertebrate and invertebrate cell types (Agathocleous and Harris, 2013).

Control of the G2-to-M transition by nutrients or growth factors may
be a broadly conserved feature of the eukaryotic cell cycle
We find that adult germ cells in C. elegans do not arrest in G1 during starvation but instead progress

slowly through S phase and arrest in G2. Most eukaryotic cells can transiently pause in G2 in

response to DNA damage or microtubule disassembly (Rieder, 2011), but the G2-to-M transition

has not been viewed as a point of cell-cycle control in response to growth factors or nutrients,

largely because early studies in mammalian tissue culture showed that cell-cycle events in fibroblasts

become independent of extracellular cues after entry into S phase (Pardee, 1989). Despite this

view, the G2-to-M transition is emerging as the primary point of cell-cycle control in C. elegans

germ cells, and the G2-to-M transition also responds to growth factors or nutrients in other systems.

C. elegans germ cells arrest in G2 during embryonic development (Fukuyama et al., 2006) and

two larval diapause states—L1 diapause (Fukuyama et al., 2006) and dauer (Narbonne and Roy,

2006). Our results show that G2 arrest also occurs in starved adults (Figure 3C), and that the length

of G2 can vary more than eightfold even under well-fed conditions (Figure 3—figure supplement

1). At the same time, G1 is very short (Fox et al., 2011, Figure 3—figure supplement 1), and cyclin

E/cyclin-dependent kinase 2, which drives the G1-to-S transition (Orford and Scadden, 2008), is

active throughout the cell cycle (Fox et al., 2011). These observations support a model of cell-cycle

control in C. elegans germ cells in which regulation in response to extracellular cues relies on the

G2-to-M transition.

G2 arrest in response to nutrient limitation has also been observed for fission yeast

(Costello et al., 1986), budding yeast (Laporte et al., 2011), and Tetrahymena (Cameron and Bols,

1975). Moreover, the G2-to-M transition is a point of cell-cycle control in response to poor nutrient

conditions in germline stem cells of Drosophila (Hsu et al., 2008; LaFever et al., 2010; Roth et al.,

2012). Even under replete conditions, germline stem cells in Drosophila are thought to be paused in

G2 (Morris and Spradling, 2011), as are a substantial fraction of Drosophila intestinal stem cells

(Zielke et al., 2016). In mammals, cells can pause in G2 for prolonged periods of time before divid-

ing in response to various stimuli (e.g. wounding, hormones) (reviewed in Gelfant, 1977). Such paus-

ing in mammals has not been the subject of recent investigation, although the G2-to-M transition is

known to be regulated by the growth factor IGF-1—for example, in mammalian uterine cells

(Adesanya et al., 1999), oligodendrocyte progenitors (Frederick and Wood, 2004; Min et al.,

2012), spermatogonial stem cells (Wang et al., 2015), and multiple myeloma cells

(Stromberg et al., 2006). Proper timing of the G2-to-M transition is also essential during develop-

ment (reviewed in Bouldin and Kimelman, 2014), with some populations of cells naturally held in

G2 in both Drosophila and zebrafish (e.g. Bouldin et al., 2014; Usai and Kimura, 1992). Thus, the

control of the G2-to-M transition by growth factors or nutrients may be a conserved feature of the

eukaryotic cell cycle.

C. elegans germline is a model for tissue plasticity and facultative stem
cell quiescence
Tissues in adult organisms can be remarkably plastic in their ability to shrink and re-grow in response

to changing physiological demands (e.g. Bergtold, 1926; Secor and Diamond, 1998). Such plastic-

ity requires broad flexibility in a range of cellular behaviors, yet our understanding of tissue plasticity

on a cellular level is limited, primarily because tractable models of tissue plasticity are only now

being developed (e.g. O’Brien et al., 2011). The C. elegans germline presents such a model. This

tissue undergoes dramatic shrinkage in adult hermaphrodites starved from the L4 larval stage, and

such shrinkage is reversible upon re-feeding (Angelo and Van Gilst, 2009; Seidel and Kimble,

2011). Previous studies showed that germline shrinkage occurs in part through programmed cell

death and oogenesis (Angelo and Van Gilst, 2009; Seidel and Kimble, 2011). This work establishes

facultative stem cell quiescence as a third major force: Because germ cells stop dividing during star-

vation, cells lost to cell death and oogenesis are not replaced, thus causing the germline tissue to

shrink. Quiescence also contributes to re-growth during re-feeding by ensuring that germ cells are

able to re-enter the cell cycle rapidly in response to food. Rapid exit from quiescence is a
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characteristic shared by analogous re-feeding responses in other animals, at least in the handful of

examples where such responses have been examined at short time scales—for example, in the ovary

of protein-limited Drosophila (Hartman et al., 2013; Jouandin et al., 2014), in the gut of fasted

rats, squirrels, and chicks (Aldewachi et al., 1975; Cameron and Cleffmann, 1964; Hagemann and

Stragand, 1977; Kruman et al., 1988), and in the retina of yolk-deprived frog embryos (Love et al.,

2014). These observations stand in contrast to the comparatively longer times required for exit from

quiescence in mammalian tissue culture (Lum et al., 2005; Pardee, 1974; Soprano, 1994;

Zetterberg and Larsson, 1985) and suggest that in vivo models of quiescence may uncover new

mechanisms of cell-cycle control.

Materials and methods

Strains
N2, CB4856 (Hodgkin and Doniach, 1997), TJ1 cep-1(gk138) I (Consortium, 2012), TG38 aak-2

(gt33) X (Lee et al., 2008), RB754 aak-2(ok524) X (Narbonne and Roy, 2006), JK5399 aak-1

(tm1944) III; aak-2(ok524) X (Fukuyama et al., 2012), MR507 aak-2(rr48) X (Narbonne and Roy,

2006), JK326 par-4(it57ts) V (Watts et al., 2000), GR1310 akt-1(mg144gf) V (Paradis and Ruvkun,

1998), CF1038 daf-16(mu86) I (Lin et al., 1997), NS3227 daf-18(nr2037) IV (Mihaylova et al., 1999),

RB712 daf-18(ok480) IV (Fukuyama et al., 2006), JK5011 daf-3(e1376) X (Patterson et al., 1997),

JK4971 daf-5(e1386) II (da Graca et al., 2004), IK130 pkc-1(nj3) V (Sieburth et al., 2007), CB169

unc-31(e169) IV (Speese et al., 2007), KP2018 egl-21(n476) IV (Husson et al., 2007), MT1241 egl-21

(n611) IV (Husson et al., 2007), VC461 egl-3(gk238) V (Husson et al., 2006), VC671 egl-3(ok979) V

(Husson et al., 2006), JK4963 bbs-5(gk507) III (Lee et al., 2011), JK4962 bbs-5(gk537) III (Lee et al.,

2011), JK4960 bbs-8(nx77) V (Blacque et al., 2004), JK4964 bbs-9(gk471) III (Chen et al., 2006),

JK4970 tom-1(ok285) I (Gracheva et al., 2006), CB1377 daf-6(e1377) X (Perens and Shaham,

2005), BS860 unc-32(e189) glp-1(oz112gf)/dpy-19(e1259) glp-1(q172) III (Berry et al., 1997), JK3182

gld-3(q730) nos-3(q650)/mIn1[mIs14 dpy-10(e128)] II (Eckmann et al., 2004), JK5098 fog-1(q785) I/

hT2[qIs48](I;III); glp-1(q224ts) III/hT2[qIs48](I;III) (Morgan et al., 2010), JK5336 weSi2[Pmex-5::gfp::

his-58::tbb-2 3’ UTR; Cbr-unc-119(+)] II; emb-30(tn377ts) III (Furuta et al., 2000), JK4605 glp-1

(q224ts) III (Kodoyianni et al., 1992)

Worm maintenance, synchronization, and staging
Unless otherwise noted, worms were maintained on nematode growth media spotted with Escheri-

chia coli OP50 at 20˚C. Nematode growth media contained 3 g/L NaCl, 2.5 g/L peptone, 20 g/L

agar, 25 ml/L 1 M potassium phosphate buffer (1 M K2HPO4 mixed with 1 M KH2PO4 to reach a pH

of 6.0), 1 mM CaCl2, 1 mM MgSO4, 5 mg/ml cholesterol, and 2 mg/ml uracil. Worms were synchro-

nized by bleaching gravid hermaphrodites for 5–8 min in a 1:2:12 solution of 5 M NaOH: household

bleach: M9 (3 g/L KH2PO4, 6 g/L NaHPO4, 5 g/L NaCl, and 1 mM MgS04). Embryos were allowed to

hatch overnight in M9 in an aerated flask, with shaking at ~170 rpm. L1 larvae were then plated onto

10-cm plates, at a density of ~1000 per plate, and grown to the appropriate developmental stage.

We staged animals as ‘early adult’ when hermaphrodites had molted into adulthood and recently

begun to ovulate, with most hermaphrodites containing one or two embryos in utero, but with some

hermaphrodites containing zero embryos or up to four embryos. Animals with germline tumors (and

therefore no ovulation) were staged according to the ovulation status of their non-tumorous siblings.

At 20˚C, early adulthood was reached ~48–52 hr after L1 feeding. For staging of L4 animals, we

examined the extent to which the hermaphrodite gonad had migrated from the loop towards the

vulva. We define populations as ‘early L4’ when the gonad had migrated ~1/4 of this distance and

‘mid-L4’ when the gonad had migrated ~1/2–3/4 of this distance. Males were staged according their

hermaphrodite siblings.

Food removal and re-feeding
Food was removed by gently washing animals from plates with M9, pelleting animals by spinning at

100–200g for ~1 min, and then washing animals 3–6 additional times with M9, using 15 ml M9 per

wash per 1000–3000 animals. Animals were then deposited onto unseeded 10-cm plates and gently

spread across plates such that all liquid was absorbed into the plate within 5 min. Media for
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starvation plates contained 3 g/L NaCl, 25 g/L agar, 25 ml/L 1 M potassium phosphate buffer (see

above), 1 mM CACL2, 1 mM MgSO4, and 5 mg/ml cholesterol. This starvation procedure lasted ~10–

15 min from start to finish, with time zero being the moment at which M9 was first added to the bac-

terially seeded plates. Mock food removal was performed in the same manner, except that animals

were washed in M9 + ~0.5% OP50 and deposited onto bacterially seeded plates. In most experi-

ments, animals were starved at densities of 500–1000 animals per 10-cm plate. Exceptions were star-

vations beginning from L4, in which animals were starved at densities of 2000–3000 per 10-cm plate,

and experiments requiring that animals be hand-picked, in which animals were starved at densities

of <500 per 10-cm plate.

Re-feeding was performed by washing animals from starvation plates with M9 + ~0.5% OP50,

spinning at 100–200g for ~1 min to pellet animals, and then depositing animals onto 10-cm nema-

tode growth media plates seeded with OP50. Animals were spread across the plate such that all liq-

uid was absorbed into the plate within 5 min.

Genotypes requiring non-standard growth conditions
glp-1(q224ts) and fog-1(q785); glp-1(q224ts): Animals were grown at 15˚C. All plates and M9 solu-

tions used to handle animals were pre-equilibrated to 15˚C. Animals were synchronized as described

above, but the bleaching protocol was modified, as follows, because glp-1(q224) embryos are

bleach-sensitive. Gravid hermaphrodites were incubated in bleaching solution for ~1 min to kill the

adult hermaphrodites but allow their carcasses to remain intact. Embryo-containing carcasses were

incubated at 15˚C for 4–8 hr. Carcasses were then bleached again, for 3–4 min, to liberate embryos.

Hatching of L1s in M9 and was performed at 15˚C and extended to 36–40 hr, to account for longer

embryonic development times at 15˚C. At 15˚C, animals reached the early adult stage ~90–96 hr

after L1 feeding.

par-4(it57ts): Animals were grown at 15˚C until the L3 stage, and then shifted to 25˚C until ani-

mals reached early adult. The par-4(it57ts) starvation time course was performed at 25˚C.
aak-1(tm1944); aak-2(ok524): Animals were grown at 15˚C until the early L4 stage, and then trans-

ferred to 20˚C until animals reached early adult. Growth at 15˚C was used because aak-1(tm1944);

aak-2(ok524) animals grown at 20˚C showed high sterility. Additionally, an alternate synchronization

protocol was used because hatching of aak-1(tm1944); aak-2(ok524) L1s in M9 causes sterility

(Fukuyama et al., 2012). Early adults were bleached according to the protocol described for glp-1

(q224ts), and embryos were deposited directly onto food.

emb-30(tn377ts): Animals were grown at 15˚C prior to temperature shifts.

Antibody and DAPI staining
Gonads were dissected in M9 + 0.1% Tween-20 + 0.25 mM levamisole. For GLD-1 and phospho-his-

tone H3 staining, gonads were fixed in PBS + 3% paraformaldehyde + 0.1% Tween-20 (PBSTween)

for 30 min, followed by �20˚C methanol for 15 min (anti-GLD-1 and anti-HIM-3) or �15 min (anti-

phospho-histone H3). For phospho-CDK-1 staining, gonads were fixed in PBSTween + 3.7% formal-

dehyde for 10 min, followed by �20˚C methanol for 5 min. Gonads were blocked for 30 min at

room temperature in PBSTween + 3–5% normal donkey serum (anti-GLD-1 and anti-phospho-CDK-

1) or 1–3% bovine serum albumin (anti-HIM-3 and phospho-histone H3). Incubations with primary

antibodies were performed overnight at 4˚C, with antibodies diluted in blocking solution. Dilutions

were as follows: mouse anti-phospho-histone H3 (Cell Signaling Technology, Danvers, MA, #9706),

1/150; rabbit anti-GLD-1 (Cinquin et al., 2010), 1/100; rabbit anti-HIM-3 (Novus

Biologicals, Littleton, CO, #53470002), 1/200; rabbit anti-phospho-CDK-1 Thr14/Tyr15 (Santa

Cruz, Dallas, Texas, #sc-28435-R) (Rahman et al., 2014), 1/200; rabbit anti-phospho-CDK-1 Tyr15

(Calbiochem, San Diego, CA, #219440) (Hachet et al., 2007), 1/100. Incubations with secondary

antibodies were performed for 1–2 hr at room temperature, using Cy-3 donkey anti-mouse (Jackson

ImmunoResearch, Westgrove, PA, #715-165-151) or Cy-3 donkey anti-rabbit (Jackson ImmunoRe-

search #711-165-152), diluted 1/1000. Gonads were mounted in Vectashield containing DAPI (Vector

Labs, Burlingame, CA, #H-1200). For DAPI staining in the absence of antibody staining, gonads were

fixed as for phospho-histone H3 staining, and then mounted in Vectashield containing DAPI.

To test the phospho-specificity of anti-phospho-CDK-1, gonads were dissected and fixed, as

above. After fixation, gonads were treated with 20 U/ml Lambda protein phosphatase (NEB, Ipswich,
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MA, #P0753S) in protein metallophosphatase buffer (50 mM HEPES, pH 7.5, 100 mM NaCl, 2 mM

DTT, 0.01% Brij 35, and 1 mM MnCl2) for 1 hr at 30˚C Control gonads were treated the same, but

Lambda protein phosphatase was omitted from the reaction. Gonads were blocked and stained with

anti-phospho-CDK-1 as above.

Imaging
Unless otherwise noted, images were obtained on a Leica SP8. In all experiments, identical imaging

conditions and brightness adjustments were used across samples.

Counting M-phase cells
Unless otherwise noted, M-phase cells were scored by examining gonads for phospho-histone H3+

cells at 63� magnification. In all experiments, a subset of gonads was examined via DAPI staining to

confirm the correspondence between phospho-histone H3+ cells and mitotic figures. In germline

tumors, M-phase cells occurring in the distal-most 20 rows of germ cells (i.e. the region correspond-

ing to the progenitor zone in wildtype gonads) were excluded from analysis. Additionally, we

excluded germline tumors with patches of differentiation (as assessed by DAPI staining), which

sometimes occurred in glp-1(oz112gf) animals.

EdU labeling
EdU labeling was performed by soaking or by feeding. Soaking was used for starvation time courses

(Figure 3A) and for testing whether G1 versus G2 cells could be distinguished by nuclear size (Fig-

ure 3—figure supplement 2). Feeding was used for measuring cell-cycle length in fed animals (Fig-

ure 3—figure supplement 1). For the soaking procedure, animals were incubated with rocking in

M9 + 0.1% Tween-20 + 1 mM EdU for 15 min at room temperature. Gonads were dissected as for

antibody staining and fixed in 3% paraformaldehyde in PBSTween for 30 min, followed by �20˚C
methanol for �15 min. Gonads were blocked in PBSTween + 3% bovine serum albumin for 30 min at

room temperature. Click-iT reactions were performed using the Click-iT EdU Alexa Fluor 488 Imag-

ing Kit (Invitrogen, Carlsbad, CA, #C10337), according to the manufacturer’s instructions, except

that two back-to-back half reactions of 250 ml volume were performed. Gonads were mounted in

Vectashield containing DAPI.

EdU labeling by feeding was performed similar to previous studies (Crittenden et al., 2006;

Fox et al., 2011; Morgan et al., 2010). E. coli strain MG1693 was grown overnight at 37˚C in M9

minimal media (3 g/L KH2PO4, 6 g/L Na2HPO4, 0.5 g/L NaCl, 1 g/L NH4Cl, 2 mM MgSO4, 0.1 mM

CaCl2, 0.4% glucose, and 1 mg/ml thiamin) supplemented with 5 mg/ml thymine. This culture was

diluted 1:50 in M9 minimal media supplemented with 0.5 mM thymidine and 20 mM EdU and grown

for 32 hr at 37˚C. Cells were re-suspended in ~1/100th of their original volume in M9, and then

spread onto 6-cm plates, using 100 ml of E. coli solution per plate. Plate media was identical to stan-

dard nematode growth media except that 60 mg/ml carbenicillin was added, peptone was omitted,

and agar was exchanged for 12 g/L agar + 6 g/L agarose. Plates were seeded 1 day prior to adding

worms. Worms were transferred to plates for the required period of time, and then gonads were dis-

sected and processed as above.

Propidium iodide staining and its quantification
EdU-labeled gonads were stained with propidium iodide to measure DNA content and to allow for

simultaneous imaging of Alexa Fluor 488 and DNA. Propidium iodide staining was performed by

adding two steps to the aforementioned EdU-labeling protocol. First, prior to the blocking step,

gonads were incubated in PBSTween + 20 mg/ml RNase A for 1 hr at 37˚C. Second, after the Click-iT

reaction, gonads were incubated for 30 min at room temperature in PBSTween + 50 mg/ml propi-

dium iodide.

To quantify propidium iodide staining, gonads were imaged at 63� magnification on a Zeiss

LSM510 laser-scanning confocal microscope, with a z-stack interval of 0.37–0.39 mm. Pixel intensity

per nucleus was calculated as the summation of all pixel intensities within a best-fit cylinder whose

height matched the height of the focal nucleus in the z-dimension and whose cross-sectional diame-

ter matched the largest dimension of the focal nucleus in the x–y dimension. Cylinders were defined

manually by drawing circles around nuclei in ImageJ. This quantification method is undeniably crude
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because cylinders often included portions of neighboring nuclei. Nevertheless, this method allowed

us to distinguish non-S-phase cells as having a DNA content less than S-phase cells (G1) or a DNA

content greater than S-phase cells (G2) (Figure 3—figure supplement 2).

Use of nuclear size to distinguish G1 versus G2 cells
Cells were classified as G1, S-phase, or G2 by a combination of EdU labeling (to mark S-phase cells)

and nuclear size. This method has not been used previously—although others have noted a correla-

tion between cell-cycle stage and nuclei size (Chiang et al., 2015; Fukuyama et al., 2006;

Lawrence et al., 2015)—and we justify its use here. In pilot experiments involving EdU labeling and

DNA quantification, we noticed a correlation between cell-cycle stage and nuclear size: G1 and early

S-phase nuclei were small, G2 and late S-phase nuclei were large, and mid S-phase nuclei were inter-

mediate in size (Figure 3—figure supplement 2). Additionally, G1 nuclei nearly always occurred in

pairs, consistent with G1 being very short (Fox et al., 2011). The size difference between G1 and G2

nuclei was large enough that in EdU-labeled gonads, G1 and G2 nuclei could be distinguished by

eye (n > 100 nuclei, from a total of seven progenitor zones). To test the accuracy of this method

more thoroughly, we obtained z-stack images of EdU-labeled, propidium iodide-stained progenitor

zones from three fed early adult hermaphrodites and three hermaphrodites starved from early adult

for 3.5 hr. We first classified each cell as S-phase (EdU+), G1 (EdU� and having a nuclear size equal

to or smaller than the smallest EdU+ cells), or G2 (EdU� and having a nuclear size equal to or larger

than the largest EdU+ cells). We then quantified propidium iodide staining (a measure of DNA con-

tent) and compared our ‘by size’ classification to the classification given by propidium iodide staining

(Figure 3—figure supplement 2). For all cells in all six progenitor zones, the two classification sys-

tems matched perfectly (Figure 3—figure supplement 2). We therefore used the ‘by size’ classifica-

tion system for counting G1, S-phase, and G2 cells throughout.

Counting G1, S-phase, and G2 cells
EdU-labeled progenitor zones were imaged at 63� magnification with a z-stack interval of 1 mm.

Cells were counted as belonging to the progenitor zone if they had an interphase or M-phase chro-

mosome morphology and if their midpoint was located distal to a cross-sectional line drawn through

the midpoint of the second most distal ‘crescent’ cell (i.e. the second most distal meiotic prophase

cell). Progenitor-zone cells were classified as G1 (EdU� and nuclear size equal to or smaller than the

smallest EdU+ cells), S-phase (EdU+), G2 (EdU� and nuclear size equal to or larger than the largest

EdU+ cells), or M-phase (mitotic figures). Classifications were recorded using the Cell Counter plug-

in for ImageJ (http://rsb.info.nih.gov/ij/plugins/cell-counter.html), by marking each cell in all z-slices

in which it was observed. A custom R script was then used to identify marks belonging to the same

cell.

Measuring cell-cycle parameters in fed animals
Cell-cycle parameters in fed animals were determined by first measuring the length of G2. G2 was

measured by labeling animals with EdU (via feeding) and calculating the fraction of M-phase cells

(mitotic figures) that were EdU+ over time (equation 1). Next, the length of G2 was combined with

the G2 index to calculate the total length of the cell cycle (equation 2). The lengths of G1, S-phase,

and M-phase were calculated by multiplying the total length of the cell cycle by the G1, S-phase, or

M-phase indices (equations 3–5). Calculations of the maximum total length of the cell cycle depend

on assumptions about covariance between the length of G2 and the length of M + G1 + S. If cells

having a longer G2 are assumed to have a proportionally longer M + G1 + S, then the maximum

length of the cell cycle for 95% or 100% of cells is given by equation 6. If cells having a longer G2

are not assumed to have a proportionally longer M + G1 + S, then the maximum length of the

cell cycle for 95% or 100% of cells is given by equation 7. We performed both calculations.

1. Median length of G2 = Time at which 50% of M-phase cells were EdU+.
2. Median total length of cell cycle = Median length of G2/G2 index.
3. Median length of G1 = Median total length of cell cycle * G1 index.
4. Median length of S-phase = Median total length of cell cycle * S-phase index.
5. Median length of M-phase = Median total length of cell cycle * M-phase index.
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6. Maximum total length of cell cycle for 95% or 100% of cells = Time at which 95% or 100% of
M-phase cells were EdU+/G2 index.

7. Maximum total length of cell cycle for 95% or 100% of cells = Median total length of cell-cycle
* (M + G1 + S index) + time at which 95% or 100% of M-phase cells were EdU+.

Cell-cycle length in fed animals was measured in early adult hermaphrodites and in adult her-

maphrodites aged 24 hr post mid-L4. For calculations involving early adults, indices for each cell-

cycle phase were derived from the 0-hr time point of the time course in Figure 3. For calculations

involving animals aged 24 hr post mid-L4, indices were derived from the 0.5-hr time point of the

time course in Figure 3—figure supplement 1, for consistency with Fox et al. (2011).

Measuring distance from the gonad distal tip to the first ‘crescent’
germ cell
Gonads were stained with DAPI and examined at 63� magnification. In a central focal plane, one

edge of the gonad was chosen at random, and the distal-most ‘crescent’ germ cell along that edge

was identified. The number of germ cells (along the gonad edge) between this first ‘crescent’ cell

and the distal tip of the gonad was counted.

UV treatment
L4 hermaphrodites close to the adult molt were transferred to an unseeded plate and exposed to

100 J/m2 of 254 nm UV light in Spectrolinker XL-1000 UV Crosslinker. Animals were immediately

returned to food and incubated for 8 hr at 20˚C before dissection. Animals were adults at the time

of dissection.

Serotonin exposure
Serotonin creatinine sulfate was dissolved in M9 to a concentration of 50 mg/ml. This solution was

spread onto starvation plates to a final concentration of 20 mM serotonin. Plates were incubated for

at least 1 hr before worms were added. To expose animals to serotonin at the onset of starvation,

animals were deposited directly onto serotonin plates after food removal. To expose animals to

serotonin after 3 hr of starvation, animals were starved for 3 hr on standard starvation plates and

then were transferred to serotonin plates via washing in M9 + 0.01% Tween-20.

cdk-1 RNAi
RNAi was performed by feeding. A cdk-1 RNAi clone and the empty RNAi vector (L440) were

obtained from the Ahringer library (Kamath and Ahringer, 2003) and grown overnight at 37˚C in

liquid Luria Broth + 60 mg/ml carbenicillin + 10 mg/ml tetracycline. Cells were concentrated fivefold,

and then spotted onto plates containing nematode growth media supplemented with 60 mg/ml car-

benicillin, 10 mg/ml tetracycline, and 1 mM IPTG. Plates were spotted 1 day before adding worms.

Temperature shifts
Temperature shifts were performed by transferring plates of worms from 15˚C to 25˚C or the

reverse. To expedite equilibration of plates to the new temperature, plates were buried in a single

layer within a 5 � 7 � 13 inch box full of unseeded plates pre-equilibrated at the new temperature.

For temperature shifts of fed glp-1(q224ts) animals, fed early adult hermaphrodites were shifted

to 25˚C. Gonads were dissected every 30–60 min after the shift (for Figure 6H) or after 8 hr (for

Figure 6A, I). Alternately, animals were maintained at 25˚C for 8 hr, then returned to 15˚C for 2–3

days (Figure 6A).

For temperature shifts of cdk-1 RNAi-treated animals (Figure 6B and Figure 6—figure supple-

ment 1), glp-1(q224ts) animals were grown at 15˚C (on OP50) to mid L4, and then transferred to

cdk-1 RNAi plates or L440 plates for 42 hr hours. Plates were then shifted to 25˚C for 8 hr, and then

returned to 15˚C for 2–3 days. At the beginning of the temperature shift, animals were adults, and

germ cells in the progenitor zone had uniformly arrested in interphase, as evidenced by the absence

of mitotic figures. Some nuclei in the progenitor zone had slightly enlarged, characteristic of cdk-

1 RNAi-induced cell-cycle arrest (Jeong et al., 2011). Nuclear morphology was otherwise normal

(Figure 6—figure supplement 1).
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For temperature shifts of starved glp-1(q224ts) animals, hermaphrodites were starved at 15˚C
from early adult for 2–4 hr or from mid L4 for 24 hr. For Figure 6C–D, starved animals were shifted

to 25˚C for 8, 16, or 24 hr, returned to 15˚C for 8–12 hr, then re-fed at 15˚C for 2–3 days. At the

beginning of the temperature shift, animals starved from L4 were adults. For Figure 6G–H, animals

were shifted to 25˚C for 8 hr, and then re-fed at 25˚C. For Figure 6I, animals were shifted to 25˚C
for 8 hr.

For temperature shifts of glp-1(q224ts) animals exposed to high NaCl (Figure 6E), early adult her-

maphrodites were transferred to plates containing high NaCl media and incubated at 15˚C for 2 hr.

Animals were then shifted to 25˚C for 8 hr, returned to 15˚C for 12 hr, and then transferred to plates

containing standard media for 2–3 days. High NaCl media were identical to standard media, except

that it contained a total of 17.4 g/L (300 mM) NaCl.

For temperature shifts of (unmated) fog-1(q785);glp-1(q224ts) animals (Figure 6F), hermaphro-

dites aged 40 hr post mid L4 were shifted to 25˚C for 8 hr, and then returned to 15˚C for 2–3 days.

Animals aged 40-hr post mid L4 were used because the reduced mitotic index caused by the

absence of sperm is not fully evident at the early adult stage (40-hr post mid L4 at 15˚C is roughly

equivalent to 24-hr post mid-L4 at 20˚C). For temperature shifts of mated fog-1(q785);glp-1(q224ts)

animals, fog-1(q785);glp-1(q224ts) mid L4 hermaphrodites were transferred to plates with CB4856

males at a ratio of 1:2. After 40 hr of mating, hermaphrodites wearing copulatory plugs were trans-

ferred to fresh plates at 15˚C, and then shifted to 25˚C for 8 hr.

Temperature shifts of emb-30(tn377ts) animals are described below.

emb-30(tn377ts) experiments and analyses
emb-30(tn377ts) animals were grown at 15˚C to mid L4, and then starved at 15˚C for 24 hr, by which

time animals were adults. Animals were then shifted to 25˚C for 14 hr and either re-fed or maintained

in starvation. Gonads were dissected immediately before re-feeding and at 1-hr intervals 2–6 hr after

re-feeding. Gonads were also dissected after 6 hr of continued starvation. Gonads were stained for

phospho-histone H3 and GLD-1 and imaged at 63�magnification with a z-stack interval of 1 mm. Cells

were identified using IRISES (Vogel et al., 2014), followed by manual correction using the Cell

Counter plug-in in Image J. Cells were classified as interphase, M-phase, or ‘crescent’ (i.e. meiotic pro-

phase) according to chromosome morphology and phospho-histone H3 staining. Occasionally, at the

later re-feeding time points, cells were observed bypassing the metaphase arrest; for the purposes of

this experiment, such cells were classified as M-phase. Cells distal to the ‘crescent’/‘non-crescent’

boundary were defined as cells whose midpoints were located distal to a cross-sectional line drawn

through the midpoint of the second most distal ‘crescent’ cell. Relative positions of cells along the dis-

tal-to-proximal axis were determined by collapsing cell positions along the z-axis and fitting these

positions to a second-degree polynomial curve. Positions along this polynomial curve closest to each

germ cell and closest to the distal tip cell were identified by solving, for each cell, the polynomial

whose roots minimize this distance. Using this new set of positions, distances between the distal tip

cell and each germ cell were calculated. Cells were then ranked according to these distances.

Sample sizes
In experiments requiring image acquisition, an attempt was made to examine at least 20 gonads. In

other experiments, an attempt was made to examine at least 50 gonads.

Plots
Plots were generated in part using the ggplot package for R (ggplot2.org).
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Dalfó D, Michaelson D, Hubbard EJ. 2012. Sensory regulation of the c. elegans germline through TGF-b-
dependent signaling in the niche. Current Biology 22:712–719. doi: 10.1016/j.cub.2012.02.064

Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM. 1998. Meiotic recombination in c.
elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94:
387–398. doi: 10.1016/S0092-8674(00)81481-6

Derry WB, Bierings R, van Iersel M, Satkunendran T, Reinke V, Rothman JH. 2007. Regulation of developmental
rate and germ cell proliferation in caenorhabditis elegans by the p53 gene network. Cell Death and
Differentiation 14:662–670. doi: 10.1038/sj.cdd.4402075
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