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THEBIGGERPICTURE Although artificial intelligence has emerged as the focal point for countless state-of-
the-art developments, in many ways, its performance is nullified when compared with biological intelli-
gence, particularly in terms of energy efficiency, robustness, versatility, and adaptivity. Therefore, neuro-
morphic (brain-inspired) computing has been utilized in numerous applications, particularly in robotics.
Here, we uniquely address one of the most fundamental challenges in robotics: inverse kinematics in con-
voluted environments. Inverse kinematics is an underdetermined computational process for deriving a ro-
bot’s configuration given its desired target position in space. A brain-inspired efficient implementation of
inverse kinematics is, therefore, an important stepping stone in neurorobotics. Underdetermined inverse
problems are also fundamental in other fields, ranging from medical imaging to hydrology and pharmaco-
kinetics.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Inverse kinematics is fundamental for computational motion planning. It is used to derive an appropriate state
in a robot’s configuration space, given a target position in task space. In this work, we investigate the perfor-
mance of fully connected and residual artificial neural networks as well as recurrent, learning-based, and
deep spiking neural networks for conventional and geometrically constrained inverse kinematics. We
show that while highly parameterized data-driven neural networks with tens to hundreds of thousands of pa-
rameters exhibit sub-ms inference time and sub-mmaccuracy, learning-based spiking architectures can pro-
vide reasonably good results with merely a few thousand neurons. Moreover, we show that spiking neural
networks can perform well in geometrically constrained task space, even when configured to an energy-
conserved spiking rate, demonstrating their robustness. Neural networks were evaluated on NVIDIA’s Xavier
and Intel’s neuromorphic Loihi chip.
INTRODUCTION

In the past fewdecades,multi-joint open-chain robotic arms have

been utilized in a diverse set of applications, ranging from robotic

surgeries1 to space debris mitigation.2 While the position of a ro-

botic arm’s End-Effector (EE) is often defined in Cartesian R3

task space, the arm is configured in RDoF configuration space,

spanned by the robot’s joint angles accounting for the robot’s De-

grees of Freedom (DoF). While RDoF/R3 mapping can be trivi-

ally elucidated by realizing the robot’s Forward Kinematics (FK)

with transformation matrices, the inverse R3/RDoF mapping,
This is an open access article under the CC BY-N
termed Inverse Kinematics (IK), is computationally challenging,

as the same reached point in task space can be realized with

different configurations. IK is usually numerically optimized to

achieve redundancy resolution using Jacobian inverse3 or fuzzy

logic.4 While analytical descriptions of IK are generally limited to

relatively simple robotic systems, numerical methods can be

used to optimize solutions for intricate scenarios. While proven

incredibly useful, numerical methods are subjected to complete

mechanical descriptions and known environments. Several nu-

merical approaches for IK were developed to handle geometrical

and environmental constraints.5 However, numerically handled
Patterns 3, 100391, January 14, 2022 ª 2021 The Author(s). 1
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Table 1. ANN number of parameters and inference time

Number of parameters Inference (ms)

Numerical – 16.52 ± 1.26

ResNet 4 blocks 3,141,893 6.05 ± 0.29

ResNet 2 block 183,173 2.55 ± 0.44

FC 10x128 149,765 1.34 ± 0.23

FC 8x128 116,741 1.06 ± 0.14

FC 6x128 83,717 0.87 ± 0.13

FC 6x256 331,269 0.92 ± 0.12

FC 5x128 67,205 0.79 ± 0.12

FC 5x256 265,477 0.82 ± 0.12

FC 4x128 50,693 0.67 ± 0.11

FC 4x256 199,685 0.71 ± 0.11

FC 3x128 34,181 0.58 ± 0.1

FC 3x256 133,893 0.62 ± 0.1

FC 2x128 17,669 0.49 ± 0.15
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constraints should be mathematically formulated and integrated.

More recently, efforts toward utilizing Artificial Neural Networks

(ANNs) for data-driven IK have been explored.6 As long as an FK

is available, a neural network-powered IK provides a unified

framework, supporting robotic systems with arbitrary complexity,

operating in arbitrarily convoluted environments, subjected to any

set of constraints. A data-driven approach alleviates the require-

ment for a full mechanical and mathematics descriptions.

In this work, we critically re-evaluated the utilization of ANNs for

IK, with various loss functions, activations, and architectures. We

further extend the discussion to IK with geometrical constraints.

Robotic arms often operate in a convoluted operational space or

in collaboration with a human operator. As a result, IK can be con-

strained towork inasub-RDoF configurationspace.For example,a

robotic arm should be prevented from invading a human’s per-

sonal space or hitting obstacles. Recently, Chembuly and col-

leagues extended conventional IK optimizers to support collision

avoidance.7 Here, we’ve taken a data-driven approach, relying

on the versatility of neural networks, to propose a robust frame-

work for non-constrained and geometrically constrained IK.

Uniquely, we utilized Spiking Neural Networks (SNNs), which

closely emulate the nervous system’s computational properties8

for IK. SNNs stand at the foundation of neurorobotics, an impor-

tant frontier in neuromorphic computing research. It provides

biologically inspired energy-efficient control of robotic systems.9

We evaluated SNNs for IK with three different approaches: (1)

converting ANNs to SNNs using spikes-tailored activation func-

tions; (2) neuromorphically implementing Stochastic Gradient

Descent (SGD), with recurrent neural connections; and (3) utiliz-

ing neuromorphic online learning. ANNs were defined using

Keras, and SNNs were simulated using the Neural Engineering

Framework (NEF).

NEF brings forth a theoretical framework for a neuromorphic

representation and transformation of mathematical constructs

with spiking neurons, allowing the implementation of functional

large-scale neural networks. NEF is extensively used to design

neuromorphic systems capable of visual perception10 andmotor

control.11 It serves as the foundation for Nengo, a Python-based

"neural compiler," which translates high-level descriptions to
2 Patterns 3, 100391, January 14, 2022
low-level neural models.12 NEF-inspired neuromorphic hard-

ware designs13 have been implemented in both analog and dig-

ital circuitry. A version of it has been compiled to work on the

most prominent neuromorphic hardware architectures available,

including Intel’s neuromorphic Loihi circuit.14 Here, we con-

verted ANNs to SNNs usingNengoDL15 and implemented neuro-

morphic SGD using the Nengo-based Gyrus framework. We

trained the networks offline and evaluated them on specialized

hardware. ANNs and SNNs were evaluated on NVIDIA’s Xavier

board. SNNs were also assessed on Intel’s Loihi chip.

We demonstrate how ANNs with no prior joint data can pro-

vide IK with fast inference time and accurate results. While their

spiking counterparts were shown to be less accurate, they pro-

vide sufficient neuromorphic approximations.
RESULTS

Neural network size and inference time
In this work, we examined the performance of various neuronal

architectures (Figure 1), each with a different number of param-

eters and inference time. Data are summarized in Table 1. Table

1 also includes the inference time for conventional numerical

optimization (with the AGX Xavier) using Jacobian inverse for

comparison.

We evaluated the loss from Equations 1 and 2 with two Fully

Connected (FC) layer ANNs (Figure 2A). Results demonstrate

the superior performance of the regularized loss functions for

target accuracy within 1 cm and 1 mm distance across Tanh,

Rectified Linear Unit (ReLU), and leaky ReLU activations (Fig-

ure 2B). We used shallow networks to evaluate the regularization

scheme, thus justifying regularization in further assessment. We

further explored IK performance for ANNs with varying depths

and widths across the three activation functions. We measured

the mean accuracy and the percentage of points for which accu-

racy of >1 mm and >1 cm has been reached for each architec-

ture. Results for 200,000 training points, 2 to 10 layers, across

Tanh, ReLU, and leaky ReLU are shown in Figure 2C. Results

demonstrate the superior performance of the 5 3 128 FC archi-

tecture (<1 ms inference time, < 1 cm accuracy).

We further explored this architecture with a width of 256 neu-

rons (Figure 2D) and 200,000 data points (Figure 2E), demon-

strating superior performance with a six-layer network. This

network has 0.18% < 1 cm accuracy with <1 ms inference

time (Table 1). To further investigate the computational capacity

of ANNs for IK, we utilized ResNets, featuring >36parameters,

and skip links (Figure 2F; Table 1). ResNets were found to have

comparable performance with 1 mm accuracy specification

(Figure 2G). We explored our data-driven energy-based loss

function (described in Equation 3) with varying depth (Figures

2H–2J), demonstrating dramatic improvement compared with

the performance gained with traditional loss definitions. We

show that a six-layer ANN’s mean error distance was improved

by �10x (�2 mm–0.2 mm) and that the percentage of points

above the 1-cm threshold dropped by �10x (�60%–6%). We

evaluated the energy-driven network with Swish and Mish acti-

vations, demonstrating further performance improvement, with

a 33% drop in the percentage of points above the 1-cm

threshold (4%) (Figure 2K).



Figure 1. System design

A reachability study was conducted using a robotic model and evaluated with numerical optimization reaching to 200,000 uniformly distributed points across a

2 3 2 3 1-m space. Reachable points and the forward kinematic model are used to train deep ANNs and SNNs as well as recurrent and learning-based SNNs,

providing predictive models for IK.
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We investigated the performance of NengoDL-based deep

SNNs (Figure 3A) for IK. We used ANN to SNN transfer learning

by modulating neurons’ tuning curves into a differentiable form

(Figure 3B, see methods for details). Network performance

with and without transfer learning from their artificial counter-

parts produced similar results. ANNs can be therefore translated

to SNNs by defining neurons as soft leaky-integrate-and-fire

(LIF) spiking neurons and temporally integrating spikes. In such

implementation, the spiking neurons’ differentiable approxima-

tions are used during training, while the spiking neurons them-

selves are used during inference.

We explored deep SNNs with varying depths, synaptic

smoothing factors, and maximal fire rates (see methods for de-

tails). As expected, as the neurons’ firing rates increase, they

approximate their non-spiking versions more closely as their in-

tegrated (or convolved) spike trains more closely resemble a

non-spiking behavior, thus producing lower mean error and a

higher percentage of targets within 1-cm accuracy (Figure 3C).

Smoothness was shown to be most effective with a 20-ms

time constant. A heatmap demonstrating the results is shown

in Figure 3D. As expected, a comparison between spiking to

non-spiking networks shows the superior performance of con-

ventional ANNs. Note that the high frequency of spikes required

for accurate predictions is not attainable with current neuromor-

phic hardware. Therefore, a more neuromorphic-appropriate

design would utilize recurrent or learning-based neuronal

designs.

Learning-based approaches can be either pre-trained to

achieve a better initial weight scheme or naively initialized to

zero. Pre-training was implemented by Prescribed Error Sensi-

tivity (PES) on the entire training set, where the resulted weights
were averaged and saved for network initialization. Note that

network training does not constitute a general solution for IK.

IK is resolved using PES-driven online learning for each target

point, as was described above. We show that pre-trained

models have faster inference. Inference performance is shown

in Table 2. SNNs were deployed on Intel’s Loihi circuit (with a

1-kHz spiking rate).

Recurrent and learning-based SNN
Gyrus-based (Figure 4A) derivation of Ja

+ is demonstrated in

Figure 4B (at point [0.17, 0.17, 0.35]), where the 3x5 = 15 Jaco-

bian’s values are approximated. Reaching that point via the deri-

vation of the appropriate joint configuration is shown in Fig-

ure 4C. Another approach would be using a learning-based

derivation of IK via the PES learning rule (Figure 4D). The network

architecture is discussed in detail in Zaidel et al.11 Error conver-

gence and reaching point [0.17, 0.17, 0.35] are demonstrated in

Figures 4E and 4F. The comparison between learning and SGD-

recurrent implementation is shown in Figure 4G.

Results demonstrate the learning-based approach’s superior

performance. While the mean error is higher with a learning-

based approach, it is biased by points to which reach was

not successfully computed. The mean error for the points to

which the learning-based approach was able to converge

was approximately 1 mm, as is demonstrated in the histogram.

Note that it takes time for the network to accurately compute

the FK and the Jacobian used to calculate IK in the online

learning-based method due to the neurons’ response dynamic

(synaptic time constant). A raster plot for the error representing

neurons in the learning-based SSN is shown in Figure 4H,

showing convergence pattern of spikes, reaching
Patterns 3, 100391, January 14, 2022 3



Figure 2. Artificial neural networks for inverse kinematics

(A) ANN schematic.

(B) Superior performance of regularized loss functions with shallow 2 3 128 neural networks.

(C) The percentage of target points within 1 mm (top), 1 cm (middle), and the mean error distance (bottom) for ANNs with varying depths and activations.

(D and E) Performance for Tanh activated ANN with varying width, depth (D) and training data size (E).

(F) Residual neural networks architecture.

(G) Residual networks performance compared with FC ANNs with varying architectures and activations.

(H–J) The percentage of target points within 1 mm (H) and 1 cm (I), as well as mean error distance (J) for FC 5 3 128 ANNs, Tanh activated, with energy loss

function.

(K) Comparison between FC 5 3 128 ANNs with energy loss function with Tanh, Swish, and Mish activations.
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homogeneous activation pattern after �2.4 s. Note that the er-

ror is rate-coded following the neurons’ tuning curves. Some

neurons decrease their firing rate while others increase it with

reduced error. Results show a significantly higher inference

time of SNNs (increasing from milliseconds to seconds’ range)

required for computing convergence. The SGD-based network

requires a relatively high number of neurons for reasonable re-

sults, pointing out the learning-based approach’s advantages.

Inference time was calculated for points for which 1-cm

convergence was achieved. We found that higher accuracy is

difficult to attain in our current configuration (number of neu-

rons, high DoF). The number of parameters and inference times

are detailed in Table 2. Note that we’ve limited the evaluation

metric to a 1-cm threshold due to the limited accuracy attained

using SNNs (mean error distance is in the order of a few mm).

While a few millimeters of deviation, for many applications,
4 Patterns 3, 100391, January 14, 2022
might be sufficient, it highlights the need to use further adapta-

tion (e.g., from sensors), allowing more accurate targeting (see

discussion).

Geometrically constrained IK
Weused our best-performing five hidden layers ANN to calculate

geometrically constrained IK. The network was trained to avoid

collision with radial obstacles featuring radii of 10 and 20 cm,

following Equation 5. Reachability map (seemethods for detailed

description) and example of 100 configurations, calculated to

avoid a 20-cm obstacle, are shown in Figure 5. We measured

the mean accuracy and the percentage of points for which accu-

racy of >1 mm and >1 cm was reached with 10- and 20-cm

spherical obstacles. Results across Tanh, ReLU, leaky ReLU,

Swish, and Mish activations are shown in Figure 6A. Results

demonstrate the superior performance of Mish activation. To



Figure 3. Deep spiking neural networks for inverse kinematics

(A) ANNs can be converted to SNNs using the NengoDL framework, where neurons are defined in ensembles.

(B) Differentiable temporally integrated activation of LIF-based spiking neurons.

(C and D) The percentage of target points within 1 cm (left) as well as mean error distance (right) for SNN with varying depth, synaptic smoothing, and maximal

firing rate. Mean error heatmap is shown in (D).

(E) Mean error comparison between the best-performing SNN and its ANN counterpart.
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illustrate the importance of network optimization for obstacle

avoidance, we compared its performance when optimized to

minimize Equations 3 and 5. Our comparison shows that the

number of intersections with a 20-cm spherical obstacle is

dramatically reduced by a factor of 4 when the loss function con-

siders obstacle avoidance (Figure 6B). We further compared the

intersections with obstacles across the different activations,

showing that while Mish activation outperformed all other activa-

tions for large obstacles, performance plateaued at 10% for

small obstacles (Figure 6C). Given our relatively small dataset,

we compared our ANN performance to a two-layer ResNet,

demonstrating ANN’s superior performance (Figure 6D).

We evaluated this dataset with SNNs via transfer learning, as

was discussed above. Interestingly, we show that the obstacle

intersection performance is similar across the different maximal

firing rates. In contrast to the constraint-free scenario, where

network performance was found to heavily rely on spiking rate

(Figure 3C), spiking rate is not a critical factor for obstacle avoid-
Table 2. SNN number of parameters and inference time

Hardware # parameters Inference (s)

Deep SNN 4x256 Intel’s Loihi 199,685 0.4

Learning-based SNN Xavier 5,000 2.9 ± 1.22

Learning-based SNN Intel’s Loihi 3.4 ± 0.61

Learning-based SNN

(pre-trained)

Intel’s Loihi 5,000 2.6 ± 0.04

SGD-recurrent SNN Xavier 300,000 3.8 ± 0.62

Inference time includes the standard deviation computed on the entire

test set.
ance (Figure 7A). This result demonstrates the robustness of an

SNN to efficiently avoid obstacles (a low spiking rate constitutes

reduced energy consumption). However, when accuracy is

considered, SNN’s performance heavily relies on the neurons’

maximal firing rate and synaptic time constant (Figure 7B). As

the maximum firing rate increases, the more accurate IK be-

comes (Figure 7C). Similar to the non-constrained case (Fig-

ure 3C), we show that a synaptic smoothing factor of �20 ms

outperforms a faster and slower synapse configuration

(Figure 7D).

We further evaluated our data-driven (200k sample points)

best-performing five layers (x 128) FC Mish-activated ANN in a

convoluted space featuring two to five randomly positioned

10 cm in radius obstacles. For training, we used Equation 6, a

generalized form of Equation 5 we used for a single obstacle. A

demonstration of the resulting 100 targets reaching in a five-

obstacle environment is shown in Figure 8A. As expected, the

number of out-of-reach targets in multiple obstacle environ-

ments increased with the number of obstacles (Figure 8B).

However, as the obstacles were randomly positioned, some ob-

stacles may constrain the arm’s configuration space to a greater

degree than others, as is demonstrated in the number of reach-

able points in the three-obstacle scenario, which is higher than in

the four-obstacle scenario (Figure 8C). The resulting distances to

targets in the one- to five-obstacle environments demonstrate

the modularity and high performance of the ANN-based IK (Fig-

ures 8D–8F). This is particularly evident in the number of obstacle

intersections, which is kept lower than 1% in all tested scenarios

(Figure 8G). While network performance generally increases with

fewer obstacles, it is not always true, as is evident with the similar
Patterns 3, 100391, January 14, 2022 5



Figure 4. Learning and recurrent SNNs for inverse kinematics

(A) Simplified recurrent SNN for IK.

(B) Inverse Jacobian approximation with SNN (15 values approximating the 3 3 5 Jacobian matrix).

(C) Exemplified reaching to point p = [0.17, 0.17, 0.35] with a recurrent SNN.

(D) Learning-based SNN for IK.

(E and F) Error convergence and reaching p with learning-based SNN.

(G) Compared error convergence (left), accuracy histogram (middle), the percentage of target points within 1 cm, and mean error distance (right), for learning and

recurrence-based SNNs.

(H) Raster plot for error representing neurons in the learning-based SNN.
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performance measured for the three- and four-obstacle sce-

narios. Thus, pointing out again the importance of the obstacle

position on the ability of the arm to navigate efficiently.

DISCUSSION

Biological motor control is considered far superior to our most

advanced robotic systems, which predominantly rely on

analytical and numerical control. Therefore, there is a great

promise in neurorobotics that strives to use neuronal architec-
Figure 5. Geometrically constrained IK

A reachability map indicates the location of a 20-cm spherical obstacle (colored

urations to target locations (red dots) is shown on the right. Each of the robot’s l

6 Patterns 3, 100391, January 14, 2022
tures to guide robotic systems’ behavior. Neural networks

have the enticing capacity to be trained to perform tasks

without an analytical solution; however, the successful appli-

cation of neural networks to robotics, beyond sensory pro-

cessing, remains limited.16 In contrast to numerical and

analytical descriptions of IK, as long as an FK is available, a

neural network-powered IK provides a unified framework for

motion planning for robotic systems with arbitrary complexity,

operating in arbitrarily convoluted environments, subjected to

any definable constraints.
green) and out of reach points (colored blue). A demonstration of 100 config-

inks is colored differently.



Figure 6. Geometrically constrained IK with ANNs

(A) Mean accuracy and the percentage of points for which accuracy of <1 mm and <1 cm was not achieved with 10- and 20-cm spherical obstacles. Results

achieved with a 5-layer ANN with Tanh, ReLU, leaky ReLU, Swish, and Mish activations.

(B) Number of the robot and the spherical obstacle intersections with (Equation 3) and without (Equation 5) consideration for obstacle avoidance.

(C) Number of the robot and the spherical obstacle intersections yielded with a five-layer ANN with Tanh, ReLU, leaky ReLU, Swish, and Mish activations.

(D) Percentage of points for which accuracy of <1 mm and <1 cm was not achieved with a five-layer Mish-activated ANN and two layers ResNet.
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In this work, we investigate the utilization of ANNs and SNNs

for IK, the most fundamental problem in robotics. The utilization

of ANNs for IK has been vastly explored. For example, Almusawi

and colleagues enhanced a deep ANN with known joint configu-

rations to solve IK for a 6-DoF robotic arm17; Wand and col-

leagues recently enhanced conventional ANNs with a damped

least square optimization to provide faster convergence to the
desired IK threshold18; Duka and colleagues generalize ANNs

for EE trajectory planning19; and Li and colleagues20 further

generalized ANNs to constrained trajectories20. Here, we further

explored ANN-based solutions to IK, with various configurations

and activations, having only the FKmodel and a reachability map

as inputs. Our models presented here were not trained to eluci-

date known joint configurations but rather elucidate robot
Figure 7. Geometrically constrained IK with

SNNs

(A) Obstacle intersections with five-layer SNNs

featuring various maximal firing rates across

different synapse smoothing factors.

(B) Percentage of points for which accuracy of

<1 cm was not achieved with five-layer SNNs

featuring various maximal firing rates across

different synapse smoothing factors.

(C) Percentage of points for which accuracy of

<1 cm was not achieved with five-layer SNNs

featuring various maximal firing rates and a synapse

smoothing factor of 20 ms.

(D) Percentage of points for which accuracy of

<1 cm has was not achieved with a five-layer SNN

featuring various synapse smoothing factors and a

maximal firing rate of 5,000 Hz.

Patterns 3, 100391, January 14, 2022 7



Figure 8. Multiple obstacles constrained inverse kinematics

(A) A demonstration of 100 targets reaching in a five-obstacle environment.

(B and C) Number of out-of-reach (B) and reachable targets (C) in one- to five-obstacle environments.

(D) Mean distances to targets in one- to five-obstacle environments.

(E and F) Percentage of points for which accuracy of <1 cm (E) and <1 mm (F) was not achieved in one- to five-obstacle environments,

(G) Number of obstacle intersections in one- to five-obstacle environments.
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configurations by optimizing EE’s Euclidean distance from its

target using known FK. Our training data are therefore ambig-

uous, as multiple joint configurations can realize the same posi-

tion in task space. We demonstrated that training a neural

network with ambiguous data results in low accuracy, mainly

when a fine threshold is set (1 mm in contrast to 1 cm). A com-

mon practice is to resolve this ambiguity by defining a default

configuration and using Mean Square Error (MSE) to that set of

joint angles so that all solutions are attempting to be near the

same configuration (constituting a ‘‘null controller’’).21 As long

as none of the points in the null space are at a singularity, this

method usually works well.

Here we have taken a different, data-driven approach. We

reduced ambiguity by using an energy-driven loss function

and training the network with numerous neighboring joints’

configurations such that they will be mapped to close points

in task space. This method does not require having one refer-

ence joint’s configuration to which all configurations relate.

Note that since we use many pairs across the robot’s reach-

able map and that across the configuration space a transitive

property holds, the network is driven to overall consistency.

This energy-driven loss resulted in dramatically improved ac-

curacy (10x in terms of mean error distance and a smaller per-

centage of points above the 1 cm accuracy threshold). This

loss function allows for IK-based motion planning with smooth

transitions between targets. Using an energy term to achieve
8 Patterns 3, 100391, January 14, 2022
redundancy resolution in IK does not require a new dataset

but rather a rational choice of neighboring target points for

training. This data-driven approach has the flexibility of

handling complex scenarios, as we showcased with geomet-

rically constrained IK, discussed below.

We further demonstrate Swish and Mish activations’ superior

performance for energy-driven ANNs and explored overparame-

terized architectures such as ResNets. While it is often unattain-

able to explain the underlying reasons for the differences in

performance across the different activation functions, we show

that across the traditional activations, Tanh has better perfor-

mance. We show that the Tanh-dependent Mish activation

further improves accuracy. Probably due to its positively un-

bounded, negatively bounded, smooth, and nonmonotonic

characteristics.22 We used ResNets, which are very rich in pa-

rameters and feature skip links for IK. These skip links allow

‘‘skipping’’ non-contributing parameters, thus, allowing a better

estimation of the capacity of ANNs to solve the problem given a

dataset.We show thatmillions of parameters ResNets underper-

formed conventional FC ANNs, suggesting that we maximized

the capacity of ANN to resolve IK with our current dataset size.

Uniquely, we extend the discussion to spiking neuronal archi-

tectures. In recent years, neurorobotics, in which SNNs are the

underlying computational framework, have gained increased

attention.23 Neurorobotics are argued to outperform conven-

tional control paradigms in terms of robustness to perturbations
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and adaptation to varying conditions.11,16 However, neuromor-

phic implementation of robotic control is usually tailored toward

adaptive control9 rather than utilized to perform exact localiza-

tion. This is since spanning high-dimensional space (as required

by robotic systems with high DoF) requires a large number of

neurons.13 Recently, learning-based IK was implemented with

SNNs, demonstrating how carefully tuned neuromorphic encod-

ing can be used to perform high-dimensional nonlinear compu-

tations.11 Here we further extend the discussion. We investigate

deep SNNs, recurrent and learning-based SNNs for IK. Deep

SNNswere shown to performwell for various perception tasks.24

By performing ANN to SNN transfer learning, we show that

SNNs require a high spiking rate to approximate traditional

ANN performance. Spiking rate is correlated with increased en-

ergy expenditure, implying a non–energy-efficient utilization of

their capacity. Rate-coded SNNs are known to be limited in their

capacity to perform exact computations. They are much better

when realizing a learned behavior.With deep SNNs, we achieved

a few millimeters of mean deviation from the target. While a few

millimeters distance from the target might be sufficient for many

applications, it highlights the need to use further adaptation (e.g.,

from sensors), allowing more accurate targeting. We further

show that while highly parameterized neural networks with

tens to hundreds of thousands of parameters exhibit very high

accuracy, learning-based spiking architectures can provide

reasonably good results with merely a few thousand neurons.

Note that considering a typical robotic hardware response time

and accuracy, we consider 1-mm accuracy is sufficient and

millisecond-range response time as good enough in most

applications.

To further evaluate SNN for IK, we assessed a spiking SGD.

For the first time, we used the Nengo-based Gyrus environment

for IK. Gyrus provides a numerical computing framework for

SNNs, with which we designed gradient-based approximation

of IK (following the traditional Jacobian inverse guidelines). While

successfully implemented, we show that for IK, SNNs are more

efficiently utilized with real-time learning rather than used to

approximate numerical methods. Finally, we show that when

the number of intersections with an obstacle is considered,

SNNs can perform very well, even when configured to an en-

ergy-conserved spiking rate, demonstrating their robustness.

In this work, we show that SNNs underperform ANNs in terms

of accuracy and inference time. However, we believe that an

exploratory utilization of SNN is of high importance when such

a fundamental problem in neurorobotics is addressed, mainly

when a pure neuromorphic robotic control is desirable.

This work can be further extended to include other SNN-based

optimization methods, such as adding a firing rate regularization

parameter during training or using amplitude scaling. Moreover,

it could be used to investigate its utilization in trajectory planning

and in dynamic scenarios where obstacles are in motion.

We note that the methodology described here can be utilized

in other areas featuring redundancy resolution, where one solu-

tion should be chosen from an infinite set. Underdetermined

systems are of interest to a broad range of disciplines. For

example, recently, Hyun and colleagues highlighted that under-

determined inverse problems had become one of the major

concerns in the medical imaging domain (e.g., under-sampled

magnetic resonance imaging, interior tomography, and
sparse-view computed tomography).25 Their work laid down

the mathematical foundations for utilizing neural networks to

handle such underdetermined problems. Similar challenges

are addressed in hydrology and geophysics,26,27 pharmacoki-

netics,28,29 and image reconstruction.30

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Elishai Ezra Tsur at elishai@nbel-lab.com.

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data and code is available at https://github.com/NBELab/Patterns_2021.

Robotic model

The simulated robotic armmodel has six DoF, out of which, here, we controlled

five (the sixth DoF accounts for gripping). The model follows the physical arm

design described in Zaidel et al.11 and is visualized in Figure 1. The arm fea-

tures six links l1�6 (12-, 30-, 6-, 20-, 10-, and 20-cm long, respectively) and

five joints q1�5 (rotated around the y, x, x, z, x axes, respectively). The arm

has an 82-cm reach and a 1.64-m span. Visualization and measurements

were performed using Autodesk’s Fusion 360 CAD software.

FK was implemented using transformation matrices. For our five joints ro-

botic arm, FK takes the form of T = T01T12T23T34T45T56, where Tij is the trans-

formation matrix (rotation, translation) in homogeneous coordinates, mapping

coordinates at joint i axis to coordinates at joint j axis (indices 0 and 6 refer to

the world and EE axes, respectively). We initialized T with the appropriate set

of rotations and translations and multiplied it by a zero vector ½0; 0; 0; 1�T , re-
sulting in an FK model TxðqÞ. TxðqÞ returns the EE position in the world’s coor-

dinate system, where the origin is at the robot’s base.

Jacobian inverse

IK can often not be analytically solved, and it is usually numerically optimized

using the Jacobian inverse. The Jacobian Ja relates the change of the EE po-

sition x to the evolution of joint angles q using JaðqÞ = dx=dq, constituting

_xðqÞ = JaðqÞ _q, where _x is the change in EE position, resulting from a shift in

the robot’s configuration _q. As the Jacobian is not necessarily invertible, a

common practice is to use its pseudo-inverse form Ja
+ constituting _q =

Ja
+ _x. Therefore, given an error in space coordinates xd as the distance be-

tween the EE current position xc; and its target position xy , the appropriate

change in joint space can be computed using dðqÞ = Ja
+ ðqÞxd, where dðqÞ

is the difference in joint angles, with which the robot’s EE will get closer to

its target. In each iteration, this equation is re-evaluated until xd is within

some accuracy threshold. The Jacobian inverse is more elaborately discussed

in Buss.31

Artificial neural networks

Deep ANNs comprise layers of computational entities characterized with

differentiable, nonlinear activation functions and weighted inputs. ANNs can

be optimized, with gradient-based training, to provide predictive models.32

ANNs can be defined using the open-source Python-based software library

Keras, providing a layer of abstraction for the TensorFlow library.33 Here, we

used Keras to define FC ANNs with varying depth (number of ‘‘hidden’’ neural

layers), width (number of neurons per layers), and activation functions. For

activation, we evaluated the performance of standard Tanh, ReLU, and leaky

ReLU activations, as well as the more recently defined functions, Mish and

Swish. Swish activation is defined using fðxÞ = xð1+ e�bxÞ�1, where b is a train-

able parameter. Depending on the value of b, Swish activation interpolates the

Sigmoid-weighted linear function and the ReLU activation function.34 Mish is a

smooth nonmonotonic function defined using fðxÞ = x,tanhðlnð1 +exÞÞ.22
We further utilized Residual neural Networks (ResNets) for IK, first intro-

duced for image classification and recently adopted for other tasks, including

nonlinear regression.35 A ResNet block can be described as a stack of one

density and two identity blocks, integrating a varied and preserved number

of features, respectively (Figure 1). Here, we started with 64 features (neurons),
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doubling in every dense block. All ANNs had a five-neuron FC output layer,

corresponding to the configuration space dimensionality.

Network optimization

A reachability study was conducted using the robotic model, evaluated with

numerically Jacobian-based optimized reaching to 200,000 uniformly distrib-

uted points across a 2 3 2 3 1-m space. Numerical reachability was defined

with a threshold of 1 mm proximity. To synthetically generate datasets for

geometrically constrained task spaces, we implanted spherical obstacles of

various radii and uniformly sampled 200,000 target points. We evaluated

spheres with 10 and 20 cm in radius located at the target space’s origin. Every

target point was evaluated for reachability. We geometrically evaluated if the

arm’s total length is long enough to reach that target point when bent around

the obstacle. Target points within obstacles were also defined as unreachable.

The dataset was divided into three parts: training (70%), validation (15%),

and test (inference) (15%) data. We defined three loss functions: naive, regu-

larized, and energy-based. We define the naive cost function L using:

L =
1

3
xi � FKðbyi Þ1; (Equation 1)

where FK is aR5/R3 mapping, by is the predicted joint configuration, and xi is

the target EE position. IK is not an injective function due to the angles’ 2p peri-

odicity and the fact that several joint configurations can realize the same target

in task space (the system is underdetermined). Underdetermined systems

have infinitely many least-squares solutions. Like pseudo-inverse techniques,

L2 provides the least-squares solution with a minimum norm, which is unique:

L =
1

3
kxi � FKðbyi Þk1 + lkbyik22; (Equation 2)

where l is a regularization coefficient, set here as 10�5.

However, regularization does not resolve the ambiguities completely, since

it does not consider joint identity nor sign (L2 cost for q1 = � p

=

2;q2 = � p,

equals its cost for q1 = p

=

2;q2 = p). Therefore, we propose adding an energy

term guided by a heuristic according to two close points in configuration space

should be close in task space. This heuristic allows for abrupt transitions

between targets, with minimum changes in the robot’s configuration. Here,

similarity in task space was defined by Euclidean distance, and configuration

similarity was determined using MSE:

L =
1

3
kx0i � FK

� by0i �k1 +
1

3
kx00i � FK

�cy00i �k1 + lkby0i �cy00i k22; (Equation 3)

where y0i and y00i are the model prediction for x0i and x00i (close points in task

space), respectively. Here we set l = 0:1. In Equation 3, the first two terms

minimize the distance between the predicted and target configurations. The

third term aims to reduce the change in configuration space between neigh-

boring points in the task space. With this loss function, the network is trained

with points ðx0i ; x00i Þ within a distance threshold (here, we chose 3 cm).

Equation3definesa loss function responsible for reachinga targetpoint in task

space such that the redundancy resolution is resolved. To account for geomet-

rical constraints, we incorporate another term, which is augmented significantly

when any part of the robotic arm approaches an obstacle.Wewould like that the

closer any of the robotic arms’ links get to the center of a spherical obstacle, the

loss function gets larger. This loss function should consider penalty Oi for each

link i.Oi should increasedramatically when the arm crosses the sphere’s bound-

ary. It can comprise the sum of the squared distances from each arm’s links

edges and midpoint to the sphere’s center (three points were evaluated for

each link). To implement rapid increase across the sphere’s boundary, wedefine

O using a parameterized inverse logistic function:

O =
esðd�r +pdÞ

1+ esðd�r +pdÞ ; (Equation 4)

where s represents the curve slope, d is the squared distance from a link’s

point to the sphere’s center, r is the squared sphere’s radius, and pd is a pen-

alty epsilon, which controls the value of x above, which the function initiates a

rapid ascent and s is the ascent’s rate. Here we empirically set s= � 1:5 and

pd = 2:5. When x = 0, the distance between a link’s point and sphere bound-
10 Patterns 3, 100391, January 14, 2022
ary (its radius), and O rapidly climbs. Following Equation 3, Equation 2 can be

further extended as:

d = x0t � FKðq0Þ1 + x00 t � FKðq00Þ1 + lq0 � q0 022 +
X

Oi (Equation 5)

To handle a convoluted environment featuringmultiple obstacles, Equation 5

can be generalized to:

d = x0t � FKðq0Þ1 + x00 t � FKðq00Þ1 + lq0 � q0 022 +
Xn

o=1

X
Oi (Equation 6)

where n is the number of obstacles.

For ANN training, we used batch SGD, with a batch size of 10 and an initial

learning rate of 0.1. The learning rate was scheduled to reduce by 20% when

an error plateau is reached, defined as a non-improving error in a 22-epoch in-

terval, with a minimum relative improvement of 0.0005 and a minimum rate of

10�6. Early stopping was scheduled to 750 epochs.

The NEF and online learning

NEF-based neuromorphic spikes’ rate coding of numerical input vectors (or

stimuli) x is defined as aiðxÞ = Gi ½aiei ,x + Ji
bias�, where ai is the spike rate of

neuron i, G is the LIF neuronal model,36 a is a gain term, e is the encoding vec-

tor (the value for which the neuron is firing with the highest spike rate), and Jbias

is a fixed background current. An ensemble of neurons collectively represents

a stimulus x as bx using bx =
P
i

ai �hdi, where di are linear decoders, which were

optimized to reproduce x using least squared optimization and ai � h is the

spiking activity ai convolved with filter h. Similar to decoder optimization, it

has been shown that any function fðxÞ could be approximated using some

set of functional decoders df .37 Defining fðxÞ in NEF can be made by connect-

ing two neuronal ensembles A and B via neural connection weights wijðxÞ us-
ing: wij = di 5 ej , where i is the neuron index in ensemble A, j is the neuron in-

dex in ensemble B, di are the decoders of ensemble A, which were optimized

to transform x to fðxÞ, ej is the encoders of ensemble B, which represents fðxÞ,
and 5 is the outer product operation.

Connection weights, which govern the transformation between one neuro-

morphic representation to another, can also be adapted or learned in real

time rather than optimized during model building. One efficient way to imple-

ment real-time learning with NEF is using the PES learning rule, which modifies

a connection’s decoders d tominimize an error signal er . er is calculated as the

difference between the stimulus x and its approximated representation bx. PES
applies the update rule: Dd = kera, where k is the learning rate. It has been

shown that when 1� ka2 (denoted g; here, a is a vector of firing rates) is larger

than � 1, the error er goes to 0 exponentially with rate g. PES is described at

length in reference.38

Spiking neuronal architectures

We demonstrate three distinct spiking metho1ogies: transfer learning from

ANNs to SNNs using a spike-tailored activation function, neuromorphically im-

plemented SGD, and online learning.

With deep SNNs, NEF’s non-differentiable neurons’ response curves (or

tuning curves) are modulated to a differentiable form. LIF neurons tuning can

be described using: a = ½tref + tlnð1+ uth=ðI0 � uthÞÞ��1, where a is the neuron’s

spiking rate, tref is its refractory period, uth is its threshold for spike initiation,

and I0 is its input current. A rectified version of it would be:

a = ½tref + tlnð1+ uth=rðI0 � uthÞÞ��1
; (Equation 7)

where rðxÞ = maxð0; xÞ. To provide a differentiable model, r can be defined as

a soft-max function: rðxÞ = llogð1 + ex=lÞ, where l is a smoothing (low-pass)

function.39 ANNs were defined using Keras, and SNNs were defined using

NEF. We used the Python-based Nengo framework to simulate our SNNs

and deploy them on Intel’s Loihi. Nengo has two useful abstractions: NengoDL

and Gyrus, providing interfaces to Keras and Python’s numerical computing

library, NumPy. We used NengoDL to convert ANNs into SNNs. These deep,

layered SNNs are defined with a synaptic time constant (specifying a low-

pass filter) and a maximal firing rate.

We neuromorphically implemented Pseudo-inverse-based optimization

(described above) using Gyrus. Gyrus recursively generates large-scale
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Nengo models using NumPy semantics. However, since Gyrus does not

currently support pseudo-inverse NumPy methods (e.g., linalg.pinv), we use

SGD to calculate Ja
+ . Following each time step, Ja

+ is recalculated, and a

small joint correction signal is derived. The correction and the Jacobian calcu-

lation were implemented with a neuromorphic integrator, allowing past infor-

mation to influence the current neuronal state.We can realize intricate dynamic

behavior by integrating NEF’s representation and transformation capabilities

by recurrently connecting neuronal ensembles. NEF can be used to resolve

the equation dx=dt
= fðxðtÞÞ+ uðtÞ, where uðtÞ is an input (the input can be

from another neural population), by defining a recursive connection that re-

solves the transformation: t,fðxÞ+ x.10 It can therefore be used to solve differ-

ential equations as required here for the derivation of SGD.

Our learning-based SNN follows the model proposed in Zaidel et al.11

Briefly, the robot’s current configuration is transformed to a target configura-

tion via PES-driven learning. Transformational synaptic weights aremodulated

to minimize the decoded error, calculated from the derived distance to the

target. As learning progresses, the error is continually minimized, and the

new robot configuration is calculated.

HARDWARE

Algorithms were evaluated on NVIDIA’s AGX Xavier and Intel’s

neuromorphic Loihi chip. The AGX Xavier features 32 TeraOPS

(TOPS) 512-Core Volta GPU with Tensor Cores, 8-Core ARM

v8.2 64-Bit CPU, and 32 GB RAM. The Xavier is often used in ro-

botic systems.40 The Loihi chip comprises 128 neuron cores;

each simulates 1,024 neurons. The chip includes x86 cores,

which are used for spike routing and monitoring.41 Nengo

models were compiled on the Loihi using the nengo_loihi library

(version 0.19).14
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