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Abstract

Background—Very preterm (VP) children are at risk of memory and emotional impairments, 

however the neural correlates remain incompletely defined. This study investigated the effect of 

VP birth on white matter tracts traditionally related to episodic memory and emotion.
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Methods—The cingulum, fornix, uncinate fasciculus, medial forebrain bundle and anterior 

thalamic radiation were reconstructed using tractography in 144 VP children and 33 full-term 

controls at age 7 years.

Results—Compared with controls, VP children had higher axial, radial and mean diffusivities 

and neurite orientation dispersion, and lower volume and neurite density in the fornix, along with 

higher neurite orientation dispersion in the medial forebrain bundle. Support vector classification 

models based on tract measures significantly classified VP children and controls. Higher fractional 

anisotropy and lower diffusivities in the cingulum, uncinate fasciculus, medial forebrain bundle 

and anterior thalamic radiation were associated with better episodic memory, independent of key 

perinatal risk factors. Support vector regression models using tract measures did not predict 

episodic memory and emotional outcomes.

Conclusions—Altered tract structure is related to adverse episodic memory outcomes in VP 

children, but further research is required to determine the ability of tract structure to predict 

outcomes of individual children.

Introduction

Children born very preterm (VP, <32 weeks’ GA) have higher rates of neurodevelopmental 

delays compared with children born full-term (FT, ≥37 weeks’ GA), including memory 

impairments and emotional difficulties (1, 2). The mechanisms responsible are not clear but 

may be better understood by characterising the neuroanatomical underpinnings using MRI.

Episodic memory and emotion are thought to be supported by a complex cortical and 

subcortical circuitry involving the mesial temporal structures, medial forebrain, 

hypothalamus, thalamus, orbitofrontal lobe and brainstem, interconnected by white matter 

tracts including the fornix, stria terminalis, mammillo-thalamic tract, anterior thalamic 

radiation, cingulum, uncinate fasciculus, and medial forebrain bundle (3). VP birth has been 

associated with reduced hippocampal volume (4, 5), but we previously found that 

hippocampal volume was not associated with concurrent memory performance in VP 

children at age 7 years (5). Disruptions of the hippocampal efferent and afferent tracts, and 

the broader system involved in episodic memory and emotion, might better explain episodic 

memory and emotional impairments in VP children. Some studies using tractography have 

found that the fornix and cingulum (6, 7), uncinate fasciculus (8, 9), and anterior thalamic 

radiation (9) have altered microstructure in preterm children and young adults compared 

with FT controls. Only a few studies have reported associations between fornix and 

cingulum volume and microstructure and memory outcomes in preterm young adults (6, 7). 

Additional studies would be beneficial to characterise a broader range of tracts involved in 

episodic memory and emotion, and their relationships with episodic memory and emotional 

outcomes.

Previous research in this area generally examined differences in brain structure between 

groups of preterm and FT children, and associations between brain structure and 

neurodevelopmental outcomes in preterm children at a group level. Machine learning 

methods enable a more individualised approach (10, 11). Machine learning has previously 

been used to classify preterm and FT individuals based on MRI data (11–13), and to 
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investigate whether MRI data can predict the longer-term neurodevelopmental functioning 

of individual preterm children (for example (14–16)). Support vector machines are a type of 

supervised machine learning algorithm that have been applied successfully and relatively 

frequently on cohorts of preterm children (11, 14, 15). We aimed to expand the application 

of support vector machine learning to investigate the effects of VP birth on tracts 

traditionally related to episodic memory and emotion in childhood.

This study uses data collected as part of a large longitudinal cohort study with previous 

publications (for example (1, 4, 5, 15, 17)). The current manuscript is the first to examine a 

broad range of tracts involved in episodic memory and emotion using tractography, and is 

the first to apply advanced machine learning methods to analyse tracts. In summary, our first 

aim was to investigate the volume and microstructure of several of the major tracts 

traditionally involved in episodic memory and emotion in VP children compared with FT 

children at age 7 years, including the cingulum, fornix, uncinate fasciculus, medial forebrain 

bundle and anterior thalamic radiation. Our second aim was to investigate whether the 

structure of these tracts is related to episodic memory and emotional outcomes in VP and FT 

children. While the specific roles of individual tracts in episodic memory and emotion are 

still not completely understood, we hypothesised that cingulum and fornix volume and 

microstructure would be most strongly related to episodic memory, while uncinate fasciculus 

and medial forebrain bundle volume and microstructure would be most strongly related to 

emotional outcome.

Methods

Participants

VP infants (born <30 weeks’ GA and/or <1250 g; n = 224) and FT infants (born ≥37 weeks’ 

GA; n = 46) were recruited during the neonatal period, between July 2001 and December 

2003, from the Royal Women’s Hospital, Melbourne. Infants with genetic or congenital 

abnormalities likely to affect development were excluded. At age 7 years, participants were 

invited to attend a follow-up study. Of the originally recruited participants, 198 VP 

participants (88% of the original cohort) and 43 FT participants (93% of the original cohort) 

attended the follow-up, of whom 159 VP and 36 FT participants had MRI. The study was 

approved by the Royal Children’s Hospital, Melbourne, Human Research Ethics Committee, 

and written informed consent was obtained from all parents or caregivers.

Magnetic resonance imaging

Participants underwent MRI in a 3T scanner (Siemens Tim Trio, Erlangen, Germany). All 

participants were scanned with two diffusion-weighted (single-shot twice-refocused echo 

planar imaging) sequences. The first sequence (‘b1200’) had multiple b-values ranging from 

50 to 1200 s/mm2 in increments of 50 (the same b-values were used for all children), 25 

gradient directions in total (i.e. one direction per b-value, except b = 300 and b = 600 had 

two directions), one b = 0 s/mm2 volume, repetition time = 12000 ms, echo time = 96 ms, 

field of view = 250 × 250 mm, matrix size = 144 × 144, and voxel size = 1.7 mm3. This was 

an advanced acquisition scheme at the time (2008 – 2011), and several studies utilising this 

type of multiple b-value sequence have been published (for example (18)). The second 
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sequence (‘b3000’) had b-values of 3000 s/mm2, 45 gradient directions, six b = 0 s/mm2 

volumes, repetition time = 7400 ms, echo time = 106 ms, field of view = 240 × 240 mm, 

matrix size = 104 × 104, and voxel size = 2.3 mm3.

Tractography

We reconstructed the white matter tracts from the b3000 images using MRtrix version 0.2. 

Tractography was performed manually over several years. While MRtrix3 became publicly 

available during the tractography (November 2013), we did not update the version in order 

to avoid introducing inconsistencies into the analysis. Tractography was based on the regions 

of interest detailed in Supplementary Table 1. After placing the regions of interest, we 

delineated the tracts using a probabilistic algorithm based on fibre orientation distributions 

provided by constrained spherical deconvolution (lmax 6) (19) (Figure 1).

Tractography was repeated on a subset of randomly selected participants to determine intra-

rater reliability for the single operator who delineated each tract. Intra-rater reliability for the 

cingulum was >0.8 (17). Intra-rater reliabilities for the remaining tracts are reported in 

Supplementary Table 2, and were all >0.8.

Tract measures

Diffusion tensor measures [fractional anisotropy (FA) and axial (AD), radial (RD), and mean 

(MD) diffusivities] were generated from the b1200 images. This involved correcting the 

images for motion and eddy current-induced distortions, incorporating b-matrix 

reorientation, and fitting the diffusion tensor model based on the weighted linear least 

squares method, using ExploreDTI software. We did not remove any volumes affected by 

motion, however we excluded participants if their diffusion images exhibited severe motion 

artefact based on visual inspection. Motion parameters for this sequence were similar 

between the groups (Supplementary Table 3).

Prior to Neurite Orientation Dispersion and Density Imaging (NODDI), we processed the 

images using the Functional MRI of the Brain Software Library (FSL). This involved: 1. 

linearly registering the b3000 images to the b1200 images using the FSL linear image 

registration tool (FLIRT) (20); 2. merging the two sequences together; 3. motion correcting 

the combined sequences using the ‘eddy_correct’ tool (incorporating b-vector reorientation); 

4. normalising each sequence separately by its b0 image/s to attempt to account for the 

different TEs and TRs between the sequences. Finally, we fitted the NODDI model to the 

combined sequences using the NODDI Matlab toolbox version 0.9 (21). NODDI is a multi-

compartment tissue microstructure model. The intracellular compartment is modelled as 

sticks, whose volume fraction represents the neurite density index (range 0–1). The 

orientation distribution of the sticks is modelled by a Watson distribution, which provides a 

measure of the neurite orientation dispersion index (range 0–1, from coherently aligned 

axons with low dispersion to bending, fanning or crossing axons with high dispersion) (21).

Diffusion tensor and NODDI images in b1200 space were aligned to tract (b3000) space 

using FLIRT (20). Tractography reconstructions from MRtrix were converted to probability 

(track density) images, thresholded at 0.01 (voxels with <10 out of 1000 streamlines were 

removed) and binarised. Resulting tract masks were multiplied by diffusion tensor images 
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and NODDI images that were in b3000 space. Diffusion tensor and NODDI values were 

averaged across all the voxels in each tract, and tract volumes were calculated (number of 

voxels in the tract masks multiplied by voxel volume in cm3).

Episodic memory and emotional outcome assessments

Verbal memory and learning was assessed at age 7 years using the California Verbal 

Learning Task- Children’s Version (22). The children were required to recall a list of 15 

words, which was presented over 5 trials. The variable of interest was the number of 

correctly recalled words over the 5 trials (verbal episodic memory and learning). Visual 

memory and learning was assessed using the Dot Locations Test from the Children’s 

Memory Scale (23). The children were required to recall the position of 6 dots presented on 

a 3 × 3 grid, which was presented over 3 trials. The variable of interest was the number of 

correct locations recalled over 3 trials (visual episodic memory and learning). Age 

standardised scores were used, with higher scores indicating better performance. Emotional 

problems were assessed using the Emotional Symptoms subscale of the parent-report 

Strengths and Difficulties Questionnaire (24). This subscale consists of five items assessing 

somatic complaints (e.g. headaches), anxiety (e.g. worries, fears, nervousness), and mood 

(e.g. unhappy, downhearted) (24). Higher scores indicate more emotional problems.

Statistical Analysis

Linear regression

Linear regressions were performed using Stata version 14. All linear regression models were 

fitted using generalised estimating equations to account for correlations between data from 

multiple births. Additionally, all linear regression analyses were performed separately for all 

the tract measures (left and right FA, AD, RD, MD, neurite orientation dispersion, neurite 

density and tract volume); hence the total number of participants with data for each tract 

could be included in each analysis.

Firstly, we compared tract measures between the VP and FT groups, adjusted for age at MRI 

and sex, and analyses with tract volumes were additionally adjusted for intracranial volume, 

to determine whether findings were independent of overall head size. We repeated these 

analyses with a sex-by-group interaction term, to investigate whether the group differences 

in tract measures differed between males and females.

Secondly, we explored associations between the tract measures and episodic memory and 

emotional outcomes in all children. We adjusted for age at neurodevelopmental assessment, 

sex, GA at birth and global brain abnormality score on term MRI (25), given these factors 

have previously been associated with neurodevelopmental outcomes in VP children (1, 26). 

Analyses with tract volumes were also adjusted for intracranial volume. We repeated these 

analyses with a group-by-tract measure interaction term, to investigate whether the tract 

measure-outcome relationships differed between the VP and FT groups. We also repeated 

these analyses with a sex-by-tract measure interaction term, to investigate whether the tract 

measure-outcome relationships differed between males and females.
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All linear regression analyses were false discovery rate (FDR)-corrected for the number of 

tracts and tract measures (12 by 7 = 84 comparisons); only results that were significant at 

p<0.05, FDR-corrected are reported.

Machine learning

Machine learning involves building statistical models that can learn from and make 

predictions about data (10). A set of features (that is, independent variables) is used to 

predict outcome measurements (that is, dependent variables). Supervised learning involves 

using ‘training’ data, in which both features and outcomes are known for a set of study 

participants, to build a model which can be applied to new ‘test’ data to predict unknown 

outcomes for a set of participants. Support vector machines are a type of supervised learning 

algorithm. Support vector classification can be used to predict categorical outcomes, while 

support vector regression can be used to predict continuous outcomes (10).

Support vector machine analyses were performed using scikit-learn version 0.17.1 (27), 

implemented in Python (version 3.5.2). Linear support vector classification was used to 

investigate the ability of all the tract measures combined to classify VP and FT children. We 

used all tract measures as features; hence these analyses were restricted to children who had 

data for all tracts (116 VP children and 28 FT children). All feature measurements were 

normalised by demeaning and scaling to unit variance prior to model training. Age at MRI, 

sex and intracranial volume were regressed from all the features prior to using them in the 

classification model. We tested internal model generalisation ability using a five-fold 

stratified cross-validation with an 80%/20% train/test split. Stratified folds ensure that the 

proportions of VP and FT participants in the training and test subsets in each fold are 

approximately the same as the proportions of VP and FT participants in the entire cohort, 

and no participants are present in multiple folds. The linear support vector classification 

model adopted in this study used l2 penalty, squared-hinge loss functions and a balanced 

class weighting given the unbalanced number of VP and FT participants. The best value of 

the tuning parameter C, which controls the trade-off between training data classification 

accuracy and generalisability, was chosen according to a nested three-fold cross-validation 

loop within each training fold using a grid search with values of 10−3, 10−2, 10−1, 

100,101,102, 103.

Accuracy and balanced accuracy scores were calculated for each fold with a final estimate of 

model accuracy given by the average across the five folds. We calculated balanced accuracy 

as the proportions of VP and FT children were not equal. Balanced accuracy is the average 

of the true positive rate (proportion of VP correctly predicted) and true negative rate 

(proportion of FT correctly predicted), and should therefore better reflect the accuracy 

across both groups (28). To test whether the accuracy scores were significant, we performed 

permutation testing, with 5000 permutations.

We performed support vector regression to investigate the ability of the tract measures to 

predict episodic memory and emotional outcomes in the VP and FT children. Features were 

standardised as above, and five-fold cross-validation was used to evaluate model 

generalisation ability. The best value of C was chosen from the values of 100, 101, 102 using 

three-fold nested cross-validation. Model accuracy was determined using the Pearson’s 
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correlation between true episodic memory or emotional scores and predicted scores 

averaged over the five folds. Model significance was tested using 5000 permutations.

Results

Participant characteristics

Of the 159 VP and 36 FT children who had MRI, we excluded 18 children (15 VP, 3 FT). 

This was because the diffusion MRI acquisitions of these children were not completed, were 

incorrect and/or were affected by motion artefact, for the b1200 (n= 3), b3000 (n= 13), or 

both the b1200 and b3000 (n= 2) sequences. This meant we generated data (tractography, 

diffusion tensor and NODDI data) for a maximum of 144 VP and 33 FT participants. All of 

these participants had cingulum and medial forebrain bundle data. We excluded additional 

participants’ data for other tracts, because certain image artefacts and brain structural 

abnormalities are not uniform across the brain and affected certain tracts more than others 

(for example, cardiac pulsation artefact affected the fornix due to its proximity to the 

ventricles), and certain tracts are more difficult to delineate than others due to unique 

characteristics of each tract such as size, thickness, and curvature (29). Of the 144 VP and 

33 FT participants with cingulum and medial forebrain bundle data, we excluded 22 (20 VP, 

2 FT) children for the fornix, 12 (9 VP, 3 FT) children for the uncinate fasciculus, and five (5 

VP, 0 FT) children for the anterior thalamic radiation (some of these excluded VP children 

overlapped). This left 144 VP and 33 FT children with data for the cingulum and medial 

forebrain bundle, 124 VP and 31 FT children with data for the fornix, 135 VP and 30 FT 

children with data for the uncinate fasciculus, and 139 VP and 33 FT children with data for 

the anterior thalamic radiation. All these children were included in each separate linear 

regression analysis of each tract measure. Because some of the VP children excluded for the 

fornix, uncinate fasciculus and anterior thalamic radiation overlapped, we were left with a 

total of 116 VP and 28 FT children who had complete data for all tracts, and these data were 

included in the machine learning analyses.

Rates of major brain injuries (cystic periventricular leukomalacia and intraventricular 

haemorrhage) were low in the VP group, although as expected the VP group had more 

medical complications than the FT group (Table 1). Age at MRI and the proportion of males 

and females were similar between groups. The VP group had poorer verbal and visual 

episodic memory scores, and trended towards having greater emotional symptoms, at age 7 

years compared with the FT group (Table 1).

Fewer VP participants had postnatal corticosteroids, and more VP participants were from 

multiple births, compared with VP nonparticipants. Otherwise, characteristics were similar 

between participants and nonparticipants (data not shown).

Very preterm children compared with full-term children

Linear regression—Bilaterally, the fornix had significantly higher MD, AD, RD and 

neurite orientation dispersion, and lower volume in the VP children compared with the FT 

children. Additionally, the left fornix had significantly lower neurite density in the VP 

children compared with the FT children (Figure 2). The left superior-lateral medial forebrain 
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bundle had significantly higher neurite orientation dispersion in the VP children compared 

with the FT children (Figure 2). Volume of the anterior thalamic radiation was significantly 

higher in VP children compared with FT children (Figure 2). There were no significant 

group-by-sex interactions.

Support vector classification—After regressing age at MRI, sex and intracranial 

volume from the features, the tract measures significantly predicted group status with a 

cross-validated mean (95% CI) accuracy of 72.9 (56.2, 89.5) %, p = 0.009, and a cross-

validated mean (95% CI) balanced accuracy of 62.7 (37.7, 87.6) %, p = 0.009. Fewer FT 

children [16/28 (57.1%)] were correctly classified compared with VP children [103/116 

(88.8%)].

Relationships with neurodevelopmental outcomes

Linear regression—Higher FA and lower MD and RD in the left uncinate fasciculus, 

lower MD and RD in the left cingulum, lower MD and RD in the right superior-lateral 

medial forebrain bundle, and lower RD in the right anterior thalamic radiation were 

significantly associated with better verbal episodic memory and learning in both groups, 

independent of GA at birth and neonatal brain abnormality score (Figure 3). After 

adjustment for the potentially confounding variables and multiple comparison correction, 

associations between tract measures and visual episodic memory and learning and emotional 

symptoms were not significant (data not shown). All tract measure-outcome associations did 

not significantly differ between the VP and FT groups, except for the relationship between 

left superior-lateral medial forebrain bundle AD and emotional symptoms (stronger positive 

association in the FT group versus weaker negative relationship in the VP group; data not 

shown). All tract measure-outcome associations did not differ significantly between males 

and females.

Support vector regression—The support vector regression model using all tract 

measures did not significantly predict episodic memory and emotional scores in the VP and 

FT children (all p-values for correlations between true and predicted scores were >0.3; 

Supplementary Figure 1).

Discussion

Effect of very preterm birth on white matter tracts

The structure of major white matter tracts traditionally related to episodic memory and 

emotion, the fornix and medial forebrain bundle, was altered in VP children compared with 

FT children at age 7 years. This could be caused by ischaemic or inflammatory insults, or 

secondary alterations in white matter development (31). Understanding the underlying 

cellular changes is challenging given the indirect nature of the diffusion measures. The 

NODDI measures used in the current study provided increased specificity to cellular 

properties (neurite density and orientation dispersion) compared with diffusion tensor 

measures (21). Our results are consistent with many previous studies that have reported 

volume and microstructural differences in various white matter tracts between preterm and 

FT children, including in the tracts examined in the current paper (6–9). Our findings for the 
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fornix are largely consistent with previous studies, which found lower fornix volume in 

preterm children compared with FT children (6, 7), as well as altered fornix microstructure 

in preterm children compared with FT children, although our differences were in the AD, 

RD, MD, neurite density and neurite orientation dispersion parameters, whereas the previous 

studies found no difference in RD, but differences in an alternative microstructure measure, 

hindrance modulated orientational anisotropy (HMOA) (6, 7). This difference in findings 

could be related to the differences in scanners, sequences, and image processing pipelines 

between studies. In line with our study, previous studies found no microstructural 

differences in the cingulum between preterm and FT groups (6, 7, 9), although in contrast to 

our study, previous studies found lower cingulum volume in the preterm group compared 

with the FT group (6, 7). There are also some conflicting findings in studies on the uncinate 

fasciculus. We found no significant differences in uncinate fasciculus volume and 

microstructure between VP and FT children, whereas other studies found lower FA in the 

uncinate fasciculus in preterm children compared with FT controls (8, 9). Additionally, a 

previous study found higher FA in the anterior thalamic radiation in preterm children 

compared with FT controls (9), whereas we found no microstructural differences in this tract 

between VP and FT children, although we did find higher anterior thalamic radiation volume 

in the VP group compared with the FT group. These differences in results could be related to 

differing analysis methods and sample characteristics between studies. In particular, all 

previous studies were based on older participants than the current sample of 7-year-old 

children (19-year-olds in (6), 30-year-olds in (7), 12-year-olds in (8), and 9–17-year-olds in 

(9)). Tracts such as the cingulum, uncinate fasciculus and anterior thalamic radiation 

demonstrate ongoing development over adolescence and young adulthood such as increasing 

myelination and axon density (32), and hence group differences in tract measures are likely 

to change over time, and developmental delays related to VP birth may become more 

apparent with age in these developmentally-sensitive tracts.

Our support vector classification model used tract data to significantly classify VP and FT 

children. This suggests that VP-born individuals have distinct white matter tract 

development from FT-born individuals, and this can be detected by machine learning 

techniques, even 7 years after birth. While this analysis was purely for research purposes 

because the GA of an individual is already known at birth, accurate classification is 

important as it demonstrates that the support vector machine model is able to predict based 

on the tract measures whether a child has white matter structure that is more indicative of a 

VP or FT individual (11). Our classification performance is similar to previous studies (11–

13). These previous studies used grey matter data from structural MRI to achieve 86–93% 

accuracy in classifying preterm and FT 12–17-year-olds (11), and used functional MRI data 

to achieve >80% accuracy in classifying preterm and FT infants (12, 13). Hence, data from 

multiple MRI modalities and brain regions appear able to classify VP from FT children 

using machine-based learning. This success justifies further investigation into whether 

machine learning algorithms can be used to predict the neurodevelopmental outcomes of VP 

individuals.
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Relationship between white matter tracts and episodic memory and emotion

Although weaker than the differences in tract structure between the VP and FT children, the 

linear regression results provided some evidence for associations between the tracts and 

verbal episodic memory and learning outcome in VP and FT children, independent of 

several key perinatal risk factors known to influence long-term neurodevelopmental 

outcomes. Our findings provide further support that these tracts have a role in episodic 

memory (3), and that alterations to these tracts may contribute to episodic memory 

difficulties in VP children (6, 7). Interestingly, fornix microstructure differed between VP 

and FT children, but was not related to episodic memory outcome, whereas other tracts that 

did not differ between VP and FT children (cingulum and uncinate fasciculus) were related 

to episodic memory. Additionally, the medial forebrain bundle (superior-lateral aspect) 

microstructure both differed between VP and FT children and was related to episodic 

memory outcome. The mechanisms behind these associations can only be speculated, but 

may reflect importance of the cingulate and orbitofrontal cortices in episodic memory in VP 

and FT children. The cingulum, anterior thalamic radiation, uncinate fasciculus and 

superior-lateral medial forebrain bundle have direct connections to these regions, whereas 

the fornix does not (3, 33).

Despite linear regressions revealing some associations between the tract measures and verbal 

episodic memory outcome, support vector regression results suggested that the ability of the 

tract measures as a whole to predict concurrent episodic memory outcome is limited. This 

discrepancy is an important finding. The effect sizes from linear regression were modest, 

and there were few strong associations from linear regression compared with the number of 

tests performed. Additionally, the statistical power of neuroimaging studies in general tends 

to be low, which can lead to overestimated effect sizes (34). Consequently, the strength of 

the reported associations from linear regression may be upwardly biased. This could explain 

why these associations perform poorly when testing in small, out-of-sample datasets using 

support vector regression. Additionally, there may be little extra information to be gained by 

including all the tracts in one machine learning model, due to shared variance between the 

tracts, as investigated previously using principal component analysis (35). Unlike the current 

findings, previous machine learning studies have found that MRI data can predict 

neurodevelopmental outcomes of preterm children (14–16). These studies used whole brain 

structural and diffusion MRI data from neonates, which may have better predictive ability 

compared with our specific white matter tracts studied later in childhood. However, our aim 

was not to achieve better predictive ability than previous studies, but rather to expand the use 

of machine learning to improve our understanding of the effects of VP birth on tracts that are 

traditionally related to episodic memory and emotion in childhood.

Strengths and limitations

Strengths of our study include the large sample of children followed up until age 7 years, 

and the use of advanced statistical analyses in addition to traditional regression analyses. 

However, loss of participants to follow up or not having useable MRI data meant that a 

maximum of 144 (64%) of the original cohort of VP children and 33 (72%) of the original 

cohort of FT children could be included in the current study, and numbers were even smaller 

for the support vector machine analyses, which required complete data from all participants. 
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This reduced our power to predict neurodevelopmental outcomes and limits the 

generalisability of our results. The number of VP children included in our study is generally 

similar or larger than other studies in the field, and the number of FT controls included in 

our study is generally similar to other studies in the field (6–9), however we acknowledge 

that we had fewer FT controls than VP children and that the unbalanced groups could affect 

the support vector classification. We attempted to address the unbalanced groups by 

performing balanced class weighting within the support vector classification, and calculating 

balanced accuracy, which is a better reflection of accuracy for both groups. Future studies 

could recruit more FT controls to further minimise any bias of unbalanced samples on 

classification. Additionally, while we used K-Fold cross-validation with a partially nested 

cross-validation for parameter tuning, future studies could use nested cross-validation to 

reduce bias on support vector machine performance estimates (36). Given our interest in 

examining the neural correlates of emotional outcomes, we selected the Emotional 

Symptoms subscale of the Strengths and Difficulties Questionnaire. However, we 

acknowledge this is a brief screening measure and more comprehensive measures of 

emotional outcome are required to replicate our findings. Many of the tracts delineated, 

particularly the fornix, are located close to the lateral ventricles, exacerbating the risk of 

cerebrospinal fluid contamination of the microstructural measures. We tested whether 

cerebrospinal fluid contamination could be influencing our group differences from linear 

regression by adjusting for cerebrospinal fluid volume obtained using FreeSurfer, and results 

were similar (data not shown). Future studies could improve tractography further by using 

advanced methods for estimating the fibre orientation distribution, such as Multi-Shell 

Multi-Tissue constrained spherical deconvolution or Single-Shell 3-Tissue constrained 

spherical deconvolution (37, 38).

Conclusions

The volume and microstructure of some tracts traditionally related to episodic memory and 

emotion are altered in VP children compared with FT children. This altered structure can be 

detected by machine learning techniques. Specific tracts, including the cingulum, uncinate 

fasciculus, anterior thalamic radiation and medial forebrain bundle, were associated with 

episodic memory outcome in VP and FT children, independent of several important 

perinatal risk factors. Despite this, the ability of tract structure to predict the episodic 

memory outcome of individual children was limited.

This study contributes important information towards understanding the long-term neural 

changes following VP birth, and how these might contribute to adverse episodic memory 

outcomes. Studies applying machine learning methods are critical for improving knowledge 

in the field. More broadly, such studies are a necessary first step towards understanding 

whether MRI data can aid in the identification of individual VP children who are at risk of 

adverse neurodevelopmental outcomes, and who may benefit from interventions to improve 

their outcomes. Future studies using larger datasets acquired as early as possible and testing 

a broader range of machine learning algorithms would be worthwhile for advancing 

knowledge in the field.
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Refer to Web version on PubMed Central for supplementary material.
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Impact

• We studied white matter fibre tracts thought to be involved in episodic 

memory and emotion in very preterm and full-term children using diffusion 

MRI and machine learning

• Very preterm children have altered fornix and medial forebrain bundle 

structure compared with full-term children

• Altered tract structure can be detected using machine learning, which 

accurately classified very preterm and full-term children using tract data

• Altered cingulum, uncinate fasciculus, medial forebrain bundle and anterior 

thalamic radiation structure was associated with poorer episodic memory 

skills using linear regression

• The ability of tract structure to predict episodic memory and emotional 

outcomes of individual children based on support vector regression was 

limited
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Figure 1. 
Tractography reconstructions in one representative full-term child. Tracts are shown for the 

right hemisphere only. We have attempted to reconstruct most of the major tracts that are 

shown in Catani et al.’s diagram of the limbic system, and the colours of our tracts match 

those in Figure 8 in Catani et al (3).
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Figure 2. Comparisons of tract measures between very preterm and full-term children, from 
linear regression models.
Points represent mean differences between groups, and error bars represent 95% CI. Circle 

points indicate analyses with left hemisphere (LH) tract measures; triangle points indicate 

analyses with right hemisphere (RH) tract measures. Analyses are adjusted for age at 

magnetic resonance imaging and sex (and intracranial volume for tract volume measures 

only). Asterisks indicate the mean difference was significant at p<0.05, false discovery rate-

corrected for the number of tracts and the number of tract measures. Units of axial, radial 

and mean diffusivities: ×10–3 mm2/s; units of tract volumes: cm3. ATR= anterior thalamic 
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radiation; IM-MFB= inferior-medial medial forebrain bundle; SL-MFB= superior-lateral 

medial forebrain bundle.
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Figure 3. Associations between tract measures and verbal episodic memory in very preterm and 
full-term children, from linear regression models.
Points are regression coefficients (change in the verbal episodic memory score per unit 

change in the tract measure), and error bars are 95% CI. Circle points indicate analyses with 

left hemisphere (LH) tract measures; triangle points indicate analyses with right hemisphere 

(RH) tract measures. Analyses are adjusted for age at neurodevelopmental assessment, sex, 

gestational age at birth, and neonatal brain abnormality score, as well as intracranial volume 

for the tract volume plot only. Asterisks indicate the association was significant at p<0.05, 

false discovery rate-corrected for the number of tracts and the number of tract measures. 
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Units of axial, radial and mean diffusivities: ×10–3 mm2/s; units of tract volumes: cm3. 

ATR= anterior thalamic radiation; IM-MFB= inferior-medial medial forebrain bundle; SL-

MFB= superior-lateral medial forebrain bundle.
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Table 1.

Perinatal medical characteristics and 7-year neurodevelopmental outcomes of the participants included in the 

current study, contrasted between the very preterm and full-term groups.

Characteristic Very preterm, n=144 Full-term, n=33
Mean difference or odds 

ratio
a
 (95% CI)

P-value

Perinatal characteristics
b

Gestational age at birth in weeks, mean (SD, min-
max) 27.5 (1.9, 22–32) 38.9 (1.3, 37–41) −11.33 (−12.01, −10.66) NA

Birth weight in g, mean (SD, min-max) 977 (223, 414–1425) 3244 (501, 2390–
4290) −2267 (−2379, −2155) NA

Birth weight SD score, mean (SD) −0.50 (0.91) 0.01 (0.92) −0.51 (−0.86, −0.16) NA

Small for gestational age, n (%) 12 (8) 1 (3) 2.91 (0.36, 23.20) 0.313

Males, n (%) 70 (49) 16 (48) 0.99 (0.47, 2.12) 0.990

Cystic periventricular leukomalacia, n (%) 5 (3) 0 (0) NA NA

Intraventricular haemorrhage grade 3/4, n (%) 5 (3) 0 (0) NA NA

Antenatal corticosteroids, n (%) 126 (88)
c 0 (0) NA NA

Postnatal corticosteroids, n (%) 8 (6)
c 0 (0) NA NA

Bronchopulmonary dysplasia, n (%) 44 (31) 0 (0) NA NA

Infection, n (%) 46 (32) 1 (3) 15.02 (1.99, 113.34) 0.009

Multiple birth, n (%) 70 (49) 2 (6) 14.66 (3.38, 63.56) <0.001

7-year characteristics

Corrected age at MRI in years, mean (SD, min-max) 7.5 (0.2, 6.6–8.1) 7.6 (0.2, 7.2–8.0) −0.06 (−0.16, 0.03) 0.155

Intracranial volume in cm3, mean (SD) 1397 (118) 1503 (103) −106 (−150, −62) <0.001

Corrected age at neurodevelopmental assessment in 
years, mean (SD) 7.5 (0.2) 7.6 (0.2) −0.06 (−0.15, 0.03) 0.162

Full-scale IQ score
d
, mean (SD) 99.2 (12.9) 109.5 (11.4) −10.26 (−15.09, −5.43) <0.001

Full-scale IQ score < 85, n (%) 16 (11) 1 (3) 4 (0.5, 31.3) 0.187

Score for verbal memory/learning, mean (SD) 49.6 (10.3) 53.7 (12.8) −4.14 (−8.25, −0.04) 0.048

Score for visual memory/learning, mean (SD) 9.6 (3.2) 11.4 (2.3) −1.83 (−2.99, −0.68) 0.002

Score for emotional symptoms, mean (SD) 2.4 (2.3)
e

1.6 (1.9)
f 0 80 (−0.10, 1.71) 0.082

a
When mean (SD) per group are reported, corresponding mean differences (95% CI) between groups are provided. When n (%) per group are 

reported, corresponding odds ratios (95% CI) are provided, which represent the odds of the outcome in the very preterm group relative to the full-
term group.

b
Perinatal data were collected by chart review. Birth weight SD score was calculated as each infant’s weight relative to that expected for sex and 

gestational age using a British Growth Reference dataset. Small for gestational age was defined as more than two SD below the mean birthweight 
SD score. Bronchopulmondary dysplasia was defined as oxygen requirement at 36 weeks. Cystic periventricular leukomalacia and intraventricular 
haemorrhage were diagnosed from routine cranial ultrasound prior to term-equivalent age. Intraventricular haemorrhage was graded according to 
Papile et al (30). Infection was defined as sepsis and/or proven necrotising enterocolitis.

c
n=1 with missing data.

d
IQ was assessed using the Wechsler Abbreviated Scale of Intelligence.

e
n=7 with missing data

Pediatr Res. Author manuscript; available in PMC 2021 May 31.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kelly et al. Page 22

f
n=3 with missing data.
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