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Hidden symmetry and protection 
of Dirac points on the honeycomb 
lattice
Jing-Min Hou1 & Wei Chen2

The honeycomb lattice possesses a novel energy band structure, which is characterized by two 
distinct Dirac points in the Brillouin zone, dominating most of the physical properties of the 
honeycomb structure materials. However, up till now, the origin of the Dirac points is unclear yet. 
Here, we discover a hidden symmetry on the honeycomb lattice and prove that the existence of 
Dirac points is exactly protected by such hidden symmetry. Furthermore, the moving and merging 
of the Dirac points and a quantum phase transition, which have been theoretically predicted and 
experimentally observed on the honeycomb lattice, can also be perfectly explained by the parameter 
dependent evolution of the hidden symmetry.

Graphene, a honeycomb lattice of carbon atoms, has attracted extraordinary attention in the last decade, 
due to its remarkable properties and potential applications1–4. The band structure of this exotic material is 
characterized by two distinct Dirac points in the Brillouin zone, dominating most of its physical results. 
Although there are a multitude of researches on graphene and other honeycomb lattices5–13, the origin of 
the Dirac points is still unclear. According to the von Neumann-Wigner theorem14,15, there must be some 
symmetry to protect the Dirac points on the honeycomb lattice, while the robustness of Dirac points 
during the deformation of the lattice structure16 excludes the possibility of a point group protection. The 
time-reversal and inversion symmetries are known to stabilize the Dirac points on the honeycomb lattice 
in a limited parameter range, i.e., once they are there, the Dirac points cannot be destroyed by small 
perturbations preserving those symmetries17,18. However, these symmetries are not sufficient to guarantee 
the existence of the Dirac points on the honeycomb lattice (see supplementary information), because 
strong perturbations preserving these symmetries can induce the annihilation of Dirac points19–23. As a 
result, a novel symmetry is expected to be responsible for the Dirac points.

In this paper, we unveil the mysterious story behind the Dirac points by showing that they are exactly 
protected by a kind of hidden symmetry on the lattice structure. As its name suggests, the hidden sym-
metry is not so obvious as usual symmetries such as the point group symmetry. In general, it can be 
described by a composite antiunitary operator, which consists of a translation, a complex conjugation, 
and a sublattice exchange, and sometimes also a local gauge transformation and a rotation, or is the 
extension of the composite operator by a mapping method. This kind of symmetry is seldom studied 
before and was firstly discovered by one of the authors in a toy model24,25. We find that the hidden sym-
metry on the honeycomb lattice evolves along with the variation of the parameters, which can perfectly 
explain the moving and merging of the Dirac points and the quantum phase transition on the honey-
comb lattice that have been theoretically predicted19–23 and experimentally observed16.

Results
Model.  To be specific, we consider the general honeycomb lattice as shown in Fig.  1(a), where we 
define a bond angle θ as the angle between the bonds on the zigzag line and the horizontal direction. The 
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general honeycomb lattice model with the bond angle θ can be well described by the Bloch Hamiltonian 
as (the unit bond length is adopted)

 θ θ σ

θ θ σ

( ) = − ( ) ( ) +

+ ( ) ( ) − , ( )

θ t k k t k
t k k t k

k [2 cos cos cos sin cos ]
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x y y x
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where t1 and t 2 denote the amplitudes of hopping as sketched in Fig. 1(a); σx and σy are the pauli matrices 
defined in the sublattice space (for detail see supplementary information). Diagonalizing equation (1), 
we obtain the dispersion relation as

θ θ θ( ) = ± ( ) + ( ) ( + ) + . ( )θE t cos k t t k k tk 4 cos 4 cos cos cos[ 1 sin ] 2x x y1
2 2

1 2 2
2

Concretely, when θ π= /6, the lattice is the ideal honeycomb lattice, such as graphene, which has the 
Bloch Hamiltonian as

 σ
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and the dispersion relation as ( ) = ± ( / ) + ( / ) ( / ) + .E t k t t k k tk 4 cos 3 2 4 cos 3 2 cos 3 2h x x y1
2 2

1 2 2
2  

When θ =  0, the lattice reduces to the brick-wall lattice as shown in Fig. 1(b), which has the correspond-
ing Bloch Hamiltonian as

 σ σ( ) = − + − , ( )t k t k t kk [2 cos cos ] sin 4b x y x y y1 2 2

and the corresponding dispersion relations as ( ) = ± + +E t k t t k k tk 4 cos 4 cos cosb x x y1
2 2

1 2 2
2 . 

We find that, for the ideal honeycomb lattice and the brick-wall lattice with the parameters =t t1 2, the 
band structures are both gapless and have the Dirac points at π(± / , )4 3 3 0  and π(± / , )2 3 0  in the 

Figure 1.  The lattices and the dispersion relations. (a) Schematic of the honeycomb lattice. θ denotes the 
angle between the bonds on the zigzag line and the horizontal direction; t1 and t2 represent the amplitudes 
of hopping. (b) Schematic of the brick-wall lattice, which can be regarded as a special case of the 
honeycomb lattice with θ =  0. (c) Schematic of the square lattice. The arrows represent a hopping-
accompanying π phase; tx and t y represent the amplitudes of hopping. In (a), (b,c), the blue and green balls 
represent the lattice sites in sublattices A and B, respectively. (d) The dispersion relation for the honeycomb 
lattice model with θ π= /6 and = =t t t1 2 . (e) The dispersion relation for the brick-wall lattice model with 
= =t t t1 2 . (f) The dispersion relation for the square lattice model with = =t t tx y .
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Brillouin zones (for the definitions of the Brillouin zones see Methods) as show in Fig.  1(d,e), 
respectively.

In order to find the hidden symmetry behind the the honeycomb lattice, an auxiliary square lattice 
with a hopping-accompanying π phase is introduced as well, as shown in Fig. 1(c), which has an intrin-
sic relation with the honeycomb lattice. The Bloch Hamiltonian for the square lattice can be written as

 σ σ( ) = − − , ( )t k t kk 2 cos 2 sin 5s x x x y y y

where tx and ty represent the amplitudes of hopping along the horizontal and vertical directions, respec-
tively (for detail see supplementary information). The corresponding dispersion relation is

( ) = ± + , ( )E t cos k t sin kk 4 4 6s x x y y
2 2 2 2

which is gapless and has Dirac points at π(± / , )2 0  in the Brillouin zone as shown in Fig. 1(f).
Geometrically, the square lattice can transform into the ideal honeycomb lattice continuously in two 

steps. First, the square lattice changes into the brick-wall lattice when the amplitude of hopping with a 
π phase is tuned to zero, and then reaches the ideal honeycomb lattice by a deformation of the bond 
angle θ from 0 to π/6, which can be understood with the help of Fig. 1(a–c). Besides the intuitive relation 
between these lattice structures in the real space, their band structures also strongly correlate to each 
other. The energy bands are all characterized by two linear Dirac cones in the Brillouin zone as shown 
in Fig. 1(d–f). More importantly, these Dirac points are able to evolve continuously into each other with 
the variation of the lattice parameters. For the general honeycomb lattice with β =  1 (β is defined as the 
hopping amplitude ratio β = / )t t2 1 , the corresponding Dirac points locate at π θ(± / , )2 3 cos 0  in the 
Brillouin zone. As a result, when the bond angle θ varies from π/6 to 0, the lattice first changes from the 
ideal honeycomb lattice into the brick-wall lattice, inducing a shift of the Dirac points from π(± / , )4 3 3 0  
to π(± / , )2 3 0 , as shown in Fig.  1(d,e). Starting from the brick-wall lattice, the square lattice can be 
obtained by turning on the amplitude of hopping with a π phase from 0 to −t y. Accordingly, the corre-
sponding Dirac points evolve from π(± / , )2 3 0  to π(± / , )2 0 , as shown in Fig. 1(f). It is impressive that 
during the whole evolution of the lattice, the Dirac points are always stable without any gap opening. We 
will show that this property can be perfectly explained by the protection of the hidden symmetry of the 
lattice structures.

Hidden symmetry on the auxiliary square lattice and protection of Dirac points.  Firstly, we 
consider the auxiliary square lattice as shown in Fig. 1(c). One can verify that the square lattice is invar-
iant under the action of the operator defined as

σϒ = ( ) , ( )π
ˆe KT 7i i

x x
y

where ˆTx is a translation operator that moves the lattice along the horizontal direction by a unit vector x̂
; K is the complex conjugate operator; σx is the Pauli matrix representing the sublattice exchange; ( )πei i y 
is a local ( )U 1  gauge transformation and i y is the y component of the coordinate of lattice sites. Figure 2 
schematically shows the invariance of the square lattice under the action of the hidden symmetry ϒ . This 
kind of transformation invariance indicates a hidden symmetry of the square lattice24. It is easy to prove 
that the symmetry operator ϒ  is antiunitary, and its square is equal to ϒ = ˆT x

2
2 .

Mathematically, the hidden symmetry operator ϒ  can be considered as a self-mapping of the square 
lattice model defined as

 ′ ′ϒ ( , ( ), Ψ ( )) ( , ( ), Ψ′ ( )), ( )′, ,k k r k k r: 8s s s sk k

where Ψ ( ), rs k  and Ψ′ ( )′, rs k  are the Bloch functions of the square lattice model. We suppose that the Bloch 
functions of the square lattice model have the form as
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nk k  with = ,i 1 2. Then, the hidden symmetry operator ϒ  acts on the Bloch 
functions as follows
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Comparing equation(10) with equation(9), we have πϒ ( , ) ( ′, ′ ) = (− , − + )k k k k k k: x y x y x y , which 
can be regarded as the transformation of the wave vector under the action of the operator ϒ . If 
′ = +k k Km

s , where Km
s  is a reciprocal lattice vector for the square lattice, then we can say that k is a ϒ

-invariant point. In the Brillouin zone, the ϒ -invariant points are π= (± / , ),M 2 01 2  and π= ( , ± / ),M 0 23 4 . 
After the hidden symmetry operator acts on the Bloch function twice, we have 
ϒ Ψ ( ) = Ψ ( ) = Ψ ( ), ,

−
,ˆT er r rs x s

ik
sk k k

2
2

2 x . We define ψ ϕ( , ) as the inner product of the two wave functions 
ψ and ϕ. The antiunitary operator ϒ has the property that ψ ϕ ψ ϕ ϕ ψ(ϒ , ϒ ) = ( , ) = ( , )⁎ . Therefore, at 
the ϒ-invariant point Mi in the Brillouin zone, we have

(Ψ′ , Ψ ) = (ϒΨ , ϒΨ′ ) = (ϒΨ , ϒ Ψ )

= (Ψ′ , Ψ ), ( )

, , , , , ,

−
, ,e 11
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2

2
i i i i i i
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where Mix is the x component of the ϒ -invariant point Mi and the input of the Bloch functions is omitted 
for convenience. For the ϒ -invariant points ,M1 2, where π= ± /M 2ix , we have ϒ = −12 , then we obtain 
the solution (Ψ′ , Ψ ) =, , 0s sM Mi i

, that is to say, Ψ′,s Mi
 and Ψ ,s Mi

 are orthogonal to each other. While, for the 
ϒ -invariant points M3,4, where =M 0ix , we have ϒ = 12 , so (Ψ′ , Ψ ), ,s sM Mi i

 is unconstrained for equation 
(11). Therefore, we arrive at the conclusion that the system must be degenerate at points ,M1 2, which are 
just the locations of the Dirac points as shown in Fig. 1(f). From the above discussion, one can see that 
the Dirac points on the auxiliary square lattice are exactly protected by the hidden symmetry ϒ .

Mapping from the honeycomb lattice into the square lattice.  In this section, we define a map-
ping from the honeycomb lattice into the auxiliary square lattice. In order to interpret this mapping in an 
intuitive way, we divide it into two mappings. The first one is the mapping from the general honeycomb 
lattice model with the bond angle θ into the brick-wall lattice model and the second one is the mapping 

Figure 2.  Schematic of the invariance of the square lattice under the action of the hidden symmetry ϒ. 
The hidden symmetry consists of a translation transformation ˆTx, a complex conjugation K, a sublattice 
exchange σx and a local ( )U 1  gauge transformation ( )πei i y in order. Here, the arrows represent a hopping-
accompanying π phase.
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from the brick-wall lattice model with the hopping amplitude ratio β into the square lattice model. In 
the following, we explain these in detail.

The mapping ω1,θ from the honeycomb lattice into the brick-wall lattice.  The general honeycomb lattice 
model with the bond angle θ is equivalent with the brick-wall lattice model in some sense. To manifest 
this equivalence, we define a mapping ω θ,1  from the general honeycomb lattice model into the brick-wall 
lattice model as

 ( )ω ( , ( ), Ψ ( )) , ( ), Ψ ( ) , ( )θ θ θ, , ,k k r p p r: 12b bk p1

where Ψ ( )θ, rk  and Ψ ( ), rb p  are the Bloch functions of the honeycomb lattice with the bond angle θ and 
the brick-wall lattice, respectively. To find the explicit form of the mapping, we take a transformation on 
the Bloch Hamiltonian (equation(1)) as  ( ) = ( )θ

θ
θ

θ
′

−S Sk kk k
1, where the transformation matrix θSk  is 
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with θ θ= ( ) ( ) +θA t k k t k2 cos cos cos sin cosx y yk 1 2 ,  θ θ= − ( ) ( )θB t k t k ksin 2 cos cos sin siny x yk 2 1 , 
θ θ= ( ) + ( + )θC t k t k2 cos cos cos[ 1 sin ]x yk 1 2  and θ= ( + )θD t ksin[ 1 sin ]yk 2 , satisfying the 

identity ( ) + ( ) = ( ) + ( )θ θ θ θA B C Dk k k k
2 2 2 2

. When ( ) + ( ) =θ θA B 0k k
2 2

, the transformation matrix θSk  is 
ill-defined. For the continuity of the mapping, when ( ) + ( ) =θ θA B 0k k

2 2
, we take the limit as the defi-

nition of θSk . After the transformation, we then obtain
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θ σ
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Substituting θ= /k p cosx x  and θ= /( + )k p sin1y y  into ′ ( )θ k , we obtain

σ σ( ) = −


+ 

− , ( )H t p t p t pp 2 cos cos sin 15b x y x y y1 2 2

which is just the Bloch Hamiltonian (equation(4)) of the brick-wall lattice model. The mapping ω θ,1  has 
the effect on the Bloch functions and the wave vectors as ω Ψ ( ) = Ψ ( )θ θ, , ,r rbk p1  and 
ω θ θ( , ) ( , ) = ( ,( + ) )θ, k k p p k k: cos 1 sinx y x y x y1 . This mapping is one-to-one and surjective. Thus, 
we can regard this mapping as a kind of equivalence. The explicit form of the mapping depends on the 
bond angle θ. When θ =  0, this mapping is an identity mapping.

The mapping ω θ,1  gives a one-to-one correspondence between the Brillouin zones of the honeycomb 
lattice with the bond angle θ and the brick-wall lattice. That is to say, for some wave vector k in the 
Brillouin zone of the honeycomb lattice, the Bloch Hamiltonian  ( )θ k  and its Bloch functions Ψ ( )θ, rk , 
there correspondingly exist a wave vector p in the Brillouin zone of the brick-wall lattice, Bloch 
Hamiltonian  ( )pb , and Block functions Ψ ( ), rb p . The mapping from the Brillouin zone of the honey-
comb lattice with θ π= /6 into that of the brick-wall lattice is schematically shown in Fig. 3.

The mapping ω2,β from the brick-wall lattice into the square lattice.  Similarly, we can define a mapping 
from the brick-wall lattice model to the square lattice model as

ω ( , ( ), Ψ ( )) ( , ( ), Ψ ( )), ( )β, , , Hp p r K K r: 16b b s sp K2

where β = /t t2 1 is the hopping amplitude ratio of the brick-wall lattice; Ψ ( ), rs K  is the Bloch functions 
of the square lattice model. For this mapping, we have ω Ψ = Ψ ( )β, , , rb sp K2  with
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= , ( )K p 18y y

where p is a wave vector in the Brillouin zone of the brick-wall lattice. Through the mapping ω β,2 , the 
Bloch Hamiltonian of the brick-wall lattice (15) becomes the form as follows

 σ σ( ) = − − , ( )t K t KK 2 cos 2 sin 19s x x x y y y

with = /t t 2y 2  and = + /t t t 2x 1 2 , which is just the Bloch Hamiltonian of the square lattice model. The 
explicit form of this mapping depends on the hopping amplitude ratio β.

This mapping is not surjective. That is to say, the image of the mapping for the Brillouin zone of the 
brick-wall lattice just covers part of the Brillouin zone of the square lattice. The mapping for the wave 
vectors is schematically shown in Fig. 4. In Fig. 4, the left panel shows the Brillouin zone of the brick-wall 
lattice. In order to clearly manifest the mapping from the brick-wall lattice model to the square lattice 
model, we first map the Brillouin zone of the brick-wall lattice into the reciprocal space of the square 
lattice, not restricted in the Brillouin zone, as shown in the middle panel of Fig.  4. The image of the 
Brillouin zone of the brick-wall lattice in the reciprocal space of the square lattice looks like a butterfly. 
The left and right halves of the Brillouin zone of the brick-wall lattice map into the left and right wings 
of the butterfly, respectively. If we restrict the image of the mapping in the Brillouin zone of the square 
lattice, then the butterfly-like image is equivalent to that as shown in the right panel of Fig. 4.

The composite mapping Ωθ,β.  The above two mapping can be combined into a composite mapping 
ω ωΩ =θ β β θ, , ,2 1 , which is the mapping from the honeycomb lattice model into the square lattice model 

as

 Ω ( , ( ), Ψ ( )) ( , ( ), Ψ ( )), ( )θ β θ θ, , ,k k r K K r: 20s sk K

which depends on the bond angle θ and the hopping amplitude ratio β. For this mapping, we have 
Ω Ψ = Ψ ( )θ β θ, , , rsk K  with




=
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− ( ), ≤

( ), ≥
,
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θ β

,

,
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k
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k
k

for 0
for 0 21

x
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x

θ= ( + ) , ( )K k1 sin 22y y

where  θ θ( ) ≡ ( ) + ( + )θ β β
β
β, + +

k kk arccos{ cos cos cos[ 1 sin ]}x y
2

2 2
. For the Bloch Hamiltonian, 

this mapping can be performed in the following manner. First, one takes a transformation on the Bloch 
Hamiltonian (1) as  ′ ( ) = ( )θ

θ
θ

θ−S Sk kk k
1, where the transformation matrix θSk . Second, replacing the 

wave vectors k in ′ ( )θ k  with K via equations(21) and (22), one obtains the Bloch Hamiltonian as

 σ σ( ) = − − , ( )t K t KK 2 cos 2 sin 23s x x x y y y

Figure 3.  The mapping from the Brillouin zone of the honeycomb lattice into the Brillouin zone of the 
brick-wall lattice. The yellow areas in the left and right panels represent the Brillouin zones for the 
honeycomb lattice with θ π= /6 and the brick-wall lattices, respectively. Concretely, the blue lines, the red 
line, and the blue filled circles (the Λθ β, -invariant points) in the left panel map into the blue lines, the red 
line, and the blue filled circles (the Λ β,0 -invariant points) in the right panel, respectively.
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with = /t t 2y 2  and = + /t t t 2x 1 2 , which is just the Bloch Hamiltonian of the square lattice model (i.e., 
equation(5)). This composite mapping is also not surjective, which can be shown in Fig. 5.

Hidden symmetry on the honeycomb lattice and protection of Dirac points.  With the help of 
the mapping Ωθ β, , we define a symmetry operator of the honeycomb lattice as Λ = Ω ϒ Ωθ β θ β θ β, ,

−
, 

1 , 
which is a composite operation consisting of firstly mapping the honeycomb lattice into the square lat-
tice, then the ϒ -transformation on the square lattice, and finally inverse mapping back to the honeycomb 
lattice from the square lattice. Therefore, the operation Λθ β,  can be considered as a self-mapping of the 
honeycomb lattice model with the bond angle θ as

 Λ ′ ′( , ( ), Ψ ( )) ( , ( ), Ψ′ ( )). ( )θ β θ θ θ θ ′, , ,k k r k k r: 24k k

Applying this operator to the wave function, we obtain

ΛΨ′ ( ) = Ψ ( ), ( )θ θ β θ′, , ,r r 25k k

which is also the Bloch function of the honeycomb lattice model. After the action of the operator Λθ β, , 
the wave vector k becomes

π′ ′= (− − ∆ ( ) −∆ ( ), − + − ∆ ( ) − ∆ ( )), ( )k kk k k k k 26x x x y y y

where




∆ ( ) =








− ( ) − , ≤

( ) − , ≥
,

( )

θ β

θ β

,

,

k k
k k

k
k

k
for 0
for 0 27

x
x x

x x

θ∆ ( ) = , ( )kk sin 28y y

represent the shift of the wave vector k due to the mapping Ωθ β, . If

′ = + ( )k k K 29m
h

is satisfied, where = ( , ), ,K KKm
h

m x
h

m y
h  is a reciprocal lattice vector of the honeycomb lattice, k is a Λθ β,

-invariant point in the Brillouin zone of the honeycomb lattice with the bond angle θ. We assume Qi is 
a Λθ β, -invariant point in the Brillouin zone. Substituting equation (26) and = ( , )Q QQi ix iy  into equation 
(29), we obtain the following equation

Figure 4.  The mapping from the Brillouin zone of the brick-wall lattice into the Brillouin zone of the 
square lattice. The left panel shows the Brillouin zone of the brick-wall lattices; the middle panel shows the 
image of the mapping ω β,2  for the Brillouin zone of the brick-wall lattice in the reciprocal space of the 
square lattice; the right panel shows the image of the mapping ω β,2  for the Brillouin zone of the brick-wall 
lattice restricted in the Brillouin zone of the square lattice. Here, the left and right half of the Brillouin zone 
of the brick-wall lattice in the left panel map into the the left and right yellow shadow areas in the middle 
panel, which is equivalent with that in the right panel. The blue and red lines in the left panel for the brick-
wall lattice map into the blue and red lines in the middle panel for the square lattice, respectively. The blue 
filled circles (the Λ β,0 -invariant points) in the left panel map into the degenerate ϒ-invariant points (blue 
filled circles in the middle and right panels), where ϒ = −12 , in the Brillouin zone of the square lattice. The 
green filled circles represent the ϒ-invariant points where ϒ = 12  and no symmetry-protected degeneracy 
occurs for the square lattice.
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Figure 5.  The mapping from the Brillouin zone of the honeycomb lattice into the Brillouin zone of the 
square lattice. (a) The case with β = 1. (b) The case with β = 2. (c) The case with β = 3. In the left panels, 
the yellow diamond areas represent the Brillouin zone of the honeycomb lattice, which are equivalent to the 
areas enclosed the black solid lines; the blue filled circles represent the Λθ β, -invariant points ,Q1 2. In the right 
panels, the square areas enclosed by the black solid lines represent the Brillouin zone of the square lattice; 
the blue and green filled circles represent the ϒ-invariant points ,M1 2 and ,M3 4, respectively; the yellow areas 
are the image of the mapping Ωθ β,  for the Brillouin zone of the honeycomb lattice. The mapping Ωθ β,  
concretely map the blue filled circles, the blue and red lines in left panels into the blue filled circles, the blue 
and red lines in the right panels, respectively.



www.nature.com/scientificreports/

9Scientific Reports | 5:17571 | DOI: 10.1038/srep17571

π

θ θ

( , ) = (− − ∆ ( ), − + − ∆ ( ))

− ( ,( + ) ). ( ), ,

Q Q Q Q

K K

Q Q2 2

cos 1 sin 30

ix iy ix x i iy y i

m x
h

m y
h

Solving the above equation, we obtain the Λθ β, -invariant points in the Brillouin zone are 
β θ= (± (− / )/ , ),Q arccos 2 cos 01 2 .

It is straightforward to verify that Λ = Ω ϒ Ωθ β θ β θ β, ,
−

, 

2 1 2 . Therefore, we have 
Λ Ψ ( ) = Ψ ( )θ β θ θ, ,

− +∆ ( )
,er ri k

k
k

k
2 2 [ ]x x . At the Λθ β, -invariant point Qi, we have the following equation:
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Substituting ,Q1 2, we obtain Λ = = −θ β,
− +∆ ( )e 1i Q Q2 2 [ ]ix x i  at ,Q1 2. Thus, we have the solution 

(Ψ′ , Ψ ) =θ θ, , 0Q Qi i
, which implies that Ψθ,Qi

 and Ψ′θ,Qi
 are orthogonal to each other. We can conclude that 

there must be the band degeneracy at the points ,Q1 2. In particular, when θ π= /6 and β =  1, the Λθ β,
-protected degenerate points are π= (± / , ),Q 4 3 3 01 2 , which are just the positions of the Dirac points 
on the ideal honeycomb lattice, such as graphene. When θ =  0 and β =  1, the Λθ β, -protected band degen-
eracies occur at π= (± / , ),Q 2 3 01 2 , which correspond to the locations of the Dirac points on the 
brick-wall lattice.

The explanation of moving and merging of Dirac points on the honeycomb lattice.  We have 
proved above that the Dirac points on the honeycomb lattice are protected by the hidden symmetry Λθ β, . 
More generally, the moving and merging of Dirac points on the honeycomb lattice, which has been 
predicted theoretically19–23 and observed experimentally16, can also be explained by the hidden symme-
try. Since the hidden symmetry operator Λθ β,  contains the parameters θ and β, the locations of the Λθ β,
-protected Dirac points, β θ= (± (− / )/ , ),Q arccos 2 cos 01 2 , are also functions of the two parameters. 
As the hopping amplitude ratio β  starts to vary, the Dirac points start to move. When β  reaches 2, two 
Dirac points merge into one isolated degenerate point at the corner or the center of the Brillouin zone. 
If β  increases further, there is no solution to the Λθ β, -invariant points, thereby the Dirac points vanish, 
with a gap opening simultaneously. As a result, β = 2 is the critical point of the quantum phase 
transition.

We can interpret the above conclusion in a more intuitive way by mapping the Brillouin zone of the 
honeycomb lattice into that of the square lattice, as shown in Fig. 5. It turns out that such a mapping is 
not surjective, which means that the image of the Brillouin zone of the honeycomb lattice is part of the 
Brillouin zone of the square lattice. In the parameter interval of β <2, the image covers the ϒ-protected 
degenerate points ,M1 2 in the Brillouin zone of the square lattice, as shown in Fig. 5(a). Thus, there always 
exist two points ,Q1 2 in the Brillouin zone of the honeycomb lattice mapping into the ϒ-protected degen-
erate points ,M1 2 in the Brillouin zone of the square lattice. When β = 2, the two equivalent points 
locating at the corners at the center of the Brillouin zone of the honeycomb lattice map into the ϒ
-protected degenerate points ,M1 2, as shown in Fig.  5(b). Similarly, when β = − 2, the isolated point 
locating at the center of the Brillouin zone of the honeycomb lattice map into the ϒ-protected degenerate 
points ,M1 2. Therefore, the Dirac points on the honeycomb lattice merge. When β >2, the image of the 
Brillouin zone of the honeycomb lattice can not cover the ϒ-protected degenerate points ,M1 2, as shown 
in Fig. 5(c). Therefore, there is no point in the Brillouin zone of the honeycomb lattice mapping into the 
ϒ-protected degenerate points ,M1 2. Thus, the Dirac points disappear and a gap opens.

We note that, due to the non-surjection of the mapping Ωθ β, , for some special case in the transfor-

mation Λ ′ ′→ → →θ β,
Ω ϒ Ωθ β θ β, ,

−

k K K k:
1

, ′K  is out of the image of the mapping Ωθ β, , the inverse mapping Ωθ β,
−1  

of ′K  does not exist, which implies that K is not a ϒ-invariant points in the Brillouin zone of the square 
lattice, and corresponding k is not a Λθ β, -invariant points in the Brillouin zone of the honeycomb lattice. 
Thus, this singularity does not cause any problem for finding the Λθ β, -invariant points in the Brillouin 
zone of the honeycomb lattice. Inversely, the non-surjection of the mapping Ωθ β,  is necessary to explain 
the merging of the Dirac points on the honeycomb lattice.

Discussion
In summary, we have found a hidden symmetry on the honeycomb lattice and proved that the hidden 
symmetry protects the Dirac points on the honeycomb lattice. The hidden symmetry evolves along with 
the parameters, such as the bond angle θ and the hopping amplitude ratio β, which provides a perfect 
explanation on the moving and merging of the Dirac points and the quantum phase transition on the 
honeycomb lattice. Our research unfolds a new perspective on the symmetry protected band degeneracy, 
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which is totally different from the conventional ones, such as the band degeneracy protected by point 
groups or time reversal symmetry. Such novel hidden symmetry can greatly enrich and deepen our 
understanding of the band degeneracy, which will have important applications in modern condensed 
matter physics, especially, in the topics of Dirac (Weyl) semimetals and other topological semimetals.

Methods
The definitions of Brillouin zones.  For the general honeycomb lattice with the bond angle θ, the 
primitive lattice vectors are θ θ= ( , + )a cos 1 sin1  and θ θ= ( , − − )a cos 1 sin2 . The primitive 
reciprocal lattice vectors are π θ π θ= ( / , /( + ))b cos 1 sin1  and π θ π θ= ( / , − /( + ))cos sinb 12 . 
For θ π= /6 case, such as graphene, the symmetric Brillouin zone is hexagon, i.e., the area enclosed by 
the black lines in Fig. 6(a). An alternative Brillouin zone equivalent to the symmetric Brillouin zone is a 
diamond, i.e., the yellow shaded area in Fig. 6(a). In our work, for convenience, we always use the dia-
mond Brillouin zone for the honeycomb lattice. For the square lattice, the primitive lattice vectors are 
= ( , )a 1 11  and = ( , − )a 1 12 . The primitive reciprocal lattice vectors are π π= ( , )b1  and π π= ( , − )b2 . 

The square lattice has a square Brillouin zone as shown in Fig. 6(b). The brick-wall lattice can be con-
sidered a special honeycomb lattice with the bond angle θ = 0. The primitive lattice vectors become 
= ( , )a 1 11  and = ( , − )a 1 12 . The primitive reciprocal lattice vectors are π π= ( , )b1  and π π= ( , − )b2 . 

The corresponding Brillouin zone turns into a square, which is the same with that of the square lattice 
as shown in Fig. 6(b).
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