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A general mechanistic model 
enables predictions of the 
biological effectiveness of different 
qualities of radiation
Stephen J. McMahon 1,2, Aimee L. McNamara 2, Jan Schuemann 2, Harald Paganetti 2 &  
Kevin M. Prise  1

Predicting the responses of biological systems to ionising radiation is extremely challenging, 
particularly when comparing X-rays and heavy charged particles, due to the uncertainty in their 
Relative Biological Effectiveness (RBE). Here we assess the power of a novel mechanistic model of 
DNA damage repair to predict the sensitivity of cells to X-ray, proton or carbon ion exposures in vitro 
against over 800 published experiments. By specifying the phenotypic characteristics of cells, the model 
was able to effectively stratify X-ray radiosensitivity (R2 = 0.74) without the use of any cell-specific 
fitting parameters. This model was extended to charged particle exposures by integrating Monte Carlo 
calculated dose distributions, and successfully fit to cellular proton radiosensitivity using a single dose-
related parameter (R2 = 0.66). Using these parameters, the model was also shown to be predictive of 
carbon ion RBE (R2 = 0.77). This model can effectively predict cellular sensitivity to a range of radiations, 
and has the potential to support developments of personalised radiotherapy independent of radiation 
type.

Cancer radiotherapy has long been a highly personalised treatment, with significant research and technical devel-
opment being devoted into better identifying, localising, and treating cancers with ionising radiation. In mod-
ern radiotherapy, patients are treated with individualised treatment plans administered by sophisticated delivery 
techniques such as Intensity Modulated RadioTherapy (IMRT) and guided by a range of advanced imaging 
modalities1. These advances in delivery have resulted in significant patient benefit by improving the targeting of 
radiation to the tumour while sparing surrounding normal tissue, enabling an escalation of treatment doses and 
corresponding improvements in clinical outcomes. Further technical advancement to refine these techniques 
remains a key area of research.

However, despite its high degree of geometric personalisation, radiotherapy has seen limited biological per-
sonalisation. For most cancers, the treatment dose and schedule are typically determined by the site (and poten-
tially stage) of cancer alone, with the majority of patients receiving a ‘one size fits all’ treatment. While these 
schedules are often based on the results of very large clinical trials2, 3, their results typically assume a uniform 
radiation sensitivity across a whole population. This is known to be a significant oversimplification, as there is 
extensive evidence that cancers of the same type can have very different sensitivities to ionising radiation, a fact 
which is underscored by the complex genetic heterogeneity of cancer4, 5.

While it remains challenging to directly measure the sensitivity of clinical cancers in patients, there is exten-
sive evidence that this variation is significant. Modelling of radiation response curves based on clinical data has 
suggested that the dose needed to control 50% of tumours (TD50) could have a standard deviation of 20–25%6, 
a range which is reflected in many in vitro studies of cellular radiation sensitivity7–9. Such a range means that any 
dose selected on the population level would certainly over- or under-treat large numbers of patients, impacting 
negatively on clinical outcomes. To address this, a better understanding of the biological drivers of clinical radi-
ation response is required.
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Numerous physiological factors have been linked to treatment outcome including clinical parameters such 
as tumour volume and stage, as well as micro-environmental factors such as the level of perfusion and resulting 
availability of nutrients and oxygen in the tumour. While there has been considerable interest in using a number 
of these factors to personalise treatment doses (particularly reduced oxygen, i.e. hypoxia10), few of these tools 
have made an impact on clinical practice. However, independent of the physiology of the tumour, cells have an 
intrinsic radiosensitivity, driven by their particular tissue of origin and any acquired mutations which impact 
on radiation response. Intrinsic radiosensitivity can be assayed in vitro through clonogenic assays, and has been 
shown to not only reflect the wide range of radiosensitivities which are observed clinically, but also to be a strong, 
independent predictor of an individual’s successful response to radiotherapy7, 9, 11, 12.

As direct measurement of intrinsic radiosensitivity remains challenging, techniques to predict it have the 
potential to significantly impact on treatment decisions. There is considerable interest in the identification of key 
mutations13 or gene expression signatures14–16 which identify differential radiosensitivities, but these approaches 
have shown limited success in generating translatable predictions. A particular challenge with these approaches 
is the very large data sets which are required to generate meaningful fits, as they typically do not take advan-
tage of our underlying knowledge of radiation effects at a biological level, instead focusing on purely statistical 
approaches to identify trends.

The growing availability of advanced radiotherapy techniques which make use of heavy charged particles 
such as protons and carbon ions presents an additional challenge in this area. These heavy charged particles 
deposit their energy more densely (characterised by a high Linear Energy Transfer (LET)) as they pass through 
the cell, and are known to be more damaging than the X-rays conventionally used in radiotherapy for a given 
radiation dose (characterised by a Relative Biological Effectiveness (RBE)). A number of approaches exist to char-
acterise the RBE of charged particles, including empirical modifications to the Linear-Quadratic dose response 
model17–19 as well as mechanistic models of radiation-induced cellular damage20–23. However, RBEs are known to 
depend on the underlying biology of the cells being irradiated, and as a result these models typically also require 
cell-specific information (such as dose-response information) to generate predictions. As uncertainties in how 
cells will respond to charged particle irradiation may significantly alter the expected clinical benefit of moving 
from X-ray to more expensive ion based therapies, better understanding of these effects could significantly impact 
on the allocation of these scarce resources.

Improved mechanistic models of fundamental cellular radiation responses offer an alternative approach to 
these problems. By integrating our knowledge of the underlying biology, models of radiation sensitivity can be 
generated which depend on known mechanistic determinants of radiosensitivity, such as DNA repair and cell 
cycle effects. In addition to constraining model parameters, these approaches can also leverage data from mul-
tiple endpoints simultaneously, rather than relying on only direct measurements of the endpoint of interest (e.g. 
cell survival). This approach may offer improved predictive power in novel systems without the need for abstract 
fitting parameters and direct survival measurements, provided the systems can be modelled with sufficiently low 
uncertainty.

As a first step towards the generation of cell-specific predictions of radiation sensitivity, we have recently pub-
lished a mechanistic model that draws on measurements of fundamental processes such as DNA repair, chromo-
some aberration formation and mutation to predict cellular response. This model begins from initial distributions 
of DNA Double Strand Breaks (DSBs), and calculates the probability of different types of repair and misrepair, 
and the eventual fate of the cell. Significantly, this model does not make use of cell-specific fitting parameters, 
but rather defines parameters describing different processes common across a range of cell types (e.g. the rate of 
DNA repair by different pathways). Cell-specific predictions are then generated from these parameters based on 
specific phenotypic characteristics, such as whether the cells have functional Homologous Recombination (HR) 
and Nonhomologous End Joining (NHEJ) repair pathways. In previous work we have shown that this integrated 
model can characterise a range of biological endpoints, including DNA repair, chromosome aberration formation 
and survival in an initial dataset24.

In this work, we assess the predictive power of the model by comparing its predictions of radiation sensitivity 
based on this mechanistic fit to a panel of over 800 radiation survival curves from the literature, encompassing 
X-ray, proton and carbon ion survival data. Predictions of X-ray sensitivity were made directly based on param-
eters established in the mechanistic fit without adjustment. Extension to charged particle therapies is achieved 
by linking the established biological model with a simple Monte Carlo simulation of energy distribution around 
charged particle tracks. Combining the two models involves the fitting of a single additional parameter to link 
physical energy deposition to DSB production, which was carried out by fitting to proton radiation response data. 
We then demonstrated that this model can be applied to carbon ion data without any direct fitting, highlighting 
how this mechanistic approach enables predictions of effects within a range of systems. The model is schemati-
cally illustrated in Fig. 1, and described in detail below.

Results
Model predictive power – X-rays. To test the predictive power of the model for a range of different cell 
lines exposed to X-rays, Mean Inactivation Doses (MIDs) were calculated for each of the unique X-ray exper-
iments reported in two radiation response databases – Paganetti’s review of proton RBE25 and the Particle 
Irradiation Data Ensemble (PIDE)26, together with those from a previous study24. For each X-ray response curve 
in these datasets, the Mean Inactivation Dose (MID) was calculated from experimental observations, and com-
pared to the sensitivity predicted by the established mechanistic model. The correlation between model predicted 
and observed sensitivity is shown in Fig. 2. Although this data represents a wide range of cell lines, with different 
species of origin, genetic alterations and exposure conditions, good correlation is seen across the whole range of 
radiosensitivities, with effective stratification according to both genetic defects as well as species and cell cycle 
phase during irradiation.
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The overall correlation coefficient is R2 = 0.74, indicating that the model accurately reflects the majority of 
variation in sensitivity between cell lines, without cell-specific adjustable parameters, suggesting that this model 
retains predictive power even in this larger, more heterogeneous dataset.

Radial energy distribution and interaction. Calculation of model predictions for charged particle radi-
ation requires calculation of the spatial distribution of energy around particle tracks, illustrated for protons in 
Fig. 3. Figure 3a shows the rate of energy deposition scored radially around the track, showing a clear maximum 
close to the charged particle and falling rapidly to roughly 10% at the edge of the track ‘core’ (~10 nm in radius). 
However, because of the extremely small size of the track core, the total amount of energy deposited at long ranges 
is not negligible. This can be seen in Fig. 3b, which plots the cumulative radial energy deposition. This shows 
that the track core represents less than 25% of the total energy deposition, with approximately half of the energy 

Figure 1. Schematic illustration of mechanistic DNA repair model, combining a biological model of DNA DSB 
repair (a) and a physical model of DSB distribution (b). The biological model begins from a distribution of 
DSBs, whose repair is simulated as a function of time. Each break can be repaired either correctly, or misrejoin 
with another nearby DSB with a rate which depends on their separation d, with a rate constant given as 
ζ ∝ −

σd e( )
d2

2 2 . The number and type of misrepaired DSBs can then be used to predict overall sensitivity. The 
physical model considers the distribution of tracks around charged particles, as illustrated in (b). While equal 
doses are considered to cause the same number of DSBs, these are uniformly distributed in the case of X-rays, 
clustered around a small number of tracks for protons, and extremely densely clustered around carbon ion 
tracks, as determined by their LET and radial dose distributions.

Figure 2. Comparison of modelled and observed cellular radiosensitivity to X-rays. Mean Inactivation Doses 
(MIDs) were calculated for a range of different cell types exposed to X-rays from several datasets24–26, using 
previously established mechanistic response parameters24. Without any cell-specific fitting parameters, good 
correlation is seen across the entire range of sensitivity, although considerable inter-experimental variation 
remains, even among notionally identical experimental conditions.
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deposited more than 50 nm from the track, and a significant portion out to several μm for the most energetic 
protons.

Based on the assumption that DSB yield is directly proportional to energy deposit, these energy distributions 
can be converted to DSB distributions by dividing the energy in each bin by the energy required to create one DSB 
on average - EDSB. This parameter determines the density of DSBs within a track and thus the rate of intra-track 
interactions and the overall RBE.

By integrating the distance between these DSBs both radially and along the track path, the expected number 
of DSBs separated by a given distance can be calculated. This distribution can then be divided by the number of 
DSBs to give the expected number of DSBs as a function of position around an ‘average’ DSB within the track. 
Figure 4a illustrates this for protons, using the EDSB value obtained by fitting to proton RBE data as described 
below. These curves show a steep initial increase in DSB density with saturation at distances of a few hundred nm. 
More rapid build-up is seen for lower energy particles, due to their relatively dense track cores. The long-range 
saturation level is proportional to twice the LET of the particle, as large radial shells encompass the entire track 
both upstream and downstream of any break.

The total interaction rate of free ends created by DSBs is obtained by scaling these DSB densities by the inter-
action rate ζ(r) and illustrated in Fig. 4b. This shows that due to the relatively short range of DSB interactions 
misrepair events are dominated by DSBs which occur within ~200 nm of each other.

Integrating the rate distributions of Fig. 4b gives the total intra-track misrepair rate, η, which is plotted as a 
function of particle energy and LET in Fig. 4c and d, respectively. As lower energy particles have a higher LET 
and proportionately greater number of DSBs induced per unit track length, it can be seen that they have a much 
greater probability of intra-track misrepair events occurring. The relationship between interaction rate and LET 
can be seen to be slightly greater than linear, as at lower proton energies the radial distribution also becomes nar-
rower, further reducing DSB separation, although this effect is relatively weak.

For comparison, Fig. 4 also plots the average misrepair rate for a uniform distribution of DSBs corresponding 
to an exposure of 2 Gy. This shows that while the intra-track misrepair rate is small for low LETs, at high LETs and 
low doses intra-track recombination events may be the dominant contribution to cell killing.

Model predictive power – protons. By using these radial dose distributions to calculate intra-track misre-
pair rates, the model can be applied to charged particle predictions by the fitting of the single additional parame-
ter EDSB to link between the physical and biological models. In this work, this parameter was determined by fitting 
to the experimental proton RBE data reviewed by Paganetti25.

The best-fitting value was found to be 60.7 ± 14.0 keV, and this value was used to generate proton MID values 
for the different conditions which are compared to experimental observations in Fig. 5. While there is an increase 
in variation compared to the photon data, the overall correlation remains good (R2 = 0.66), indicating that the 
model captures much of the underlying variation. This EDSB is equivalent to a nuclear radius of rnuc = 4.32 ± 0.2 µm 
for human cells, in line with typically reported values of 4 to 5 µm, supporting the biological rationale behind this 
model.

However, when predictions of the Mean Inactivation Dose RBE (RBEMID) are considered, the predictive power 
of the model appears to be limited (R2 = 0.28), although this still significantly outperforms the approach of line-
arly scaling doses by a constant RBE which remain common in the clinic (p < 0.0001, t-test of correlation coeffi-
cient, t = 10.09, n = 258). However, robust validation of proton RBE predictions remains challenging due to the 
high degree of inter-experimental variability in dosimetry, experimental conditions and cell survival measure-
ments. Because RBE values involve the ratio of two dosimetric parameters derived from these measurements, this 
uncertainty is often significantly greater than the magnitude of the effect. As a result, other purely empirical ana-
lytic models17–19 which directly use the observed cell α and β values as well as several empirical fitting parameters 

Figure 3. Radial energy deposition around protons of different energies. In (a), rate of energy deposition as 
a function of distance from the primary track shows an increasing amount of energy is deposited as particles 
slow, with the greatest density within a few nm of the track. However, (b) shows a normalised cumulative energy 
distribution as a function of distance from the track. Due to the small volume near the track the total energy 
deposited energy is relatively small, with a large fraction of deposited at long distances, even beyond 1 μm for 
the most energetic protons.
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Figure 4. Double Strand Break (DSB) distributions and resulting misrepair rates. By converting the energy 
distributions from Fig. 3 into DSB distributions, the spatial distribution of damage around an ‘average’ DSB can 
be calculated. This is shown in (a), with a rapid rise of DSB count with range as greater portions of the particle 
track are encompassed. Panel (b) presents the resulting interaction rate, obtained by scaling the DSB density by 
−

σe
r2

2 2 , showing most intra-track interactions occur for DSBs separated by a few hundred nm. By integrating the 
interaction rates from (b), the total interaction rate can be obtained for different particle energies. The rate is 
plotted as a function of either proton energy (c) or LET (d). This rate increases steeply as the particle slows 
down, and is closely related to LET – although this relationship is slightly super-linear, due to the smaller total 
track radius at lower energies. The misrepair rate for 2 Gy of uniformly distributed DSBs is also plotted for 
comparison (dashed line), showing that even at moderate LETs (>5 keV/µm) intra-track effects can be a 
dominant contribution to misrejoining rates at clinical doses.

Figure 5. Comparison of modelled and observed cellular radiosensitivity to protons. By fitting a single 
parameter, EDSB to scale from the radial energy data in Fig. 3 to DSB rates in Fig. 4, proton MID values can be 
calculated for the experiments reported in Paganetti25. Although the total level of noise increases, the overall 
correlation remains good (R2 = 0.66), outperforming a simple linear scaling of sensitivity.
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do not offer significantly better RBE predictions (R2 values between 0.18 and 0.28, see supplementary informa-
tion). This suggests that alternative approaches may be necessary to validate RBE models.

Model predictive power – heavier ions. Because of the mechanistic nature of this model, it can be 
directly applied to heavier ions by using the appropriate radial energy distributions. Testing its predictions for 
heavier ions thus provides a valuable opportunity to test the model’s underlying assumptions and predictive 
power in a novel system. To test this, radial dose deposition curves were simulated for carbon ion tracks and used 
to calculate D10 values for all of the carbon ion exposures from the PIDE26. Illustrations of carbon ion DSB distri-
butions and misrepair probabilities for comparison with Fig. 4 are presented in the Supplementary Information. 
The EDSB value as obtained from the fit to the proton-only data was used in this analysis, to validate the model’s 
ability to extrapolate from effects in different systems.

In Fig. 6a, the LET-dependence of carbon D10 RBEs are shown for the frequently-used Chinese hamster cell 
lines CHO and V79, as well as a NHEJ-defective derivative line. A range of characteristics emerge from this model 
which would not be predicted by simply extrapolating empirical proton RBE models. These include the slightly 
lower RBE at a given LET for carbon ions than protons, the turn-over in carbon RBE at high LETs, and the lack 
of RBE in NHEJ-defective cells. The LET dependence of proton RBE is also shown, showing that the model also 
predicts the higher effectiveness of lighter ions at the same LET.

Figure 6b presents a correlation plot of model predicted and experimentally observed RBED10
 for both protons 

and carbon ions. While the proton data are dominated by experimental uncertainties and show limited correla-
tion, the broader range of values for the carbon ion data provides a clearer test of the model with reduced sensi-
tivity to experimental uncertainties. As with the MID predictions above, good correlation is seen across the whole 
range of observed RBEs, with a best-fitting slope coefficient of 1.00 ± 0.01 and a correlation coefficient of 
R2 = 0.77. This suggests the model accurately captures a large degree of the underlying variation, particularly in 
light of the fact that no fitting was carried out either to the baseline X-ray data for either population or any of the 
carbon ion exposure data, demonstrating the ability of this model to extrapolate between different exposure 
conditions.

Linear-Quadratic Model Parameters. In addition to overall sensitivity parameters, the model is capable 
of generating full survival curves and corresponding LQ model parameters for different cell lines and exposure 
conditions. Examples of this are presented in Fig. 7, showing modelled radiation survival curves for radio-resistant 
Chinese hamster cell lines ≈α

β
Gy( 4 ) and relatively radio-sensitive normal human cell lines ≈α

β
Gy( 10 ) for a 

range of LETs delivered by X-rays, protons and carbon ions. In agreement with experimental observations, it can 
be seen that as particle LET increases, the curves become progressively steeper, losing the ‘shoulder’ characteristic 
of linear-quadratic dose responses, until at high LETs they become linear. These remain linear at LETs above the 
maximum effectiveness, but with progressively shallower slopes, as the probability of cells being exposed to even 
a single track becomes the major factor dominating survival.

LQ model parameters were extracted from these curves and compared to experimental observations. The α 
parameter closely follows the dependence of RBE as a whole, reflecting the increasing steepness of these curves, 
and is in broad agreement with observed values despite significant noise, particularly at low LETs. By contrast, 
β is initially relatively flat before falling to zero at high LETs where curves are purely linear. Comparison with 
experimentally observed β values is difficult as the dose ranges used in high LET exposures are typically limited, 
giving a high degree of covariance between α and β and corresponding increases in uncertainty. Thus, while over 

Figure 6. Model predicted Relative Biological Effectiveness for protons and carbon ions. The LET-dependence 
of RBE for carbon ions is shown in (a) for both repair competent and incompetent Chinese hamster cell lines 
(CHO: squares, V79: triangles, others: circles), compared to experimental observations. Good agreement 
is seen, correctly predicting the turnover at high LET and the relative lack of sensitisation seen in NHEJ-
defective cells, despite the model only using the proton data to determine EDSB. Proton RBE is also shown, for 
comparison. An overall correlation of the modelled and predicted RBE is shown in (b). While the predicted 
variation in RBE for protons is swamped by the uncertainty (grey points) good correlation is seen across the full 
range of RBE values for carbon (coloured points).
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half of the dose-response curves at LETs above 50 keV/μm has zero β components, the remainder show significant 
variation which may be dominated by experimental uncertainties. However, the model successfully recapitulates 
overall trends in both the magnitude and shape of the dose-response curve with increasing LET.

Discussion
The lack of predictive models of individual radiosensitivity remains a significant outstanding problem in radio-
therapy, both in terms of the overall sensitivity of tumours as well as the relative benefit which could be expected 
from moving to new approaches such as charged particle therapies.

While there is considerable interest in the identification of key mutations or broader gene expression signa-
tures which drive sensitivity27, 28, both of these approaches face the challenge of generalisability and do not take 
advantage of our extensive knowledge of the underpinnings of radiation response. By contrast, in this mechanistic 
model, the radiation sensitivity of a broad range of cell types in a range of experimental conditions is predicted 

Figure 7. Illustration of model predicted LQ parameters for proton and carbon ions. Model predicted survival 
curves for asynchronous hamster cells with low α

β
 ratio are shown in (a), for exposures to a range of LETs, 

including X-rays, protons (solid lines, LET < 30 keV) and carbon ions (dashed lines, LET > 30 keV). As is seen 
experimentally, survival curves become steeper with increasing LET, eventually becoming linear at very high 
LET. Model predicted LQ parameters are presented in (b and c). α can be seen to increase to a maximum and 
then fall, mimicking the trend in overall RBE, while β is relatively constant at low LET before falling as track 
numbers are reduced. Similar trends are presented in (d–f) for normal human cells, with a relatively high α

β
 

ratio, showing that the trends are qualitatively similar across cells of different radiosensitivities.
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based on a compact set of 10 parameters, which have been fit to a range of functional experimental endpoints 
(Table 1). These parameters show good predictive power, across a broad range of radiation sensitivities.

A major challenge in further model refinement is the degree of uncertainty in experimental radiobiological 
data, even for notionally identical exposures, which is a major factor in the reduction in X-ray correlation coeffi-
cient compared to previous work24. For example, in the large group of hamster cells with identical predicted sen-
sitivity in Fig. 2, there are 28 different experimental reports of exposures of asynchronous V79 hamster cells with 
X-rays, which span a broad range of sensitivities (MIDs ranging from 2.8 to 4.9 Gy, with a coefficient of variation 
of 16%). Similar variability is seen in other cell lines, suggesting that these experimental uncertainties may repre-
sent 60% or more of the unexplained variation in sensitivity. These experimental uncertainties include differences 
in cell handling which are not typically reported in detail (e.g. cell cycle differences resulting from different times 
from plating to irradiation29), systematic and random experimental uncertainties (a recent report indicated lab-
oratory radiation sources often have calibration errors of 10% or more30) and differences in irradiation protocol 
which are not currently implemented including dose rate and any RBE effects seen with low energy X-rays31).

In light of this uncertainty, more stringent model testing can be achieved by applying it in other areas. In 
this work, we considered the extension to exposures by charged particles, specifically the data on proton RBE 
collected by Paganetti25 and carbon ion exposures from the PIDE database26. To achieve this, we modelled the 
distribution of DSBs around particle tracks, fitting only a single additional parameter, EDSB, to link energy deposi-
tions calculated in the physical Monte Carlo to the biological model. The performance of this fit was comparable 
to many other models of proton RBE17–19, despite only involving a single charged-particle related fitting param-
eter and none of the cell-specific values required by other models. Moreover, good correlation was obtained for 
predictions of sensitivity to both protons and carbon ions, despite only fitting to the proton data, with the model 
accurately predicting the difference in effect between protons and carbon ions, and the turnover of RBE at high 
LETs. The degree of experimental uncertainty remains significant, particularly in proton RBE measurements, 
but overall the correlations were good (MID predictions have a correlation coefficient of R2 = 0.8 across all data).

This correlation may potentially be further improved through the incorporation of a more granular pheno-
typic model, allowing for mutations which partially disrupt processes such as DNA repair, rather than the current 
binary model which is applied. In addition, while the overall performance of this model is high in in vitro data, 
several aspects remain to be improved before it can feasibly be implemented in a clinical setting. For in vitro 
data in cell lines such as the ones reported in the included studies, the phenotype can be established through 
experimental measurements which are not feasible in a clinical setting. As a result, alternative methods may be 
needed to generate these phenotypes in a predictive way, which may include the use of small targeted signatures 
where known genes in, for example, DNA repair pathways could be linked to specific phenotypic parameters. 
This would enable the model to be linked to clinical data from, for example, biopsies. In addition, while intrinsic 
radiosensitivity is a predictor of overall response9, 12, it would be desirable to expand the model to consider the 
responses of cells in a multicellular 3D system, enabling a consideration of factors such as changes in cell cycle 
distribution and radiosensitivity which occur upon the transition from in vitro to in vivo scenarios.

This approach may also benefit from more realistic models of DSB formation and resulting repair kinetics. 
At present, DSB yields depend only on energy deposition and consider discrete classes of ‘simple’ and ‘complex’ 
damage. In reality, it is known that a broad range of DNA damage types are possible, reflecting both the nature of 
break and where it occurs within the nucleus. This is known to be particularly sensitive to the type of radiation 
used, with a trend towards much more complex DSBs being seen in high LET irradiation which is believed to con-
tribute to RBE32. In addition, the model currently uses the same simple exponential kinetics for repair for X-rays 

Parameter Meaning Value

Charged particle model parameters – Fit in this work

EDSB Average energy required to produce 1 DSB 60.7 ± 14 keV

Cellular parameters – Fixed from mechanistic model24

DNA Repair Parameters

DNA Damage Yield 5.738 DSB/Gy/Gbp

λF Fast Repair Coefficient 3.6 ± 0.6 hours−1

λS Slow Repair Coefficient 0.15 ± 0.02 hours−1

λM MMEJ Repair Coefficient 0.0084 ± 0.0015 hours−1

pc Complex break probability 0.42 ± 0.03

pf Repair Failure Probability 0.67 ± 0.09

σ Misrejoin range 0.0428 ± 0.0005 Rnuc

μNHEJ NHEJ Fidelity 0.985 ± 0.002

μMMEJ MMEJ Fidelity 0.465 ± 0.05

Survival Parameters

ψ Mitosis Sensitivity 0.014 ± 0.002 break−1

ϕ Apoptosis Sensitivity 0.0085 ± 0.001 break−1

Table 1. List of parameters used in this work, and best fit parameter values from models. All of the DNA repair 
and survival model parameters are taken from a previous publication without additional fitting24, while EDSB is 
obtained from a fit to proton data in this work.
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and all ions. This is known to be a simplification, as when misrepair events occur, there can be a significant delay 
in the repair of unpaired free ends, leading to more persistent damage and slower repair kinetics. These effects 
have been neglected here as within the current model formulation they do not impact on late outcomes such as 
survival for single-fraction acute exposures as studied here, but if there are other temporally-dependent processes 
which are not incorporated in this model these effects may become significant.

The inclusion of these assumptions may make it somewhat surprising that the current model performs well for 
heavy ions while treating all DSBs and resulting misrepaired lesions based on the X-ray response alone. However, 
there are some suggestions that these effects may be significant for some cells – such as homologous recombina-
tion defective cells, where RBEs are systematically under-estimated by the model – which suggests it would be 
desirable to link the model to more realistic DSB damage distributions provided by appropriate biophysical mod-
els, supported by more accurate models of DNA repair which take into account the effects of DSB interactions and 
misrepair on the repair kinetics and other mechanistic endpoints.

Despite these limitations, it can be seen that this mechanistic model of radiation response has good predic-
tive power, having been validated against a set of over 800 experimental measurements of radiation sensitivity 
and showing good predictive power across a broad range of cell lines and conditions. This model approach may 
provide a valuable foundation for future investigations to understand radiation effects on tissue, as well as tailor 
individual treatments by incorporating more realistic models of individualised radiation responses.

Methods
This work validates and extends a previously developed mechanistic model of DNA repair following ionising 
radiation exposures, by testing its predictive power in two new large datasets containing both X-ray and charged 
particle exposures. The model is schematically illustrated in Fig. 1, and key aspects are summarised below. Further 
details can be found in a previous publication24, and a full implementation of the model as used for the analysis 
presented in this work is available in the Supplementary Information.

Model overview – DNA repair. This model begins from DNA double strand breaks (DSBs) as the initiating 
event in radiation-induced cell killing. Following exposure to ionising radiation, each cell contains a number of 
DSBs, N0, which is proportional to the dose delivered to the cell and the number of DNA base pairs within the 
cell (which varies with species and cell cycle stage as DNA is replicated). Each DSB is randomly assigned to be 
either ‘simple’ or ‘complex’, with some probability pc at the time of creation. These DSBs can be repaired by one of 
three processes – Nonhomologous End Joining (NHEJ), Homologous Recombination (HR) and Mismatch End 
Joining (MMEJ), depending on the cell cycle phase and genetic background. In a repair-competent cell, simple 
DSBs are repaired by NHEJ throughout the cell cycle, while complex DSBs are repaired by NHEJ in G1, and HR 
in later phases when DNA has been replicated. In cells with repair defects, a proportion of DSBs which attempt to 
repair by a defective pathway will fail with probability pfail, and instead have to be repaired by the backup MMEJ 
pathway.

Each repair process repairs DSBs with exponential kinetics giving the total number of DSBs as 
= + +λ λ λ− − −N t N p e p e p e( ) ( )f

t
s

t
m

t
0

f s m  where px and λxare the probability and rate associated with each repair 
pathway. In addition to determining the kinetics of repair, each of these pathways has an associated fidelity, μx, 
which indicates the probability with which the pathway will correctly repair a given DSB. HR has the highest 
fidelity, taken as 1, while MMEJ has the lowest fidelity, of 0.445. For each DSB that is repaired, this probability is 
randomly sampled, giving an associated rate of misrepair.

In addition to misrepair resulting from incorrect processing of a single DSB, binary misrepair can occur where 
free DNA strand ends from different DSBs are joined. Such events can be very significant for determining a cell’s 
fate following radiotherapy, as they can lead to significant genetic loss or the formation of chromosome aberra-
tions. The process of misrepair is modelled in a spatially dependent fashion – as illustrated in Fig. 1, free DNA 
ends interact with a rate of ζ ∝ −

σd e( )
d2

2 2 , where d is the separation between the two ends and σ is a characteristic 
rejoining range. This gives a maximum rate for the two free ends created by a single DSB, which are initially adja-
cent, with a falling range as the separation between free ends increases.

For any given DSB, it can be shown that the probability of its two free ends rejoining correctly is given by 
=

η
− η−

Pcorrect
e1 , where η ζ= ∑ =

− 2i
N

i1
10  is the sum of the interaction rates between a free end in a given DSB with 

the remaining N0 − 1 DSBs. For a uniform distribution of DSBs within a spherical nucleus, the average value of η 
for two randomly placed DSBs has an analytic form which depends only on the number of DSBs, the radius of the 
nucleus and the rejoining range σ, denoted as θ(R, σ)24. For other non-uniform distributions, η can be numeri-
cally calculated. The final probability of correct repair for a given DSB can then be given as µ=

η
− η−

P ( )correct x
e1 , 

where μx is the process-specific repair rate. For a given exposure, this can be used to calculate the total number of 
misrepaired DSBs, which compares well to experimental observations24.

In addition to predicting the raw number of misrepaired events, the spatial component of the model can also 
be applied to predict the types of genetic aberrations resulting from these events. The first relevant classification 
is whether the event is intra- or inter- chromosomal: that is, are the two rejoining DSBs on the same or different 
chromosomes. As a simplified model, chromosomes are modelled as spherical sub-regions of the nucleus with 
radius =rc

R
nc3

, where nc is the number of chromosomes. While this neglects variations in chromosome size and 
packing that may impact on the rates in any given chromosome, it represents a useful average across a whole 
nucleus. The probability of intra-chromosomal events is then given as the ratio of the rate of interaction with 
another DSB within the chromosome volume to that across the nucleus as a whole: = θ σ

θ σ
Pintra

r
R

( , )
( , )

c .
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These aberrations can also be classified as symmetric or asymmetric. This is defined based on whether the 
rejoined chromosomes are correctly aligned around their centromeres, with symmetric rejoining leaving two 
centromere-containing chromosomes while asymmetric rejoining leaves chromosomes with multiple or no cen-
tromeres, which are known to be incompatible with cell survival. As the free ends which correspond to each type 
of repair are otherwise identical, this is modelled simply as a random choice between each type of alignment, 
Pasym = 0.5.

Asymmetric intra-chromosome events lead to the deletion of genetic material. The size of this deletion is 
known to be very significant in determining cell viability. The rate of deletions less than a given size can be calcu-
lated in a similar fashion to the rate of inter-chromosome aberrations. If it is assumed that the genetic separation 
between two breaks increases monotonically with physical separation, then the size of a deletion in base pairs is 
given by =D

LrD
R

2 3

3 , where L is the total length of all chromosomes (in base pairs) and rD is the separation between 
the involved DSBs. The rate of deletions smaller than D is then given by the fraction of DSBs within a chromo-
some which occur at a distance of rD or less, which is given by = θ σ

θ σ<Pdel D
r r

r
( , , )

( , )
c D

c
, were θ(rc, σ, rD) is a generalisa-

tion of the average interaction rate of two randomly placed DSBs within a sphere of radius rc to only consider 
DSBs separated by less than a distance rD, the analytic derivation of which has been previously presented24.

Finally, in the G2 phase of the cell cycle when DNA has been replicated, there is also the possibility to observe 
inter-arm effects, where rejoining occurs across the centromere. While these events are hard to identify in G1, in 
G2 they are highly visible due to the deformation of the sister chromatid. For a DSB at a distance b (in base pairs) 
from the centromere, the probability of an intra-chromosome event also being inter-arm can be calculated as 

= >P b P( )interArm del b, using the formulation above. Summing over all possible DSBs within a chromosome then 
gives a rate of ∫=

.
>P P dbinterArm

l
L

l
del b0

0 5c c .
Taken together, when repair is completed, the number of misrepaired DSBs, dicentric chromosomes (given by 

asymmetric intra-chromosome events), large deletions and inter-arm events (G2 only) are given by:

= −N N P(1 ) (1)mis correct0

= . −N N P0 5 (1 ) (2)dic mis intra

= . − <N N P P0 5 (1 ) (3)del mis intra del D

=N N P P (4)interArm mis intra interArm

where D is set to 3 Mbp, based on established measurements of chromosome aberrations33. These model predic-
tions have been fit and validated against a range of experimental observations, demonstrating broad applicabil-
ity24. Predictions have also been produced for rates of mutation, but are not included here for brevity.

Model overview – survival. Chromosome aberrations are one of the key drivers of cell death, particularly 
dicentrics, large deletions causing loss of significant genetic material, and inter-arm events in G2 preventing 
chromosome separation. Taking the predicted rates of dicentrics and deletions as average rates and assuming 
these events are Poisson distributed, we can then model survival in non-cycling cells as = − − >S e N Ndic del MBP3  for G1 
and = − −S e N Ndic interArm for G2 (neglecting the probability of multiple large deletions in G2 rendering both daughter 
cells non-viable, which is a relatively rare event at clinically-relevant doses).

In cycling cells, two further forms of death are modelled – G1 arrest and apoptosis, and mitotic catastrophe. 
For simplicity, both processes are modelled as simple exponential functions of the number of DSBs present dur-
ing G1 or M phase respectively, based on experimental observations. Mitosis is modelled for cells irradiated in G2 
or M phase as = φ−S emitosis

Nm, where Nm is the initial number of DSBs in M phase and φ is a rate parameter com-
mon across all cells. Similarly, apoptosis is measured as = ψ−S eapoptosis

NG1, where ψ is a common parameter and 
NG1 is the number of DSBs present when the cell begins cycling in G1. While mitotic catastrophe is a common 
feature of all cell lines, G1 arrest and apoptosis is an active process, depending on p53 and other genes being func-
tional. To reflect this, individual cell lines have been identified as G1 arresting or not, with cells which do not 
arrest in G1 not being subject to the apoptotic death rate.

The above model has been implemented in previous work and fit to and validated against a range of experi-
mental measurements24, giving a set of model parameters outlined in Table 1. These parameters were used for all 
of the predictions generated in this work, without any additional fitting.

Particle RBE characterisation. While the above approach has been validated for X-rays, it can be readily 
extended to DSB distributions caused by charged particles. As illustrated in Fig. 1, rather than considering a 
uniform distribution of DSBs by X-rays, DSBs now cluster around individual track paths. This leads to denser 
DSB clustering within the track path, which increases the value of η compared to a uniform exposure, and in turn 
increases the rate of misrepair.

To calculate η for a given track structure, the distribution of DSBs created by the track must be determined, 
which can in turn be used to calculate the average distribution of separations between DSBs. Once this distribu-
tion has been obtained, ηtrack can be calculated for the intra-track DSB interactions, and this can then be added 
to the η value associated with all DSBs caused by other independent tracks throughout the nucleus to give a total 
misrepair rate.
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Radial track structures were modelled using Geant4 10.2 (patch 2)34, and the Geant4-DNA toolkit to pro-
vide precision at low energies35, 36. Protons and carbon ions at energies ranging from 1 to 100 MeV and 2 to 
200 MeV/A, respectively, were directed along the central axis of a cylindrical water phantom, with radius 200 μm 
and depth 22 μm consisting of a central 2 μm scoring region and 10 μm build-up regions on either side to ensure 
adequate scattering. These volumes were selected following preliminary simulations with high-energy primary 
particles to estimate track diameters, and a small central scoring region was chosen to minimise the impact of 
primary particle scattering and maintain radial symmetry. Within the scoring region, energy deposition from 
both the primary particle and secondary electrons was recorded and scored in cylindrical bins according to dis-
tance to the primary proton track (recorded as it entered the scoring region), giving a radial energy distribution. 
The energy distribution was scored in logarithmic bins, with the smallest bin radius of 0.1 nm, and 100 bins for 
each factor of 10 change in radius (equivalent to a 2.33% increase in width in each successive bin). Primary counts 
ranged from 2000 to 20000 for protons and 600 to 20000 for carbon ions, depending on particle energy.

The model assumes that all radiation types create the same total number of DSBs per cell per unit dose: 5.738 
/Gy /GBP, as determined in previous studies24. While these are distributed uniformly in the case of X-rays, ion 
radial energy distributions were converted to DSB distributions by assuming that the probability of a DSB being 
induced was directly proportional to the amount of energy deposited in a volume. That is, for a given volume the 
number of DSBs is given by E

EDSB
, where E is the energy deposited in a volume and EDSB is the energy which leads 

to a single DSB on average. It should be noted that EDSB is independent of the target volume under consideration 
– instead, it is assumed that this much energy causes 1 DSB whether it is deposited uniformly across the whole 
nucleus, or locally within some small sub-volume.

EDSB cannot be determined from the DSB yield per cell alone, as this does not specify the target geometry. 
Instead, EDSB is treated as a model parameter, and fit as described below. Because the current model sets a relation-
ship between the dose to a nucleus and the number of DSBs, fitting EDSB also determines a value for the volume of 
the nucleus. That is, =ND

D V
E

nuc

DSB
, where ND is the number of DSBs induced by a dose D, and Vnuc is the volume of 

the nucleus. For human cells, where a dose of 1 Gy induces 35 DSBs37, the volume in μm3 is given by 
= .V E5 61nuc DSB, where EDSB is measured in keV. This gives a nuclear radius, measured in μm, of = .r E1 1nuc DSB3 , 

which provides a useful bound on the credibility of the EDSB parameter.
Once radial DSB distributions are generated, the average separation between DSBs generated by a typical track 

can be calculated. Assuming radial symmetry in the energy distribution, each radial bin is subdivided into a series 
of small angular segments with a constant DSB density. A 2D distribution of DSB separations is then obtained by 
calculating the normalised sum of DSBs present in segments at different distances. Finally, the full 3D separation 
is obtained by assuming the DSB density is constant along the track length, and scaling the density of DSBs at 
each distance as appropriate. An implementation of this code is presented in the supplementary information.

The average interaction rate of DSBs within a track can then be calculated by summing ζ at each radial posi-
tion, weighted by the expected number of DSBs with that separation. This sum then provides a ηtrack value, defin-
ing the intra-track DSB interaction rate – that is, the rate at which two DSBs from a single track will misrejoin. As 
it only considers DSBs from within a single track it is characteristic of the particle type and energy, but independ-
ent of the total number of tracks (and thus dose) delivered to the cell. This rate can be combined with the 
inter-track interaction rate, given by the whole-nucleus η rate defined above and the total number of DSBs present 
to give a total correct repair probability of =

η η
−

+

η η− −

Pcorrect
e1 track

track
. This can be used to make cell- and particle-specific 

survival predictions to enable the calculation of RBE.
For simplicity, in this work the value of the parameter η associated with interactions of DSBs from dif-

ferent tracks across the whole nucleus is calculated assuming uniformly distributed DSBs. This is equivalent 
to the assumption that there is no correlation between the positions of DSBs caused by independent tracks. 
While this assumption correctly predicts the average separation of DSBs for all radiations, at very high LETs it 
under-estimates the variance in DSB clustering and thus in cell survival. However, as all experimental studies 
considered here focus on mean survival, this does not impact on the model fit. In addition, only the impact of 
intra-track events on the total rate of misrepair is modelled, with the probability of misrepair events leading to 
different classes of chromosome aberrations and various sizes of deletions still being calculated from the estab-
lished biological model.

Finally, at very high LETs each track will potentially cause multiple DSBs and low dose exposures may only 
consist of a few particle traversals, giving rise to over-dispersed, non-Poisson initial damage yields. To account 
for this, when the expected number of DSBs per track traversing the nucleus is greater than 0.5 (based on LET 
and EDSB), cellular responses to discrete numbers of particle traversals are calculated. An average response is 
then returned, weighted assuming a Poisson distribution of tracks around the mean number which delivers the 
prescribed dose.

Data selection and analysis. Two sources of cell survival data were used to test the model’s predictive 
power and extend its predictions to charged particle therapies. The first is the proton RBE dataset published by 
Paganetti25, which presented a comprehensive review of published proton RBE studies, with both X-ray and pro-
ton α and β values for linear-quadratic survival curves, and corresponding experimental conditions. The second 
source was the Particle Irradiation Data Ensemble (PIDE), produced by GSI26, which contains similar data for a 
range of ion exposures, from which the carbon ion exposure data was extracted.

Both datasets were filtered to extract experiments investigating single-fraction in vitro exposures of adherent 
cells in oxic conditions. Additional filters were applied to exclude studies where charged particles had ranges 
less than one cell diameter, or where the dose range was extremely limited (all data points < 2 Gy). The resulting 
dataset contained a total of 202 X-ray experiments, 260 proton experiments, and 325 carbon ion experiments. For 
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each experiment, the following data was extracted: the cell line used, the particle used, the LET (if appropriate), 
the cell cycle phase at the time of irradiation (including the delay until cells were replated/released from cell cycle 
arrest, if relevant), and the fitted α and β response parameters. Cells irradiated in asynchronous conditions were 
treated as having a 2:1 distribution between G1 and G2, as full cell cycle information was typically not available. 
This approximation is believed to be valid as, in most cell lines, radiosensitivity varies smoothly through S phase 
from the G1 sensitivity to the G2 sensitivity, allowing asynchronous populations to be reasonably approximated 
by a mixture of G1 and G2 cells38.

The cell line used in each experiment was characterised according to the following parameters – its genome 
size, its chromosome count, the presence of functional HR and NHEJ, and the activity of its G1 damage arrest. 
For HR, NHRJ and G1 arrest, these were treated as simple binary variables, where processes are either fully func-
tional or fully defective. The variables of interest and their format are presented in Table 2, and a full listing of all 
experimental conditions modelled is included in the Supplementary Information.

For each experimental dataset, we calculated the Mean Inactivation Dose (MID) and D10 (the dose at which 
10% of cells survive, typically used to characterise high-LET radiation sensitivity) to provide single dosimetric 
metrics to characterise the radiation responses of the cells. The MID is the dose required to kill an ‘average’ cell in 
the population, and can be defined as the area under the dose response curve, given by:

∫
π

β
= =α β

α
β α

β∞ − − ( )
MID e dD

e Erfc

2 (5)
D D

0

2
4

22

Dose response curves were also simulated using the mechanistic model for doses from 0 to 10 Gy for each 
particle type, and these dose response curves were used to calculate the model MID and D10 values. For X-ray 
exposures, these predictions were based solely on parameters obtained from mechanistic fitting in our previous 
work24, while for charged particle exposures a value of EDSB was required. To obtain this, a nonlinear least squares 
regression was carried out, varying EDSB to produce the best correlation between model predicted MID values and 
the experimentally observed proton MID values from the Paganetti dataset. Fits were carried out in python, using 
scipy’s optimize_curve routine. The PIDE dataset was not used within this fit, but was instead reserved to test the 
ability of the model to extrapolate between different systems, by calculating ion responses based on the EDSB value 
obtained for protons without any fitting to the carbon data.

Finally, RBEs were calculated by comparing different ion exposures to their associated reference X-ray data. 
RBE is defined as the ratio of the dose required to produce a given endpoint by X-rays divided by the dose 
required to produce the same endpoint with ions. Thus, for example, the RBE at 10% survival for a given exposure 
can be defined as:

=RBE D
D (6)

X

ion
10

10

General dose response curves were calculated for Fig. 7 in a similar fashion, with generic hamster (repair 
competent, G1 arrest deficient) and human (repair competent, G1 arrest competent) cell lines being simulated for 
a range of doses and different combinations of particle and LET. These resulting dose response curves were then 
fit to a standard LQ model curve to provide corresponding α and β parameters, which were compared to particle 
exposures after correction for X-ray sensitivity.

References
 1. Jaffray, D. A. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol 9, 688–699 (2012).
 2. Haviland, J. S. et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment 

of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 14, 1086–1094 (2013).
 3. Dearnaley, D. et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year 

outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 17, 1047–1060 (2016).
 4. Cooke, S. L. et al. Intra-tumour genetic heterogeneity and poor chemoradiotherapy response in cervical cancer. Br. J. Cancer 104, 

361–368 (2011).
 5. Yard, B. D. et al. A genetic basis for the variation in the vulnerability of cancer to DNA Damage. Nat. Commun. 7, 11428 (2016).

Parameter Description

Genome Size Length of haploid genome in GBP

Chromosome Number Total number of chromosomes 
in cell

NHEJ Repair Capacity Availability of NHEJ repair pathway

HR Repair Capacity Availability of HR pathway

G1 Arrest Function Availability of G1/S phase damage 
arrest checkpoint

Cell Cycle Phase Cell cycle phase (Single specified 
phase or asynchronous)

Table 2. List of cell-specific characteristics which are used to characterise cells in this model. All parameters are 
obtained from the literature and used to predict cellular radiosensitivity without free fitting parameters.



www.nature.com/scientificreports/

13Scientific RepoRts | 7: 10790  | DOI:10.1038/s41598-017-10820-1

 6. Webb, S. & Nahum, A. E. A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous 
distributions of dose and clonogenic cell density. Phys. Med. Biol. 38, 653–66 (1993).

 7. Fertil, B. & Malaise, E. P. Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: 
Analysis of 101 published survival curves. Int. J. Radiat. Oncol. Biol. Phys. 11, 1699–1707 (1985).

 8. Geara, F. B. et al. Intrinsic Radiosensitivity of Normal Human Fibroblasts and Lymphocytes after High- and Low-Dose-Rate 
Irradiation. Cancer Res. 52, 6348–6352 (1992).

 9. West, C. M., Davidson, S. E., Roberts, S. a. & Hunter, R. D. Intrinsic radiosensitivity and prediction of patient response to 
radiotherapy for carcinoma of the cervix. Br. J. Cancer 68, 819–823 (1993).

 10. Thorwarth, D., Eschmann, S. M., Paulsen, F. & Alber, M. Hypoxia Dose Painting by Numbers: A Planning Study. Int. J. Radiat. Oncol. 
Biol. Phys. 68, 291–300 (2007).

 11. Burnet, N. G. et al. The relationship between cellular radiation sensitivity and tissue response may provide the basis for 
individualising radiotherapy schedules. Radiother. Oncol. 33, 228–238 (1994).

 12. West, C. M., Davidson, S. E., Roberts, S. A. & Hunter, R. D. The independence of intrinsic radiosensitivity as a prognostic factor for 
patient response to radiotherapy of carcinoma of the cervix. Br. J. Cancer 76, 1184–90 (1997).

 13. Andreassen, C. N., Alsner, J., Overgaard, M. & Overgaard, J. Prediction of normal tissue radiosensitivity from polymorphisms in 
candidate genes. Radiother. Oncol. 69, 127–135 (2003).

 14. Amundson, Sa et al. Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National 
Cancer Institute Anticancer Drug Screen. Cancer Res. 68, 415–24 (2008).

 15. Eschrich, S. A. et al. Validation of a radiosensitivity molecular signature in breast cancer. Clin. Cancer Res. 18, 5134–5143 (2012).
 16. Hall, J. S. et al. Investigation of Radiosensitivity Gene Signatures in Cancer Cell Lines. PLoS One 9, e86329 (2014).
 17. Carabe-Fernandez, A., Dale, R. G. & Jones, B. The incorporation of the concept of minimum RBE (RbEmin) into the linear-

quadratic model and the potential for improved radiobiological analysis of high-LET treatments. Int. J. Radiat. Biol. 83, 27–39 
(2007).

 18. Wedenberg, M., Lind, B. K. & Hårdemark, B. A model for the relative biological effectiveness of protons: the tissue specific parameter 
α/β of photons is a predictor for the sensitivity to LET changes. Acta Oncol. (Madr). 52, 580–8 (2013).

 19. McNamara, A. L., Schuemann, J. & Paganetti, H. A phenomenological relative biological effectiveness (RBE) model for proton 
therapy based on all published in vitro cell survival data. Phys. Med. Biol. 60, 8399–8416 (2015).

 20. Frese, M. C., Yu, V. K., Stewart, R. D. & Carlson, D. J. A Mechanism-Based Approach to Predict the Relative Biological Effectiveness 
of Protons and Carbon Ions in Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 83, 442–450 (2011).

 21. Elsässer, T. et al. Quantification of the relative biological effectiveness for ion beam radiotherapy: Direct experimental comparison 
of proton and carbon ion beams and a novel approach for treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 78, 1177–1183 (2010).

 22. Hawkins, R. B. A microdosimetric-kinetic model for the effect of non-Poisson distribution of lethal lesions on the variation of RBE 
with LET. Radiat. Res. 160, 61–69 (2003).

 23. Friedrich, T., Durante, M. & Scholz, M. Modeling Cell Survival after Photon Irradiation Based on Double-Strand Break Clustering 
in Megabase Pair Chromatin Loops. Radiat. Res. 178, 385–394 (2012).

 24. McMahon, S. J., Schuemann, J., Paganetti, H. & Prise, K. M. Mechanistic Modelling of DNA Repair and Cellular Survival Following 
Radiation-Induced DNA Damage. Sci. Rep. 6, 33290 (2016).

 25. Paganetti, H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, 
dose, and linear energy transfer. Phys. Med. Biol. 59, R419–72 (2014).

 26. Friedrich, T., Scholz, U., Elsässer, T., Durante, M. & Scholz, M. Systematic analysis of RBE and related quantities using a database of 
cell survival experiments with ion beam irradiation. J. Radiat. Res. 54, 494–514 (2013).

 27. Hsu, Y.-C. et al. A Four-Gene Signature from NCI-60 Cell Line for Survival Prediction in Non-Small Cell Lung Cancer. Clin. Cancer 
Res. 15, 7309–7315 (2009).

 28. Kim, H. S. et al. Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 
cancer cells. BMC Genomics 13, 348 (2012).

 29. Biade, S., Stobbe, C. C. & Chapman, J. D. The intrinsic radiosensitivity of some human tumor cells throughout their cell cycles. 
Radiat. Res. 147, 416–421 (1997).

 30. Trompier, F. et al. Investigation of the influence of calibration practices on cytogenetic laboratory performance for dose estimation. 
Int. J. Radiat. Biol. 0, 1–9 (2016).

 31. Nikjoo, H. & Lindborg, L. RBE of low energy electrons and photons. Phys. Med. Biol. 55, R65–R109 (2010).
 32. Lomax, M. E., Folkes, L. K. & O’Neill, P. Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. 

Clin. Oncol. 25, 578–585 (2013).
 33. Cornforth, M. & Bedford, J. A quantitative comparison of potentially lethal damage repair and the rejoining of interphase 

chromosome breaks in low passage normal human fibroblasts. Radiat. Res. 111, 385–405 (1987).
 34. Agostinelli, S. et al. GEANT4 - A simulation toolkit. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. 

Equip. 506, 250–303 (2003).
 35. Bernal, M. A. et al. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 

Monte Carlo simulation toolkit. Phys. Medica 31, 1–14 (2015).
 36. Incerti, S. et al. Comparison of GEANT4 very low energy cross section models with experimental data in water. Med. Phys. 37, 

4692–4708 (2010).
 37. Rothkamm, K. & Löbrich, M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray 

doses. Proc. Natl. Acad. Sci. 100, 5057–62 (2003).
 38. Schaue, D. & McBride, W. H. Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol. 12, 527–540 

(2015).

Acknowledgements
SJM would like to thank the European Commission (EC FP7 grant MC-IOF-623630) for supporting this work.

Author Contributions
S.J.M. developed and implemented the model and drafted the manuscript, based on discussions with J.S., A.L.M., 
H.P. and K.M.P. A.L.M., J.S. and H.P. curated the proton R.B.E. data and developed analytic proton R.B.E. models. 
All authors reviewed and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-10820-1
Competing Interests: The authors declare that they have no competing interests.

http://dx.doi.org/10.1038/s41598-017-10820-1


www.nature.com/scientificreports/

1 4Scientific RepoRts | 7: 10790  | DOI:10.1038/s41598-017-10820-1

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation
	Results
	Model predictive power – X-rays. 
	Radial energy distribution and interaction. 
	Model predictive power – protons. 
	Model predictive power – heavier ions. 
	Linear-Quadratic Model Parameters. 

	Discussion
	Methods
	Model overview – DNA repair. 
	Model overview – survival. 
	Particle RBE characterisation. 
	Data selection and analysis. 

	Acknowledgements
	Figure 1 Schematic illustration of mechanistic DNA repair model, combining a biological model of DNA DSB repair (a) and a physical model of DSB distribution (b).
	Figure 2 Comparison of modelled and observed cellular radiosensitivity to X-rays.
	Figure 3 Radial energy deposition around protons of different energies.
	Figure 4 Double Strand Break (DSB) distributions and resulting misrepair rates.
	Figure 5 Comparison of modelled and observed cellular radiosensitivity to protons.
	Figure 6 Model predicted Relative Biological Effectiveness for protons and carbon ions.
	Figure 7 Illustration of model predicted LQ parameters for proton and carbon ions.
	Table 1 List of parameters used in this work, and best fit parameter values from models.
	Table 2 List of cell-specific characteristics which are used to characterise cells in this model.




