
ORIGINAL RESEARCH
published: 03 December 2021

doi: 10.3389/fmed.2021.771713

Frontiers in Medicine | www.frontiersin.org 1 December 2021 | Volume 8 | Article 771713

Edited by:

Krystel R. Huxlin,

University of Rochester Medical

Center, United States

Reviewed by:

Kristen Bowles Johnson,

University of Rochester, United States

Khaldoon Al-Nosairy,

Otto von Guericke University

Magdeburg, Germany

*Correspondence:

Heather E. Moss

hemoss@stanford.edu

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Ophthalmology,

a section of the journal

Frontiers in Medicine

Received: 06 September 2021

Accepted: 05 November 2021

Published: 03 December 2021

Citation:

Diao T, Kushzad F, Patel MD,

Bindiganavale MP, Wasi M,

Kochenderfer MJ and Moss HE (2021)

Comparison of Machine Learning

Approaches to Improve Diagnosis of

Optic Neuropathy Using Photopic

Negative Response Measured Using a

Handheld Device.

Front. Med. 8:771713.

doi: 10.3389/fmed.2021.771713

Comparison of Machine Learning
Approaches to Improve Diagnosis of
Optic Neuropathy Using Photopic
Negative Response Measured Using
a Handheld Device
Tina Diao 1†, Fareshta Kushzad 2†, Megh D. Patel 2†, Megha P. Bindiganavale 2,

Munam Wasi 2, Mykel J. Kochenderfer 2,3 and Heather E. Moss 2,4*

1Department of Management Science & Engineering, Stanford University, Stanford, CA, United States, 2Department of

Ophthalmology, Stanford University, Palo Alto, CA, United States, 3Department of Aeronautics and Astronautics, Stanford

University, Stanford, CA, United States, 4Department of Neurology and Neurological Sciences, Stanford University, Palo Alto,

CA, United States

The photopic negative response of the full-field electroretinogram (ERG) is reduced

in optic neuropathies. However, technical requirements for measurement and poor

classification performance have limited widespread clinical application. Recent advances

in hardware facilitate efficient clinic-based recording of the full-field ERG. Time series

classification, amachine learning approach, may improve classification by using the entire

ERG waveform as the input. In this study, full-field ERGs were recorded in 217 eyes (109

optic neuropathy and 108 controls) of 155 subjects. User-defined ERG features including

photopic negative response were reduced in optic neuropathy eyes (p < 0.0005,

generalized estimating equation models accounting for age). However, classification of

optic neuropathy based on user-defined features was only fair with receiver operating

characteristic area under the curve ranging between 0.62 and 0.68 and F1 score at

the optimal cutoff ranging between 0.30 and 0.33. In comparison, machine learning

classifiers using a variety of time series analysis approaches had F1 scores of 0.58–

0.76 on a test data set. Time series classifications are promising for improving optic

neuropathy diagnosis using ERG waveforms. Larger sample sizes will be important to

refine the models.

Keywords: photopic negative response (PhNR), electroretinogram (ERG), optic neuropathy, classification,machine

learning, time series analysis

INTRODUCTION

Optic neuropathies cause visual impairment due to reduced function of the optic nerves, which
carry the neurological signal generated by the photoreceptors and processed by the retina to the
brain. In current clinical practice, detection of vision loss due to optic neuropathies is done by
querying voluntary responses of patients to different visual stimuli, for example, through visual
acuity testing or standard automated perimetry. Such psychophysical testing is subjective and
can have significant fluctuations, which limits the reliability and undermines the accuracy of the
evaluations. There is a need for more objective measures for detecting and monitoring visual
dysfunction due to optic neuropathies.
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Electroretinography is an objective measurement of the
electrical discharge of the eye in response to light stimuli.
The photopic negative response (PhNR) is the slow negative
component of the photopic full-field electroretinogram (FF-
ERG) that occurs after the b-wave. The PhNR relates to
the retinal ganglion cells (RGCs) that form the optic nerve
(1) and the amplitude of the PhNR is reduced in subjects
with optic neuropathy (ON) including idiopathic intracranial
hypertension (IIH) (2), glaucoma (3), optic nerve atrophy (4),
and optic neuritis (5). The full-field stimulus PhNR offers
advantages over an alternative electroretinographic measure of
optic nerve function, the pattern ERG (PERG), because it does
not require refraction or central fixation. PERG and PhNR
performed similarly in detection of manifest glaucoma (6). In
a study comparing IIH subjects with healthy controls, PhNR
was impaired, while PERG was not, suggesting PhNR may be
more sensitive (7). However, requirements for mydriasis, bench
top stimulator and recording devices, and technical expertise to
administer the test have limited further study of the PhNR as a
diagnostic test in high volume clinical and research settings.

An integrated handheld ERG device that administers
light stimulus protocols based on pupil size to allow non-
mydriatic testing and records from skin electrodes is available
commercially. This is more practical for widespread clinical use
than traditional ERG setups (8). Though the skin electrodes
reduce the amplitude of the signal (9), studies using this device
have demonstrated correlation between PhNR amplitude and
structural measures of the optic nerve in healthy adults (10) and
people with glaucoma (11). Waveform processing approaches
including utilization of ratios to normalize the PhNR amplitude
to amplitudes of the b- and/or a-waves of the ERG (11)
and detrending the baseline (12) have been shown to reduce
variability in operator-defined variables. However, classification
of clinical state on the basis of PhNR alone has been challenging
and it has been deemed not ready for widespread use in optic
neuropathies (13).

Analysis based on user-defined variables, even those that are
normalized, fails to consider all the information in the ERG
waveform andmay contribute to poor classification performance.
Consideration of all the points in the waveform increases
dimensionality of the classification problem and may improve
classification. Expanding analysis to consider how the points
relate to each other as a time series further increases both the
dimensionality and classification potential. Machine learning
approaches to time series classification can be used to address this
high-dimensional challenge. Specifically, supervised approaches
can be used to generate models to classify patient diagnosis using
the entire ERG waveform as the input. While machine learning
has been broadly applied to image analysis in ophthalmology (14,
15), its application to ophthalmic electrophysiology including
visual evoked potential (16–19), electro-oculography (20), PERG
(21, 22), and the full-field ERG (23) has been limited. Brain
electrophysiology [electroencephalography (EEG)] (24, 25) and
cardiac electrophysiology (26, 27) have seen broader application
with excellent results.

The objective of this study was to compare classifiers of the
photopic full-field ERG, optimized for PhNR, as measured using

a handheld non-mydriatic ERG device with skin electrodes, based
on ability to differentiate ON from non-ON eyes in a neuro-
ophthalmology practice.

MATERIALS AND METHODS

Subjects
Adult subjects with bilateral, unilateral, or no ON were recruited
from patients with outpatient appointments at the Byers Eye
Institute at Stanford Neuro-ophthalmology Clinic. Each eye
was assessed for inclusion either as an ON (ON+) eye or
control (ON-) eye. A subject could contribute eyes to one
or both the groups. All the ON (ON+) eyes had clinical
evidence of ON such as optic nerve edema with visual acuity
or peripheral vision impairment, optic nerve pallor with visual
acuity or peripheral vision impairment, or structural thinning
of ganglion cell layers on optical coherence tomography (OCT).
No suspected cases (e.g., optic nerve drusen without other
sign of optic nerve impairment) or resolved cases (e.g., treated
and resolved papilledema with normal vision and OCT) were
included in either group. Exclusion criteria included ophthalmic
disease other than ON. Refractive error or mild cataract was
permissible. An additional exclusion criterion for control eyes
was neurological disease. Study of inclusion and exclusion criteria
was based on medical record review by an attending neuro-
ophthalmologist.

An additional group of control subjects without self-reported
history of neurological or ophthalmic disease were recruited at
the Spencer Center for Vision Research. All the subjects had
baseline data collected. Those who had clinical follow-up during
the study period were invited to have repeat measurements
taken. This study was performed according to the tenets of
the Declaration of Helsinki and was approved by the Stanford
University Institutional Review Board. All the participants
provided informed consent prior to data collection. Recruitment
and data collection occurred from February 2017 to August 2018.

Age, gender, race/ethnicity, and nature of ON were extracted
from the medical record for subjects recruited from the clinic.
Age, gender, and race/ethnicity were self-reported by subjects
recruited from the research center. Eyes of the ON subjects were
classified as ON or control-fellow eye. ON eyes were classified as
acute, if the optic nerve disease started less than 3months prior to
enrollment or chronic. Eyes of the control subjects were classified
as control-patient, if they were recruited from the clinic (i.e., had
no afferent neuro-ophthalmic disease) or control-healthy, if they
had no known ophthalmic or neurological disease.

Visual Function and Ancillary Testing
Best corrected Snellen visual acuity was extracted from the
clinical record for subjects recruited from the clinic. Distance
visual acuity with habitual correction was measured for control-
healthy subjects. Snellen visual acuity was converted to the
logarithm of the minimum angle of resolution (logMAR) for the
purposes of analysis. Count fingers, hand motions, and no light
perception were assigned logMAR 2, 3, and 6, respectively.

Ancillary ophthalmic testing was included, if it was collected
as a part of clinical care. For subjects who had OCT cube scans of
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themacula (512× 128) and/or the optic disk (200× 200) (Cirrus;
Carl Zeiss Meditech Incorporation, Jena, Thuringia, Germany,
UK), average retinal nerve fiber layer (RNFL) and ganglion
cell layer plus inner plexiform layer (GCL + IPL) thickness, as
calculated by Zeiss software, were recorded. OCT measures were
included in analysis, if signal strength ≥ 7.

For subjects who had visual field testing (24-2 or 30-2
SITA-FAST, Humphrey Field Analyzer; Carl Zeiss Meditech
Incorporation, Jena, Thuringia, Germany, UK), the Humphrey
Visual Fieldmean deviation (HVF-MD) in decibels was recorded.
HVF was included in analysis, if fixation losses ≤ 6, false
negatives < 20%, and false positives < 20%.

Electroretinography
Stimulation and recording were performed in an interior
examination room with the lights off. Subjects were seated
without mydriasis. Following cleaning of the skin below the
lower lids with alcohol swabs, adhesive skin electrodes were
placed 2mm below the lower lid of each eye extending
laterally with the medial end aligned with the center of the
eye. The photopic ERG was recorded sequentially in both
the eyes using a portable commercial device (RETeval, LKC
Technologies Incorporation, Gaithersburg, Maryland, USA).
Full-field stimulation red (621 nm) flashes (58 Tds) were
delivered at 3.4Hz over a blue (470 nm, 380 Td) background to
each eye. Software within the device applied a 1-Hz high-pass
filter and 100Hz low-pass filter, removed outliers, used a trimmed
mean to combine the results from individual flashes, and applied
wavelet-based denoising to generate an ERG waveform for each
recording. A total of 300 flashes were delivered in each eye
over two or three recordings. For the first 23 subjects, these
were divided into one 100 flash recording and one 200 flash
recording. For the remaining subjects, three 100 flash recordings
were completed. Testing sessions lasted under 10min per subject.

Averaged ERGwaveforms for each recording (220ms with 430
data points) with device software filtering and outlier removal
were extracted from RFF files generated by the device and were
used as input for analyses involving user-defined features and the
full-time series.

Analysis of User-Defined ERG Features
A custom script (MATLAB 2018a, MathWorks, Incorporation,
Natick, Massachusetts, USA) was used to process the ERG
waveforms for each recording. The input waveforms for
MATLAB were the averaged, filtered waveform with outliers
removed as generated by the RETeval device software. The linear
trend was removed using the detrend function to account for
steady upward or downward drifts in many of the recordings.
The waveforms for each session were reviewed. Any outliers or
those without a defined b-wave peak were excluded.

The following values were extracted from the detrended
waveform for each included trial. The baseline value was
calculated by averaging all the data points from the start of the
recording to the time that the flash was administered (100ms).
The b-wave peak was defined at the maximum potential. The a-
wave trough was defined at the minimum potential between the
time the flash was administered and the time of the b-wave peak.

The late negative response trough was defined in two ways in
different analyses. First, it was defined at 72ms after the stimulus
(28). Second, it was defined at the minimum potential in a ±

10ms window centered at 72ms after the flash (29).
The a-wave amplitude (aamp) was calculated as the potential

difference between the a-wave trough and baseline potential,
while the b-wave amplitude (bamp) was calculated as the potential
difference between the a-wave trough and the b-wave peak
potential. PhNR72 amplitude was calculated as the difference
between baseline potential and the potential at 72ms. PhNRmin

was calculated as the difference between baseline potential and
the mean of 11 consecutive points (∼5.62ms) centered at the late
negative response trough as done in previous studies (2, 7, 30).

To account for waveform variability, the P-ratio
(

−PhNR
bamp

)

and

the W-ratio
(

bamp−PhNR

bamp−aamp

)

were calculated (6, 28).

Each ERG feature (PhNR72, PhNRmin, P-ratio, and W-ratio)
was modeled as a function of ON status (ON+, ON-) using
linear generalized estimating equations (GEEs) accounting for
intrasubject correlation. ERG features were compared between
different sources of control eyes (healthy, patient, and fellow)
using GEE models. Linear GEE models were also used to model
each ERG feature as a function of structural and functional
measures of the optic nerve including RNFL thickness, GCL +

IPL thickness, and HVF-MD.
Using one eye from each subject (right eye unless the subject

only contributed a left eye), a receiver operating curve analysis
was performed. The Youden index [maximum of (sensitivity +

specificity −1)] was used to select the optimal cutoff point at
which to calculate sensitivity and specificity for comparison with
the time series analysis. Area under the curve was calculated for
subset of ON eyes with visual field MD < −5 dB (i.e., severe
ON) and controls. For comparison, area under the curve was
calculated for device calculated features (i.e. PhNR, P-ratio, W-
ratio reported by the device software prior to custom MATLAB
analysis). Analysis was done using the SPSS software (version 26;
IBM SPSS Statistics, IBM Corporation, Chicago, Illinois, USA).

Time Series Analysis of ERG
Time series classification (TSC) involves using time-ordered
discrete attributes to make predictions of a class. Let X be the
time series space and Y be the label space. Let (x, y) denote a
labeled example, in which y is the label for x. The goal is to train
a classifier fθ : X → Y such that l[fθ (x; y)] is minimized for
an objective function l and θ is the set of parameters associated
with the classifier model (Figure 1). For the diagnostic task of
ON, the input x is univariate time series of length T (i.e. the ERG
waveform) and the output labels y = (−1, 1), namely ON+ and
ON-, are binary (K= 2).

Classifiers were selected for comparison based on their
benchmarked performances on other datasets in the machine
learning literature (31). The classifiers we compared are nearest
neighbor dynamic time warping (NN DTW), linear support
vector machine (SVM linear), support vector machine with a
radial basis function kernel (KBF kernel SVM), random forest
classifier (RF), gradient boosted (GB) classifier, time series forest
(TSF), and long-short term memory (LSTM) networks, a form
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FIGURE 1 | Time series classification task (for univariate time series): a trained classifier with parameters takes the input of time series of length T and outputs a

predicted class out of K classes. The input size is denoted by N.

of recurrent neural networks in deep learning, each of which is
described in more detail below. The objective functions (l) used
were DTWdistance, hinge loss function, the Gini index, binomial
deviance, and cross-entropy loss functions.

Nearest Neighbor Dynamic Time Warping
A label for an example is predicted based on the closest distance
between the example x1 and another data series x2, its nearest
neighbor (NN). DTW denotes the type of distance measure to
be minimized between the two data series, where dDTW(x1, x2) is
commonly the Euclidean distance between x1i and x2j for time
indices i, j ∈ {1, ...T} with an optimal path along a sequence
w(i, j) (32).

Linear Support Vector Machine
A linear support vector machine uses a linear classifier fθ such
that for an example (xk,yk) we have the prediction of yk be
(f xk; θ) = θxk, and we minimize a hinge loss, lk = C ·

max(0, 1 − ykθ
Txk) + R(θ), between the prediction and label.

The C is a hyperparameter and R(θ) is the regularization penalty,
commonly the L2 norm.

Linear Support Vector Machine With a Radial Basis

Function Kernel
An RBF kernel SVM classifier is suitable for non-linear datasets
(33). The KBF kernel for a pair of data series x1 and another data
series x2 is exp (- γ||x1 - x2 ||

2), where γ is a hyperparameter and
||x1 - x2 || is the Euclidean distance.

Random Forest
Random forest is an ensemble method that averages the
predictions from a number of de-correlated decision trees (34). It
is a non-linear classifier from construction of linear boundaries
per tree node and reducing the node impurity. A common form
of node impurity for a binary classification task is the Gini index,
defined by 2p (1 - p) where p is the probability of the second
class (35).

Gradient Boosting
Gradient boosting is another ensemble method that minimizes
the loss function by introducing a tree with a prediction as close
as possible to the negative gradient (36). The loss function for the
binary classification task is binomial deviance, log [1+ exp (- 2 ·y
·f(x))] for an example (x, y) and gradient boosted classifier f.

Time Series Forest
Time series forest is a modification of the random forest classifier
for time series (37). It samples a set of random intervals and
extracts mean, SD, and slope per interval to train the time series
trees, reducing cross-entropy loss -[y log p + (1 - y) log (1-p)],
where p is the probability of the second class.

Long-Short Term Memory Networks
The recurrent neural network architecture incorporates temporal
dynamics by allowing information to be passed from one step
of the network to the next (38). LSTMs (39) are widely used
to address the vanishing gradient problem of recurrent neural
networks (40). The loss function to minimize is the cross-
entropy loss.

Training, Validation, and Testing of Machine Learning

Models
Electroretinogram waveforms for all the trials (baseline, follow
up) of included eyes were included in the time series analyses. The
waveforms were split into training, validation, and testing sets.
The split was done to ensure: (a) both the eyes of each records
of the subject appeared only in one of the three sets and (b) the
distributions of diagnostic outcomes were balanced in each set.
For each of the classifiers studied, training was performed on
the training set. The validation set was then used to tune the
hyperparameters and select the best models for testing on the test
set. The results of the test set classification were categorized as
true positive (TP) (eye ON+, classifier ON+), true negative (TN)
(eye ON-, classifier ON-), false negative (FN) (eye ON+, classifier
ON-), and false positive (FP) (eye ON-, classifier ON+). The
classifiers were compared on the basis of precision [TN/(TN +
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FP), equivalent to sensitivity], recall [TP/(TP + FN), equivalent
to specificity], accuracy [(TP+ TN)/(TP+ TN+ FP+ FN)], and
F1 score [precision × recall/(precision + recall)]. Experiments
were performed in Python 3.8.6 and the main packages used were
sktime, scikit-learn, and pytorch.

RESULTS

A total of 155 subjects were screened and 119 (63, 53% female,
age 45.6 ± 17.5 years) had one or two eyes meeting inclusion
criteria. Subjects were of diverse race and ethnicity with white
non-Hispanic (68, 57%), Asian (22, 19%), and white-Hispanic
(16, 13%) being the most prevalent.

A total of 217 eyes were included, of which 108 were control
eyes (24 control-fellow eyes, 20 control-patient eyes, and 64
healthy-control eyes) and 109 were ON eyes (33 acute, 76
chronic). Diagnoses were papilledema (19 total; 15, idiopathic
intracranial hypertension 4 other high intracranial pressure),
compressive (17 total; 12 chiasm, 3 intracranial, 2 orbit), non
arteritic anterior ischemic optic neuropathy (16), atrophy (15),
optic neuritis (14), glaucoma (4), optic nerve head edema (4),
toxic (4), tract (4), inflammatory (3), Leber hereditary ON (2),
dominant optic atrophy with OPA1 mutation (2), optic disk
drusen (2), and one each infection, orbit inflammation and
trauma. ON eyes had worse visual acuity (VA) andmore impaired
peripheral vision. Acute ON eyes had thicker RNFL than control
eyes, while chronic ON eyes had thinner RNFL and GCP + IPL
(Table 1).

User-Defined ERG Features
Waveforms were not available for three subjects (five eyes). For
these, PhNR features as measured by the commercial software
included with the acquisition device were used. PhNR, P-ratio,
and W-ratio had lower magnitudes in ON than control eyes
(Table 1) and this persisted when accounting for age (p< 0.0005,
0.009, 0.031). Among control eyes, ERG features did not differ by
source of control (fellow eye vs. other controls; healthy eyes vs.
other controls; p= 0.38–92, GEE).

For subjects with available structural and other functional
measures of ON, HVF-MD was linearly related to PhNRmin (p
= 0.002, GEE), but the relationships with PhNR72 (p = 0.09,
GEE), P-ratio (p = 0.10, GEE), and W-ratio (p = 0.09, GEE) did
not meet statistical significance. Among control and chronic ON
eyes with available OCT, RNFL was linearly related to PhNRmin

(p = 0.004, GEE), but not PhNR72 (p = 0.58, GEE), P-ratio (p
= 0.37, GEE), or W-ratio. GCL + IPL was related to P-ratio (p
= 0.009, GEE), but not PhNRmin (p = 0.45, GEE), PhNR72 (p =
0.06, GEE), or W-ratio (p= 0.34, GEE).

In analysis of classification potential using one eye per
subject (63 ON+, 56 ON-), receiver operating curve analysis
showed fair classification potential (Table 2, Figure 2). At the
optimal cutoff as selected using the Youden index, PhNR72

had the best sensitivity (0.75), while W-ratio had the best
specificity (0.71). Areas under the curves were similar when
analysis was restricted to eyes with severe ON (AUC 0.64–
0.68). Areas under the curves were similar for device calculated
parameters (AUC 0.64–0.69).

TABLE 1 | Unadjusted comparison between eyes with and without optic

neuropathy.

Optic

neuropathy eyes

(n = 109

unless noted)

Control eyes

(n = 108 unless

noted)

Comparison

p (GEE)

Age in years

(mean ± SD)

48.9 ± 17.2 40.0 ± 15.3 p = 0.002

Female gender (n) 52 64 p = 0.162

VA in logMAR

(median, range)

0.18 (−0.3, 6) 0 (−0.2, 1) p < 0.0005

HVF-MD in dB

(mean +/– SD)

−10.6 ± 10.1

(n = 77)

−1.1 ± 2.19

(n = 28)

p < 0.0005

OCT RNFL in µm

(mean +/– SD)

Acute 182 ± 104 (n = 21)

Chronic 69 ± 14 (n = 63) 97 ± 9 (n = 31) p < 0.0005

OCT GCL+IPL in µm

(mean +/– SD)

Acute 64 ± 17 (n = 28)

Chronic 60 ± 10 (n = 67) 81 ± 11 (n = 29) p < 0.0005

PhNRmin in µV −2.8 ± 1.5 −3.7 ± 1.8 p < 0.0005

PhNR72 in µV −1.4 ± 1.7 −2.0 ± 2.4 p = 0.06

P-ratio 0.12 ± 0.10 0.17 ± 0.14 p = 0.02

W-ratio 0.97 ± 0.15 1.01 ± 0.13 p = 0.025

GEE, generalized estimating equation; VA, visual acuity; HVF-MD, Humphrey visual field

mean deviation; OCT, optical coherence tomography; RNFL, retinal nerve fiber layer; GCL,

ganglion cell layer; IPL, inner plexiform layer; PhNR, photopic negative response.

TABLE 2 | Receiver operating curve analysis for classification of optic neuropathy

using user-defined ERG features in all the subjects.

Feature Area under

curve

Youden index Sensitivity* Specificity* F1 score*

PhNRmin 0.65 0.23 0.61 0.63 0.31

PhNR72 0.62 0.26 0.75 0.51 0.30

P-ratio 0.62 0.20 0.62 0.59 0.30

W-ratio 0.68 0.34 0.63 0.71 0.33

Analysis included one eye per subject. *values for optimal cutoff as determined using the

Youden index. PhNR, photopic negative response; ERG, electroretinogram.

Time Series Analysis
For the included eyes, there were a total of 791 available
waveforms for baseline and follow-up visits in 115 unique
subjects (3 subjects for whom ERG waveforms were not available
did not contribute to this analysis). The prevalence rate for ON
was 0.57. The numbers of waveforms in training, tuning, and
testing sets were 258, 161, and 172, respectively. The numbers of
unique subjects in each set were 61, 21, and 33, respectively.

The most important parameters and classification results for
the testing set are shown in Table 3. The highest precision
(0.74), accuracy (0.74), and F1 score were achieved by TSF
with 100 estimators used. The highest recall (0.86) was
achieved by the RBF Kernel SVM with a regularization
constant of 1.5.
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TABLE 3 | Classifier objectives parameters used in the best performing model on the testing set and the results from the testing set.

Classifier Objective to

minimize

Important parameters

used

Precision (for “ON”)

∼sensitivity

Recall (for “ON”)

∼specificity

Accuracy F1

Score

1-NN DTW DTW distance - 0.64 0.72 0.65 0.68

SVM Linear Hinge loss - 0.63 0.79 0.63 0.70

RBF Kernel SVM RBF distance Regularization

constant = 1.5, Gamma =

1 / (n_features × var(X))

0.66 0.86 0.69 0.74

RF Gini index N_estimators = 200 0.73 0.77 0.73 0.75

GB Binomial deviance N_estimators = 100 0.70 0.76 0.70 0.73

TSF Cross entropy N_estimators = 100 0.74 0.78 0.74 0.76

LSTMs Cross entropy N_layers = 3,

Batch_size = 6,

Dropout = 0.6,

Hidden dims = 16,

Optimizer = Adam,

Learning_rate = 0.001

N_epochs = 100

0.46 0.78 0.68 0.58

Bold indicates best results. NN DTW, nearest neighbor dynamic time warping; SVM, support vector machine; RBF Kernel SVM, support vector machine with a radial basis function

kernel; RF, random forest; GB, gradient boosting; TSF, time series forest; LSTMs, long-short term memory.

FIGURE 2 | Receiver operating characteristic analysis for classification of optic neuropathy status using user-defined electroretinogram (ERG) features. Curve was

constructed using one eye per subject.
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DISCUSSION

Optic neuropathies are important to diagnose because they
impair vision and often reflect underlying neurological or
neurosurgical disease. This study investigates the utility of the
full-field ERG, analyzed based on user-defined features or time
series analysis, to classify eyes as having ON. Attention was
given to having a clinically feasible protocol and a representative
clinical sample. Specifically, the protocol including lack of
mydriasis, using skin electrodes and a portable stimulating and
recording device was implemented in a clinic room in less than
10min per subject. The sample included ON eyes of different
etiologies ranging in severity and control eyes of three types
(fellow eyes from subjects with unilateral ON, those with non-
afferent reasons for visiting the neuro-ophthalmology clinic, and
healthy controls). These protocol and sample features increase
the translational potential of the findings to clinical practice.

Consistent with prior reports, we found a statistically
significant difference in user-defined ERG measures including
PhNR trough and at 72ms, P-ratio, and W-ratio between
eyes with and without ON. Also, in line with prior reports,
correlation is found between user-defined ERG features with
some markers of ON including function and structure. However,
the classification ability based on user-defined features is fair at
best within our data. This is despite using customized waveform
analysis, excluding outlier tracings, and including all the available
data in classification analysis. This is likely an overestimate
of performance as we present only training results. This is
because we did not have a sufficient sample size to divide the
sample into training and testing sets for the user-defined feature
analysis. It is likely that an independent test set would have
worse performance.

Using a time series analysis that makes use of all the
information in the waveform, we achieved better classification
for an independent test data set than was obtained in training
based on user-defined features. In general, the ensemble methods
(RF, GB, and TSF) produced above 0.7 for all the metrics. The
higher performances are corroborated by Bagnall et al. (31). The

LSTMs did not achieve a high accuracy, despite a high recall
score. Deep learning models have not been widely considered for
time series classification tasks, despite their popularity in other

application areas (41). In particular, recurrent neural networks
are difficult to train and may suffer from the aforementioned
vanishing gradient problem, which is addressed by LSTMs. Our
results show promise in developing such neural networks for high

sensitivity of disease detection.
The main limitation of this study is the data set size. This

limited our ability to do split training and testing data sets for
user-defined features and to pursue stratified analysis (e.g., based
on ON severity or covariates). A larger sample size would also

likely to improve tuning of time series models. For example,
classification of ECG signals for diagnosis of heart disease has
reported better performances (>95%) using the same metrics
with machine learning algorithms using a 4,000-sample MIT-
BIH database (https://physionet.org/physiobank/database/html/
mitdbdir/intro.htm) (42, 43). The nature of the ERG protocol
also introduced limitations. Specifically, the amplitude of the
signal from skin electrodes is lower signal than traditional DTL
or other corneal electrodes and recording in a dim room without
light adaptation may have increased variability (44).

In conclusion, a portable ERG device using a non-mydriatic
stimulation protocol and skin electrodes in subjects attending a
neuro-ophthalmology clinic with and without ON and control
subjects measured PhNR amplitude decrease in eyes with ON
vs. control eyes. While classification of ON status based on
user-defined features was fair, time series classification models
developed using machine learning techniques demonstrated
better classification performance. Portable non-mydriatic ERG
recorded using skin electrodes and time series classification
analysis may have application to using the full-field ERG as a
bedside diagnostic test for ON.
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17. Güven A, Polat K, Kara S, Güneş S. The effect of generalized discriminate

analysis (GDA) to the classification of optic nerve disease from VEP signals.

Comput Biol Med. (2008) 38:62–8. doi: 10.1016/j.compbiomed.2007.07.002

18. Kara S, Güven A. Neural network-based diagnosing for optic

nerve disease from visual-evoked potential. J Med Syst. (2007)

31:391–6. doi: 10.1007/s10916-007-9081-0

19. de Santiago L, Sánchez-Morla E, Blanco R, Miguel JM, Amo C,

Ortiz Del Castillo M, et al. Empirical mode decomposition processing

to improve multifocal-visual-evoked-potential signal analysis in multiple

sclerosis. PLoS One. (2018) 13:e0194964. doi: 10.1371/journal.pone.01

94964

20. Stoean R, Stoean C, Becerra-García R, García-Bermúdez R, Atencia

M, García-Lagos F, et al. A hybrid unsupervised-Deep learning

tandem for electrooculography time series analysis. PLoS ONE. (2020)

15:e0236401. doi: 10.1371/journal.pone.0236401

21. Kara S, Güven A, Oner AO. Utilization of artificial neural networks in

the diagnosis of optic nerve diseases. Comput Biol Med. (2006) 36:428–

37. doi: 10.1016/j.compbiomed.2005.01.003

22. Kara S, Güven A. Training a learning vector quantization network using

the pattern electroretinography signals. Comput Biol Med. (2007) 37:77–

82. doi: 10.1016/j.compbiomed.2005.10.005

23. Bagheri A, Persano Adorno D, Rizzo P, Barraco R, Bellomonte L.

Empirical mode decomposition and neural network for the classification

of electroretinographic data. Med Biol Eng Comput. (2014) 52:619–

28. doi: 10.1007/s11517-014-1164-8

24. Craik A, He Y, Contreras-Vidal JL. Deep learning for electroencephalogram

(EEG) classification tasks: a review. J Neural Eng. (2019)

16:031001. doi: 10.1088/1741-2552/ab0ab5

25. Gao Y, Zhao Z, Chen Y, Mahara G, Huang J, Lin Z, et al. Automatic epileptic

seizure classification in multichannel EEG time series with linear discriminant

analysis. Technol Health Care. (2020) 28:23–33. doi: 10.3233/THC-181548

26. Carrara M, Carozzi L, Moss TJ, de Pasquale M, Cerutti S, Lake

DE, et al. Classification of cardiac rhythm using heart rate dynamical

measures: validation in MIT-BIH databases. J Electrocardiol. (2015) 48:943–

6. doi: 10.1016/j.jelectrocard.2015.08.002

27. Sahoo S, Subudhi A, Dash M, Sabut S. Automatic classification of cardiac

arrhythmias based on hybrid features and decision tree algorithm. Int J Autom

Comput. (2020) 17:551–61. doi: 10.1007/s11633-019-1219-2

28. Mortlock KE, Binns AM, Aldebasi YH, North RV. Inter-subject, inter-

ocular and inter-session repeatability of the photopic negative response

of the electroretinogram recorded using DTL and skin electrodes.

Docum Ophthalmol. (2010) 121:123–34. doi: 10.1007/s10633-010-

9239-9

29. Kundra H, Park JC, McAnany JJ. Comparison of photopic negative response

measurements in the time and time–frequency domains. Docum Ophthalmol.

(2016) 133:91–8. doi: 10.1007/s10633-016-9558-6

30. Gowrisankaran S, Genead MA, Anastasakis A, Alexander KR. Characteristics

of late negative ERG responses elicited by sawtooth flicker. Docum

Ophthalmol. (2013) 126:9–19. doi: 10.1007/s10633-012-9352-z

31. Bagnall A, Lines J, Bostrom A, Large J, Keogh E. The great time

series classification bake off: a review and experimental evaluation of

recent algorithmic advances. Data Min Knowl Discov. (2017) 31:606–

60. doi: 10.1007/s10618-016-0483-9

32. Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E. Querying

and mining of time series data. Proc VLDB Endowm. (2008) 1:1542–

52. doi: 10.14778/1454159.1454226

33. Badiane M, O’Reilly M, Cunningham P. Kernel methods for time series

classification and regression In: Brennan R, Beel J, Byrne R, Debattista J,

Junior AC, editors. Proceedings for the 26th AIAI Irish Conference on Artificial

Intelligence and Cognitive Science; Dublin, Ireland (2018). p. 54-65.

34. Breiman L. Random forests. Mach Learn. (2001) 45:5–

32. doi: 10.1023/A:1010933404324

35. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. Springer New York. (2013).

36. Jerome HF. Greedy function approximation: a gradient boosting machine.

Ann Stat. (2001) 29:1189–232. doi: 10.1214/aos/1013203451

37. Deng H, Runger G, Tuv E, Vladimir M. A time series forest

for classification and feature extraction. Inf Sci. (2013) 239:142–

53. doi: 10.1016/j.ins.2013.02.030

38. Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Trans

Signal Proc. (1997) 45:2673–81. doi: 10.1109/78.650093

39. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.

(1997) 9:1735–80. doi: 10.1162/neco.1997.9.8.1735

40. Pascanu R,Mikolov T, Bengio Y, editors. On the difficulty of training recurrent

neural networks. In: International conference on machine learning. PMLR.

(2013). p. 1310–8.

41. Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller P-A. Deep

learning for time series classification: a review.DataMin Knowl Discov. (2019)

33:917–63. doi: 10.1007/s10618-019-00619-1

42. Jambukia SH, Dabhi V, Prajapati H. Classification of ECG signals using

machine learning techniques: A survey. Int Conf Adv Comput Eng Appl. (2015)

2015:714–21. doi: 10.1109/ICACEA.2015.7164783

43. Sahoo S, Dash M, Behera S, Sabut S. Machine learning approach to

detect cardiac arrhythmias in ECG signals: a survey. Irbm. (2020) 41:185–

94. doi: 10.1016/j.irbm.2019.12.001

44. Frishman L, Sustar M, Kremers J, McAnany JJ, Sarossy M, Tzekov R, et

al. ISCEV extended protocol for the photopic negative response (PhNR) of

the full-field electroretinogram. Docum Ophthalmol Adv Ophthalmol. (2018)

136:207–11. doi: 10.1007/s10633-018-9638-x

Frontiers in Medicine | www.frontiersin.org 8 December 2021 | Volume 8 | Article 771713

https://doi.org/10.1167/iovs.15-16586
https://iovs.arvojournals.org/article.aspx?articleid=2123144
https://iovs.arvojournals.org/article.aspx?articleid=2123144
https://doi.org/10.1001/archopht.122.3.341
https://doi.org/10.1167/iovs.11-8461
https://doi.org/10.1167/iovs.12-11201
https://doi.org/10.1007/s10633-017-9620-z
https://doi.org/10.1167/tvst.5.4.8
https://doi.org/10.1167/tvst.7.6.27
https://doi.org/10.1167/tvst.9.9.19
https://doi.org/10.1097/IJG.0000000000001509
https://doi.org/10.1167/tvst.7.5.9
https://doi.org/10.1016/j.ophtha.2017.04.009
https://doi.org/10.1186/s40662-020-00183-6
https://doi.org/10.1016/j.preteyeres.2019.04.003
https://doi.org/10.1007/s10633-019-09701-x
https://doi.org/10.1016/j.compbiomed.2007.07.002
https://doi.org/10.1007/s10916-007-9081-0
https://doi.org/10.1371/journal.pone.0194964
https://doi.org/10.1371/journal.pone.0236401
https://doi.org/10.1016/j.compbiomed.2005.01.003
https://doi.org/10.1016/j.compbiomed.2005.10.005
https://doi.org/10.1007/s11517-014-1164-8
https://doi.org/10.1088/1741-2552/ab0ab5
https://doi.org/10.3233/THC-181548
https://doi.org/10.1016/j.jelectrocard.2015.08.002
https://doi.org/10.1007/s11633-019-1219-2
https://doi.org/10.1007/s10633-010-9239-9
https://doi.org/10.1007/s10633-016-9558-6
https://doi.org/10.1007/s10633-012-9352-z
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.14778/1454159.1454226
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.ins.2013.02.030
https://doi.org/10.1109/78.650093
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1109/ICACEA.2015.7164783
https://doi.org/10.1016/j.irbm.2019.12.001
https://doi.org/10.1007/s10633-018-9638-x
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Diao et al. Portable PhNR in Optic Neuropathies

Conflict of Interest: The RetEVAL device was provided for research use by LKC

Technologies Inc. The company had no influence over the design or interpretation

of this study.

The authors declare that the research was conducted in the absence of any

commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Diao, Kushzad, Patel, Bindiganavale, Wasi, Kochenderfer

and Moss. This is an open-access article distributed under the terms of the

Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medicine | www.frontiersin.org 9 December 2021 | Volume 8 | Article 771713

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Comparison of Machine Learning Approaches to Improve Diagnosis of Optic Neuropathy Using Photopic Negative Response Measured Using a Handheld Device
	Introduction
	Materials and Methods
	Subjects
	Visual Function and Ancillary Testing
	Electroretinography
	Analysis of User-Defined ERG Features
	Time Series Analysis of ERG
	Nearest Neighbor Dynamic Time Warping
	Linear Support Vector Machine
	Linear Support Vector Machine With a Radial Basis Function Kernel
	Random Forest
	Gradient Boosting
	Time Series Forest
	Long-Short Term Memory Networks
	Training, Validation, and Testing of Machine Learning Models


	Results
	User-Defined ERG Features
	Time Series Analysis

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


