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Abstract

In perceptual decision making, the selection of an appropriate action depends critically on an organism’s ability to use
sensory inputs to accumulate evidence for a decision. However, differentiating decision-related processes from effects of
‘‘time on task’’ can be difficult. Here we combine the response signal paradigm, in which the experimenter rather than the
subject dictates the time of the response, and independent components analysis (ICA) to search for signatures consistent
with time on task and decision making, respectively, throughout the brain. Using this novel approach, we identify two such
independent components from BOLD activity related to a random dot motion task: one sensitive to the main effect of
stimulus duration, and one to both the main effect of motion coherence and its interaction with duration. Furthermore, we
demonstrate that these two components are expressed differently throughout the brain, with activity in occipital regions
most reflective of the former, activity within intraparietal sulcus modulated by both factors, and more anterior regions
including the anterior insula, pre-SMA, and inferior frontal sulcus driven almost exclusively by the latter. Consistent with
these ICA findings, cluster analysis identifies a posterior-to-anterior gradient that differentiates regions sensitive to time on
task from regions whose activity is strongly tied to motion coherence. Together, these findings demonstrate that
progressively more anterior regions are likely to participate in progressively more proximate decision-related processes.
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Introduction

Perceptual decision-making is a fundamental cognitive process

in which sensory input guides the selection of one of many possible

actions. This translation from sensation to action is thought to

occur by a mechanism in which sensory evidence accumulates

over time until the threshold for a decision is reached. Importantly,

such a process has been observed in neurons whose firing rates

increase proportionally with the strength of the sensory stimulus in

regions including the lateral intraparietal cortex (LIP) [1], the

frontal eye fields [2], the caudate [3], and the premotor cortex [4].

Thus, these studies suggest that many regions are involved in

evidence accumulation and decision-making networks.

Further defining these networks is a problem well suited to the

whole-brain coverage provided by functional MRI studies.

Human work has identified a number of brain regions whose

activity varies with the amount of evidence available for perceptual

decisions, including the middle intraparietal sulcus (the homologue

of macaque LIP [5]), midline motor areas, dorsolateral frontal

regions, and the anterior insula [6,7,8,9,10]. However, such

studies have not always been consistent in their identification of

the key areas for evidence accumulation, nor have the identified

brain networks in human research always aligned with those

identified in electrophysiological studies with macaques (e.g. with

respect to the participation of lateral frontal areas in evidence

accumulation).

Why do these studies diverge? Potentially problematic for

human studies are the correlated contributions of decision-related

processes including evidence accumulation and what has often

been referred to as ‘‘time on task’’ – i.e. the idea that a certain

amount of non-specific brain activity can be attributed merely to

the passage of time, or a ‘‘duty-cycle.’’ This issue arises because of

the correlation between stimulus strength, the decision process,

and reaction time: as the strength of the stimulus increases,

evidence accumulation occurs more quickly, and reaction time

decreases. For a dependent measure such as regional brain

activity, the question of whether activity is correlated with a

decision process such as evidence accumulation, or simply to the

duration of the trial, becomes confounded. A sensory region, for

example, might show activity that scales with motion coherence,

but that is actually related solely to the duration of bottom-up

attention captured by the stimulus on the screen. On the other

hand, a region directly involved in the decision process may also

show independent effects of time on task that, if not distinguished,

might obscure its participation in the decision.

Previous work has attempted to address the influence of time on

task by exploiting variability in subjects’ reaction times. A study by

Yarkoni and colleagues [11], for example, collected data from five

different cognitive tasks and searched for brain regions whose

activity correlated with subject reaction times across task.

Similarly, Grinband and colleagues [12], as well as Weissman

and Carp [13], investigated a more focused question: whether
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activity in the medial frontal cortex correlated more strongly with

the presence of response conflict or reaction time/time on task.

Broadly speaking, the above studies were concerned with

distinguishing activity related to the duration of cognitive

processing from activity related to specific cognitive processes. In

contrast with our approach here, however, all of these studies

focused on reaction times, rather than stimulus duration, and were

thus unable to distinguish the relative contribution of stimulus-

bound non-decision processes.

In non-human primates, regions implicated in visual perceptual

decision making have also been evaluated. Yang and Lisberger

[14] showed, for example, that responses of neurons in the motion-

sensitive region MT to dot motion stimuli adapt, but remain

robust, over stimulus durations of eight seconds. In contrast, direct

studies of the effects of stimulus duration in other brain areas are

less common. In a delayed eye movement task, a subject of

neurons in the lateral intraparietal area (LIP) of the macaque

demonstrated activity that signaled both elapsed time during the

delay and the probability that a movement signal would arrive

[15]. In areas 8 and 46 of the lateral frontal cortex, approximately

20% of neurons encoded the duration of at least one of two

temporal stimuli in a two-sample duration discrimination task

[16]. While these studies indicate that duration-sensitive neural

responses can be found in temporal, parietal, and frontal cortices,

they did not directly address the issue of stimulus duration as an

independent factor in a separate perceptual decision.

This thorny issue of time on task has led to several alternative

approaches to identifying decision-related regions in perceptual

decision making tasks in humans. Different studies have identified

potential decision-related processes by searching for a parametric

effect across levels of stimulus discriminability [10], early-trial

differences in the BOLD response between high and low

coherence stimuli [7], sensitivity to both sensory and response

factors such as errors [8], and changes in time course during

extended recognition paradigms [9], among others. None of the

above approaches, however, has explicitly varied stimulus

duration/response timing and stimulus strength to assess the

independent influence of time on task that cannot be attributed to

task difficulty per se. This manipulation is especially important

because while a decision-related region should be sensitive to both

the amount of evidence and the duration over which evidence is

accrued [17], it should not be linked solely to the duration of

stimulus presentation. In other words, when stimulus duration

effects do occur in a decision-related region, in order to influence

the decision they should be expressed through an interaction with

stimulus strength. For example, a progressively greater duration of

stimulus presentation should differentially affect accuracy and

neural activity in response to intermediate motion coherence

values (e.g. 10%) but not extreme values (e.g. 0% and 100%),

leading to a behavioral and neural interaction. More specifically,

as predicted by the diffusion model [18] progressively longer

stimulus durations differentially affect the ability of evidence-

accumulating neurons to reach threshold in response to low rather

than high motion coherence values. In contrast, a region whose

activity does not depend on motion coherence, but does depend

on stimulus duration, could not provide the basis for decisions

based on sensory evidence.

To address these hypotheses, here we pursue a novel approach

combining a response signal paradigm [19,20] that explicitly

controls time on task factors with a methodological approach,

independent components analysis, that enables us to distinguish

networks and regions sensitive to duration, motion coherence, and

their interaction. In our paradigm, response time and motion

coherence are independently manipulated to identify brain regions

whose activity covaries with the available evidence. Thus, rather

than allowing the subject to freely decide when to make a response

on each trial according to his or her own decision criteria, the

experimenter controls the timing of the response in a fashion that

varies independently of task difficulty. On each trial, the subject

awaits a ‘‘response signal’’, variably timed across trials, indicating

when a response should be made irrespective of the state of

evidence accumulation. By ensuring that subjects cannot easily

predict when the response signal will occur [15] – thus

encouraging uniform attention across each trial – this design

investigates the hypothesis that regions involved in decision-related

processes such as evidence accumulation should be sensitive to

both motion coherence and decision duration, but that regions

involved in sensory processing should be most sensitive to stimulus

duration. Moreover, following ideas derived from human lesion

studies [21,22] that anterior regions are more likely to be engaged

in decision-related processes, while posterior regions are more

likely to be engaged in stimulus perception, we directly investigate

the prediction that sensitivity to both factors defines an anterior-

posterior gradient across the brain.

Materials and Methods

Ethics Statement
This study was approved by the Committee for the Protection of

Human Subjects (CPHS) at the University of California, Berkeley.

Five subjects (ages 22–38; 3 male) participated in the study and

gave written informed consent in accordance with the Declaration

of Helsinki and CPHS approval. All subjects had normal neural

anatomy as assessed by a neurologist (A.S.K.), were right-handed,

and had normal or corrected-to-normal vision.

Task Design
Before each scanning session, subjects were trained on the task

for a minimum of six 1-hour practice runs to reduce both the

number of invalid trials (see below) and learning effects in the

scanner. Once trained, all subjects underwent a minimum of six 1-

hour fMRI sessions, each of which consisted of six runs of 72 trials

for a total of 666672 = 2592 trials. Three subjects participated in

an additional three 1-hour fMRI sessions, resulting in a total of

966672 = 3888 trials for these three subjects.

Subjects performed a visual dot-motion task in which they

viewed a variable proportion of coherent dot motion on a

background of randomly moving dots. They were required to

identify the direction of motion (either leftward or rightward) as

quickly and accurately as possible under a time constraint that

varied on a trial-by-trial basis. At the beginning of each trial, a

bright central fixation cross was dimmed to indicate the onset of

the dot-motion stimulus. Subjects viewed the stimulus until the

response signal occurred (in this case, stimulus offset), at which

point the fixation cross brightened and turned green. Subjects

were required to make a button-press response within 350

milliseconds after the onset of the response signal. In order to

prevent subjects from predicting the timing of the response signal,

we selected a response signal probability function that equated the

hazard rate h(t) across durations t:

h(t)~
f (t)

1{F (t)

where f(t) is the probability that the response signal occurs at time

t, and F(t) is the cumulative distribution
Ðt

0

f (x)dx from trial onset
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to time t [15]. This function ensures that the ratio of the

probability that the trial ends at time t, f(t), to the probability that

the trial ends later, 1– F(t), is approximately constant across time.

For this purpose, we chose a gamma distribution that produced a

median stimulus duration of 0.81 seconds, with a range from 0.22

seconds to 3.3 seconds. Similarly, a gamma distribution defined

the motion coherence stimulus, which ranged from 0% to 100%

with a median of 13.1%. Both dot-motion coherence and the

direction of motion (either leftward or rightward) were consistent

within a trial and varied independently across trials. At the end of

the 350ms response interval, the central fixation cross reverted

from green to white and an interstimulus interval varying between

4000–12000 ms began. Maintenance of fixation was ensured as in

our previous studies during sessions outside the scanner [8,23].

Three subjects were trained in one or both of these previous

studies; two subjects were trained to the same eye movement

criteria for the current task during sessions prior to MRI scanning.

Eye movement data were not obtained during scanner sessions

themselves.

For fMRI sessions, the ordering of dot-motion trials was

computed using OptSeq (http://surfer.nmr.mgh.harvard.edu/

optseq/) [24]. Stimuli were programmed in Matlab in the

PsychToolbox environment [25,26], adapted from code originally

written by McKinley & Shadlen and downloaded from the

PsychToolbox website (http://psychtoolbox.org/PTB-2/). All

characteristics of the dot motion display were unchanged from

our previous studies [8,23], with the exception that the duration of

the stimulus was variable as described above.

MRI Scanning
MRI scanning was conducted on a Siemens MAGNETOM

Trio 3T MR Scanner at the Henry H. Wheeler, Jr. Brain Imaging

Center at the University of California, Berkeley. Anatomical

images consisted of 160 slices acquired using a T1-weighted MP-

RAGE protocol (TR = 2300 ms, TE = 2.98 ms, FOV = 256 mm,

matrix size = 2566256, voxel size 16161 mm). Functional images

consisted of 24 slices acquired with a gradient echoplanar imaging

protocol (TR = 1370 ms, TE = 27 ms, FOV = 225 mm, matrix

size = 96696, voxel size 2.362.363.5 mm). A projector (Avotec

SV-6011, http://www.avotec.org/) was used to display the image

on a translucent screen placed within the scanner bore behind the

head coil. A mirror was used to allow the subject to see the display.

The distance from the subject’s eye to the screen was 28 cm.

fMRI Preprocessing
fMRI functional images were converted to 4D NIfTI format

and corrected for slice-timing offsets using SPM5 (http://www.fil.

ion.ucl.ac.uk). Motion correction was carried out using the AFNI

program 3dvolreg with a reference volume specified as the mean

image of the first run in the series. Images were then smoothed

with a 6mm FWHM Gaussian kernel. Co-registration was

performed with the AFNI program 3dAllineate using the local

Pearson correlation cost function optimized for fMRI to structural

MRI alignment. The inverse transformation was then used to

warp the high resolution MRI to the functional image space, after

which it served as an anatomical underlay for the display of

statistical parametric maps.

fMRI Data Analysis
Voxel-wise fMRI statistical analyses were carried out for each

subject using the general linear model framework implemented in

the AFNI program 3dDeconvolve. To assess the overall effect of

motion coherence and duration, each of these factors was divided

into 10 bins containing equal numbers of trials. In total,

10610 = 100 separate condition-specific regressors were derived

by convolving a gamma probability density function (peak = 6 s)

with a vector of stimulus onsets for each of the conditions. As

expected based on the total number of trials per subject, each bin

contained 25 or more trials. Mean values for the 10 coherence bins

were 1.3, 3.9, 6.3, 8.6, 11.4, 15.2, 22.9, 40.4, 64.2, and 88.0 (in

percent coherence); mean values for the 10 duration bins were

0.26, 0.34, 0.46, 0.57, 0.72, 0.88, 1.11, 1.41, 1.90, and 2.77 (in

seconds).

The peak height for the convolved hemodynamic function was

constrained to remain constant across all task durations tested.

This approach ensured that increases in stimulus duration were

captured by the beta value, rather than within the regressor itself.

In brief, the convolution of a constant HRF with increasing

stimulus duration leads to regressors with progressively increasing

amplitudes. As a result, the effect of stimulus duration on the beta

values would be captured within the regressor time course, not by

the beta value. Therefore, in regions sensitive only to duration,

beta values might remain constant as stimulus duration increases.

To avoid spurious null results (i.e. ones in which a constant beta

was misinterpreted as a stimulus duration effect), we constrained

peak height to ensure that betas sensitive to duration would

demonstrate a parametric effect of duration in regions sensitive to

stimulus duration.

Our analyses included both correct and error trials. Although

error trials can occur for multiple reasons – e.g. transient failures

of sensory input due to eye closure or inattention, or failures of

motor output due to incorrect mappings from stimulus to response

– they are nonetheless tied to the decision and not solely to the

duration of the stimulus. Therefore, they also potentially

differentiate an independent component related to the decision

process from one related to time on task, leading to a stronger test

of our hypotheses. Furthermore, any heterogeneity in error

responses would likely only add noise to our analyses, and

removing them would add imbalance to the number of trials in

each condition. It should also be noted that subjects did not

receive performance feedback, so that subjects were rarely if ever

aware of the commission of an error, especially during the difficult

trials (less than 5% motion coherence) wherein the bulk of errors

occurred. Therefore, error trials were incorporated into the

independent components analysis.

Tests of linear trends were carried out using the contrast vectors

applied to the estimated beta coefficients in each voxel for each

motion coherence 6 duration bin. The resulting t-statistics were

spatially normalized to MNI space. The estimated beta coefficients

for each bin were then subjected to a group ICA analysis (see next

section). To avoid a selection bias in the definition of ROIs, we

used the AFNI program 3dmaxima to generate functional ROIs

from a group analysis of the main effect of task (i.e. group activity

collapsed across coherence and duration manipulations), thre-

sholded at a T statistic of 5. Regions consisted of spheres of radius

9 mm whose boundaries were separated from each other by at

least 3mm. ROI labels were defined as in our previous work [8]. In

particular, the IPS was subdivided into anterior, medial and

posterior subdivisions following the criteria of Stark and Zohary

[27]. The anterior IPS was defined as the anterior-most third of

the sulcus, the medial IPS was defined as the dorsal-most half of

the posterior portion of the IPS, and the posterior IPS was defined

as the ventral-most half of the posterior portion of the IPS.

Time courses for ROIs were estimated via the AFNI program

3dDeconvolve using a set of 8 b-spline basis functions spanning the

interval from 0 to 18 seconds post-stimulus. Because of the large

number of calculations required for time courses, the motion

coherence and duration variables were both divided into four

fMRI of a Time-Limited Decision
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quartiles rather than 10 deciles, yielding 16 bins for which time

courses were estimated. The time courses were then averaged

within each of the ROIs and submitted to a two-way repeated

measures ANOVA to test for effects of motion, duration, and the

motion 6 duration interaction.

Independent Components Analysis
To search for patterns of activity consistent with evidence

accumulation, we applied independent components analysis (ICA)

to the whole brain as implemented in the Melodic program

distributed with FSL. In brief, ICA attempts to separate the

additive, statistically independent, non-Gaussian sources that

together comprise the data of interest – in this case, not the raw

time series, but the beta values generated by our GLM analysis.

Unlike a voxel-wise ANOVA, this multivariate approach permits

us to identify networks of brain regions whose activity correlates

with each of the independent components derived from the data.

Thus, the 100 beta volumes (comprising the 10610 factorial

combination of duration and motion coherence conditions)

produced for each of our 5 subjects were entered into a multi-

subject ICA analysis, from which independent components

representing strongly duration-dependent and strongly motion-

coherent dependent responses were identified. Specifically, the

components that demonstrated the most significant parametric

modulation by (1) duration and (2) motion coherence were selected

for further analysis. (Of note, as indicated in Results, component 2

showed both the strongest effect of motion coherence and the

strongest interaction between motion coherence and duration.)

For each of these selected components, the statistical significance

of the whole-brain spatial map was determined using mixture

modeling and an alternative hypothesis testing approach as

implemented in Melodic [28]. As noted previously, to evaluate

how different brain regions reflected each of these independent

components, we applied the AFNI program 3dMaxima to the main

effect of task, resulting in the generation of 41 regions of interest.

For each of these ROIs, the 10 voxels demonstrating the largest

values for each component were averaged together to produce a

summary value. This approach was used in order to avoid

including voxels that were not spanned by the spatial maps

corresponding to each component, and thereby to provide

maximal sensitivity for the relative contributions of each compo-

nent (see Table 1).

Identification of Functionally Related Clusters
To identify regions performing potentially related functions, two

analyses were performed. First, the 2-dimensional space defined by

the duration and coherence-sensitive motion ICA components was

projected onto vectors spanning 360 degrees within this space. To

evaluate whether the ordering defined by this projection corre-

sponded to a neuroanatomical (specifically, anterior-posterior)

organization of these same areas, we subjected the projection to a

non-parametric correlation (Kendall’s tau) with the ordering

defined by the Y-coordinate for the centroid of each ROI within

MNI space. The strongest correlation was assessed for both

direction and statistical significance.

To quantify the relatedness of different regions within the 2-

dimensional space defined by the independent components, we

applied K-means clustering. In this method, the observations are

divided into k clusters in which each observation is assigned to the

cluster centroid to which it is closest. This approach was applied to

the data 5,000 times with random starting centroids. ROIs that

were unreliably clustered (frequency of primary cluster assignment

greater than 2 standard deviations below the mean across all

ROIs) were excluded from the final map. The number of clusters

Table 1. Regions of interest, as indicated by names, MNI
coordinates, Z-scores for the independent duration and
motion coherence components, and cluster membership.

ROI Side MNI(x) MNI(y) MNI(z) Duration Motion Cluster

SMA L 24 1 61 7.52 4.09 Green

Occ R 15 290 29 18.82 0.00 Navy

IFS R 54 7 40 5.25 5.97 Cyan

Occ L 27 296 29 16.46 0.00 Navy

FEF L 231 26 55 4.07 8.10 Cyan

FEF R 36 26 52 5.03 8.06 Cyan

MT+ L 246 275 7 9.11 4.03 Green

mIPS L 225 260 55 7.16 6.48 Cyan

pIPS L 225 281 225 6.91 3.87 Green

IFS L 246 4 31 0.71 6.93 Cyan

SOG R 24 296 19 12.21 0.00 Navy

MT+ R 48 272 4 9.31 3.08 Green

pSMA L 27 19 49 0.24 8.29 Cyan

IPL L 249 242 58 0.25 4.20 Green

Fus R 27 272 26 6.96 0.00 Orange

mIPS R 33 257 55 3.96 4.76 Green

pIPS R 30 275 28 5.13 3.48 Green

Crb R 24 254 21 1.97 0.00 Orange

aINS R 36 22 10 0.00 6.23 Cyan

Fus L 225 275 212 7.56 0.00 Orange

PoG L 264 221 28 2.53 0.24 Orange

aINS L 231 25 7 0.00 7.93 Cyan

Thal L 210 218 10 2.97 0.00 Orange

Put L 225 23 7 5.99 0.00 Orange

sPT R 54 242 16 2.37 3.27 Green

Put R 24 4 7 5.69 0.00 Orange

aIPS R 45 239 49 1.00 5.54 Cyan

sPT L 246 254 19 0.00 2.64 Orange

PoG R 66 215 22 0.23 0.99 Orange

dPM L 216 218 70 3.52 0.22 Orange

aOcc L 243 260 215 0.00 0.00 Orange

IFG R 51 7 4 3.53 0.92 Orange

dPM R 21 1 70 0.00 3.15 Orange

aSFG R 36 58 28 0.00 0.00 Orange

aSFG L 234 55 31 0.00 0.00 Orange

PCC R 3 233 28 0.00 0.45 Orange

Cun R 9 272 55 0.00 3.02 Orange

Crb R 6 251 26 0.00 0.00 Orange

SPL L 234 248 73 0.00 0.00 Orange

Cun R 9 248 55 0.00 0.00 Orange

aPFC L 234 49 4 0.00 1.31 Orange

Abbreviations: aINS = anterior insula, aIPS = anterior intraparietal sulcus,
aOcc = anterior occiptal region, aPFC = anterior prefrontal cortex,
Crb = cerebellum, Cun = cuneus, dPM = dorsal premotor cortex, FEF = frontal eye
fields, Fus = fusiform gyrus, IFG = inferior frontal gyrus, IFS = inferior frontal
sulcus, IPL = inferior parietal lobule, mIPS = middle intraparietal sulcus,
MT+ = middle temporal region, Occ = occipital pole, PCC = posterior cingulate
cortex, pIPS = posterior intraparietal sulcus, PoG = post-central gyrus,
Put = putamen, SMA = supplementary motor area, SOG = superior occipital
gyrus, SPL = superior parietal lobule, sPT = superior planum temporale,
STG = superior temporal gyrus, Thal = thalamus.
doi:10.1371/journal.pone.0072074.t001
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was identified by the Bayesian Information Criterion (BIC) [29],

which balances the error of the fit with the complexity (i.e. number

of parameters) of the model. We identified the appropriate cluster

number as that number for which the change in the BIC with

addition of another cluster was less than 5%.

Results

To better understand the neural mechanisms differentiating

time on task from decision-related effects, we acquired fMRI data

from five subjects performing a response signal task requiring

discrimination of dot-motion direction. As described in Methods

and in Figure 1, both duration of stimulus presentation and

motion coherence were randomized across a range of values

(duration: 220–3300 ms; motion coherence: 0%–100%). Duration

values for each trial were selected from a distribution that equated

the hazard rate, thereby rendering the duration of each trial less

predictable [15]. Highly trained subjects were instructed to press

one of two response buttons to indicate whether the motion was

leftward or rightward. No performance feedback was provided

during the scanning session. All subjects completed a minimum of

2592 trials.

Behavioral Performance
Behavioral data for all subjects can be seen in Figure 2. In

keeping with previous work in both humans and macaques,

accuracy improved and response time declined as both duration

and motion coherence increased. In particular, accuracy showed a

strong main effect of both duration (F(9, 36) = 21.7, p,,1025)

and motion coherence (F(9, 36) = 156, p,,1025). A significant

interaction between duration and motion coherence (F(81,

324) = 2.09, p = 3.261026) was driven in large part by a ceiling

effect on accuracy at higher motion coherence values. Nonethe-

less, when the motion coherence bins encompassing 100%

accuracy were removed, the interaction between them remained

at trend significance (F(54, 216) = 1.37, p = 0.06). Across all motion

coherences, linear regression demonstrated that these main effects

were driven by a significant positive association between accuracy

and both duration (r2 = 0.63, p = 0.006) and motion coherence

(r2 = 0.77, p = 0.0008). For response time, significant effects were

likewise seen for both duration (F(9, 36) = 5.1, p = 0.0002) and

motion coherence (F(9, 36) = 14.9, p,,1025). There was no

interaction between these factors (p = 0.18). As indicated by linear

regression, the main effect of motion coherence was accompanied

by a strongly parametric effect of motion coherence on response

time (r2 = 0.97, p,,1025). In contrast, response time was not

parametric with respect to duration (p = 0.19). Thus, subject

performance showed the expected sensitivity to both factors.

fMRI Analysis
To identify areas sensitive to time on task, the perceptual

decision, or their interaction, we applied independent components

analysis to the beta values derived from binned duration and

motion coherence parameters. Of the total of 11 independent

components identified, the first task-related component showed

the greatest parametric effect of trial duration (F(9,36) = 3422,

p,,1025; component 1, Figure 3A), and the second task-related

component showed the greatest parametric effect of motion

Figure 1. Task Design. Each trial consisted of a dot motion coherence stimulus displayed for 220 to 3500 milliseconds, with duration determined
by the experimenter and defined by a gamma distribution equating the hazard rate across trials (see Methods). The motion coherence of the stimulus
was also varied across trials (inset). To indicate that a response was required, the dot motion stimulus disappeared and a green fixation cross was
displayed, after which subjects had 350 milliseconds to respond.
doi:10.1371/journal.pone.0072074.g001
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coherence (F(9,36) = 105, p,,1025), as well as the largest

interaction between duration and coherence (F(81,324) = 14.7,

p,,1025; component 2, Figure 3B). (Spatial distributions for the

remaining nine independent components can be found in Figure

S1.) The spatial distributions of these two components were also

distinct. As evident in Figures 3C and 3D, component 1 showed

activations that were greater in posterior brain regions and

decreased in more anterior brain regions, while component 2

showed the reverse pattern.

To further investigate these differences, we plotted the relative

magnitudes of each of these components within a two-dimensional

space for each of 41 regions of interest derived from the main

effect of task. K-means clustering was applied to these plots to

define regions with similar sensitivities to either duration

(component 1) or motion coherence (component 2; Figure 3E).

This analysis identified an occipital cluster that was strongly

sensitive to component 1 (dark blue); a cluster of primarily anterior

regions including the anterior insula, preSMA, IFS, and the left

mIPS, whose members were strongly driven by component 2 (light

blue); a group of regions including the right mIPS whose sensitivity

to both factors was intermediate (green); and a fourth cluster that,

despite being active during the task, was relatively insensitive to

either component (orange). In keeping with this result, we were

able to define a posterior-to-anterior gradient of decreasing

sensitivity to trial duration and increasing differential sensitivity

to motion coherence using the MNI-derived y-coordinate for each

region (Kendall’s t= 0.45, p = 6.761025; Figure 3E, arrow).

Although both components contributed to this posterior-to-

anterior gradient (as evidenced by the oblique angle of the vector

in Figure 3), the effect was more sensitive to trial duration:

duration was weighted 3.7-fold relative to motion coherence

sensitivity. Thus, for regions in the anterior cluster especially,

decision-related activity could not be well-explained by an effect of

trial duration.

This gradient of sensitivity to the duration and motion

coherence components could also be seen in group-averaged time

courses (Figure 4). Although these time courses did not themselves

distinguish the contributions of the two components, their relative

influence in four representative left hemisphere regions spanning

the component space from posterior to anterior (Figure 3E) was

evident in the change in peak amplitude with trial duration, and

the relative differentiation of the motion coherence values.

Specifically, more posterior regions (Occ, MT+) demonstrated a

stronger influence of the duration component, as reflected in peak

amplitudes that increased progressively with trial duration, and a

weaker influence of the motion coherence component, as reflected

in reduced differentiation of motion coherence. In contrast, more

anterior regions (FEF, aINS) demonstrated a stronger influence of

the motion coherence component, as reflected in greater

differentiation of the response to different motion coherence

values (especially at shorter trial durations), and a weaker influence

of the duration component, as reflected in a lesser change in peak

amplitude with increasing trial duration. These qualitative findings

were broadly consistent with the significance of ANOVAs related

to duration and motion coherence, respectively. The effects of

duration on peak amplitudes shown in Figure 4 were generally but

not exclusively stronger in posterior ROIs (Occ: Fduration

(3,12) = 34.0, p = 3.861026; MT+: Fduration (3,12) = 14.1,

p = 0.0003) than in more anterior regions (FEF: Fduration

(3,12) = 20.0, p = 0.00006; aINS: Fduration (3,12) = 9.2, p = 0.002).

Conversely, the effects of motion coherence on peak amplitudes

were weaker in these two posterior ROIs (Occ: Fcoherence

(3,12) = 1.0, p = 0.45 (ns); MT+: Fcoherence (3,12) = 6.7, p = 0.007)

than in the two anterior ROIs (FEF: Fcoherence (3,12) = 35.4,

p = 3.161026; aINS: Fcoherence (3,12) = 27.8, p = 0.00001). The

interaction term was strongest for the two intermediate regions

(Occ: Fcoh*dur (9,36) = 2.4, p = 0.03; MT+: F coh*dur (9,36) = 5.0,

p = 0.0002; FEF: F coh*dur (9,36) = 7.2, p = 6.661026; aINS:

F coh*dur (9,36) = 1.7, p = 0.12 (ns).).

More generally, if the F values for the main effect of duration

were compared with those for the main effect of coherence in these

time courses across all 41 regions of interest, we were able to

replicate the ICA finding (Figure 3E) of a posterior-to-anterior

gradient of decreasing sensitivity to trial duration and increasing

differential sensitivity to motion coherence (Kendall’s t= 20.29,

p = 0.003), despite the coarser division into 4 rather than 10

duration and coherence bins (see Methods). Duration was again

weighted more heavily than motion coherence (1.37 fold).

However, comparing F values for the main effect of duration

with those for the interaction between duration and motion

coherence reached only trend significance (Kendall’s t= 20.17,

p = 0.06).

Discussion

In this study we used the response signal paradigm to

behaviorally dissociate the duration between stimulus onset and

motor response from the perceptual discriminability of the

direction of dot motion. Using ICA, we showed a corresponding

neurophysiological dissociation of the effects of time on task from

Figure 2. Behavior. All trials were divided by both motion coherence and duration into a total of 100 (10610) bins. A. Accuracy increased with both
increasing duration and increasing motion coherence. Curves represent the best-fitting exponential. B. Response time declined with both increasing
duration and increasing motion coherence. Curves represent the best-fitting second-order polynomial.
doi:10.1371/journal.pone.0072074.g002
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decision-related processes tied to the strength of the perceptual

stimulus. In so doing, we demonstrated that a cluster of regions

including the anterior insula, preSMA, premotor cortex, and

mIPS strongly represents decision-related processing that is

independent of a ‘‘time on task’’ factor. Moreover, an anterior-

posterior gradient defines the relative sensitivity of a given brain

area to decision-related processes (as indexed by motion coher-

ence) and time on task, respectively.

An important aspect of the response-signal paradigm used in

this study is its ability to identify regions based on the extent to

which their activation varied with each of the two task-related

components. Because the consistent hazard rate renders the timing

of the response signal unpredictable [15], the optimal strategy is to

Figure 3. fMRI Results. A. Shown is the component that demonstrated the strongest effect of duration. Curves represent the best-fitting second-
order polynomial. B. Shown here is the component that demonstrated both the strongest interaction between motion coherence and duration, and
the strongest effect of motion coherence. C. The spatial map associated with component 1. D. The spatial map associated with component 2. The
color bar represents Z scores and applies to both surfaces. E. Forty-one regions demonstrating a main effect of task were evaluated for their
sensitivity to component 1 and component 2, each normalized to their respective maxima (Table 1). K-means clustering defined related regions
within the component 1– component 2 space, where the value of each component for a given ROI was normalized to the maximum value of that
component across all ROIs. Progressively more anterior regions showed less sensitivity to component 1, and more sensitivity to component 2, as
indicated by the arrow. Labels are shown for ROIs demonstrating stronger component values (cyan, green, and navy clusters); the large number of
regions that were minimally influenced by these factors (orange cluster) can be found, along with all labels and component values, in Table 1. Left-
sided regions are represented by squares, right-sided regions by diamonds.
doi:10.1371/journal.pone.0072074.g003
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maintain attention throughout the duration of the stimulus. This

behavioral requirement likely led to the strong time on task

component we identified using ICA. By combining this aspect of

the task with the requirements of the dot motion coherence

decision, we were able to identify two independent components in

the BOLD data strongly reflecting duration and motion coher-

ence. Moreover, these components, which were selected based on

their sensitivity to duration, or to motion coherence and the

interaction between motion coherence and duration, respectively,

were the two most strongly represented task components to arise

from the ICA analysis.

Importantly, while the ICA analysis constrained the compo-

nents derived from the beta values to be independent, it did not

simultaneously constrain their spatial distributions to be indepen-

dent and non-overlapping. This characteristic was particularly

important when we considered the role of regions previously

implicated in decision-related processes such as evidence accumu-

lation (e.g. the middle IPS). While this region showed significant

activity related to time on task, irrespective of motion coherence, it

also demonstrated processing closely tied to the motion coherence

of the stimulus. Moreover, along the posterior – anterior axis,

mIPS was more strongly decision-related than MT+, which

provides inputs to mIPS [30], and it was the most posterior region

found in the anterior-most cluster of strongly decision-related

areas. Of interest, right and left mIPS segregated into different

clusters when only four clusters were present, suggesting that their

functions might not be strictly homologous. Regardless, this

conjunction of findings suggests that mIPS would be well-

positioned to transform sensory inputs into decision-related

representations [31].

Our analyses also demonstrated that more posterior regions

including MT+ and posterior IPS are sensitive to both factors – i.e.

perceptual discriminability and ‘‘time on task’’. However, the ratio

of the size of the motion component to the duration component in

these regions was smaller than in mIPS. This finding suggests that

the relative position of brain regions within the space defined by

the duration and motion coherence components correlates with

the probability of finding neurons that participate in processes

Figure 4. BOLD Time Courses. Shown here are time courses for four representative left hemisphere regions that together span the component
space in figure 3E from posterior to anterior: Occ = occipital pole, MT+ = middle temporal region, FEF = frontal eye fields, and aINS = anterior insula.
Trials are divided into 4 duration bins (at top: 0.33s, 0.61s, 1.0s, and 2.3s) and 4 motion coherence bins (inset: 2%, 9%, 24%, and 68%).
doi:10.1371/journal.pone.0072074.g004
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such as evidence accumulation – specifically, that this probability

is greater when greater motion coherence-related activity is

distinguished from sensitivity to time on task. Future studies in

macaque might profitably explore a range of such regions, as

multiple regions are likely to encode the evidence for a perceptual

decision [4]. Of particular interest would be to determine the

relative percentages of cells that show selectivity for evidence

accumulation in each of these areas, as these analyses suggest that

the percentage of task-responsive neurons that do so might

decrease as both the most posterior areas (which are most sensitive

to time on task) and the most proximate motor areas (which are

furthest removed from sensory representations) are interrogated.

These data also provide evidence that the activity of more

anterior regions during the motion coherence decision cannot be

easily explained by time on task arguments linked to stimulus

duration. It has been argued, for example, that when subjects

perform a Stroop task, BOLD activity in the dorsal anterior

cingulate reflects time on task, as indexed by reaction times, rather

than response conflict or some other process [12]. Here we

provide evidence that this important consideration does not

generalize to time on task as indexed by stimulus duration. In the

anterior insula, for example, the component reflecting time on task

is weakly expressed. One would thus have to argue that the time

on task representation is limited to specific regions and specific

tasks – itself an argument against a general time on task

explanation – or, perhaps more parsimoniously, that activity in

more anterior brain regions is more likely to be decision-related, in

that it is bound to reaction time and not simply to stimulus

duration.

These possibilities also confirm the more general importance of

distinguishing time on task (or duty cycle) arguments from the

duration of decision-making processes in other task paradigms. As

we have argued previously [8], time can be a fundamental

measure of the evolution of the decision, meaning that accumu-

lator regions might be expected to show some effect of response

duration. Areas such as the mIPS might show an effect interpreted

as time on task, for example, as multiple noisy accumulators reach

threshold at different times, leading to a generally progressive

increase in BOLD. However, the strong presence of the other ICA

component in the mIPS indicates that duration effects are also

reflected in an interaction with motion coherence, as expected of a

decision-related region. These ideas have at least two consequenc-

es for other task paradigms. If time on task and decision

components remain undissociated, the presence of stimulus

duration effects cannot be used to argue that a region fails to

participate in decision-related processing. On the other hand,

using reaction time as a covariate of no interest in GLM analyses

may diminish the contributions of brain areas for which reaction

time indexes important decision-related processes. These data do

suggest that these effects will be less notable in more rostral areas,

which show almost no effect of time on task in the current study.

Consistent with the above ideas, the findings in this study accord

well with other studies that have included duration considerations.

Activity in the anterior insula in this study, for example, correlates

well with activity that defines ‘‘decision commitment regions’’ in

Ploran et al. [32] – but see also [7] – while other areas that show

stronger effects of duration (PM, IFS, mIPS) correspond more

strongly to their accumulator regions.

In the larger sense, these data also provide quantitative evidence

for the commonly held idea that perceptual decisions identify a

large-scale anterior-posterior gradient within the brain. Specifi-

cally, regions defined simply by their activity in the main effect of

task segregate by anatomical location in the ICA analysis: effects of

time on task are greater for more posterior/sensory regions, while

effects of motion coherence are greater for more anterior regions.

The strength of this gradient may depend in part on arbitrary

factors – e.g. that the primary sensory regions in a visual task are

quite posterior. It is possible, for example, that a task relying on

somatosensory inputs, and therefore on a more anterior primary

sensory area than the occipital cortex [33], may show a diminished

gradient, while one that more strongly engages executive functions

[34] may show an enhanced effect. As models of perceptual

decision making implicitly demonstrate such a gradient [35],

however, this analysis shows that such a gradient has a quantifiable

basis, and confirms, along with supportive data from lesion studies

in other paradigms [21,22], for example, that it has validity in

organizing the neurophysiological and cognitive bases for decision

making in humans.

Supporting Information

Figure S1 Shown are seven slices in radiological
convention (left = right) for each of the 11 independent
components generated by the ICA analysis. At top are the

two components demonstrating the strongest correlation with task

parameters as evaluated in the body of the paper: the component

linked to task duration (D), and the component linked to both

motion coherence and its interaction with duration (M). Below are

shown the remaining 9 ICA components. In keeping with other

applications of ICA, some of these components represent

additional networks (e.g. component 2, which overlaps with areas

in the default mode network that typically deactivate during task

performance), while others appear to represent noise (e.g.

component 4, which approximates the location of the ventricular

system).
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