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An Adult Zebrafish Diet Contaminated with Chromium
Reduces the Viability of Progeny
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Abstract

The lack of standardized diet for laboratory animals can have profound effects on animal health and lead to less
reproducible research outcomes. Live diets are commonly used in zebrafish culture and, although they are a
more natural feed than flake or pellet food, are also a potential source of pathogens and toxic compounds. Heavy
metals are a group of such compounds, which can accumulate in fish leading to developmental abnormalities,
reduced growth, and increased rates of mortality. Two to three weeks after feeding adult zebrafish a new lot of
nonhatching decapsulated brine shrimp cysts (Decaps), embryos at the University of Minnesota Zebrafish Core
Facility (ZCF) and the University of Utah Centralized Zebrafish Animal Resource (CZAR) began to exhibit an
orange color in the yolk, and larval health began to decline. The concentration of chromium in the Decaps
(69.6 mg/kg) was more than 30 times that of other zebrafish diets tested (up to 2.1 mg/kg) and is thought to be
the cause of the observed symptoms. Within 3 weeks of removing the Decaps from the feeding regimen, the
orange coloration in the yolks began to diminish, the morphological abnormalities began to subside, and larval
survival rates began to increase. Thus, implementation of standardized zebrafish diets and regular feed-quality

testing may help to prevent the introduction of contaminants to zebrafish research facilities.

Keywords: chromium, brine shrimp, diet, arsenic, barium, zebrafish

Introduction

ANY ASPECTS OF ZEBRAFISH HUSBANDRY, including
diet, are yet to be standardized. Feeding protocols vary
widely between facilities and can include a combination of
live feed and/or commercially formulated fish food." Brine
shrimp (Artemia salina) are an excellent source of nutrition
for zebrafish® and are typically purchased as cysts because
they are hardy and can be stored for long periods of time.
The cysts are soaked in a brine solution causing them to
hatch, which removes the indigestible chorion, and the re-
sulting nauplii are fed to adult zebrafish. Nonhatching dec-
apsulated brine shrimp cysts (Decaps) are a commercially
available product in which the chorions are chemically re-
moved and, thus, can be fed directly to fish without the need
for hatching.’
Diets that include natural foods, such as brine shrimp, are
potential routes for pathogens*” and toxic compounds® to
enter a zebrafish facility. The presence of these contaminants

can lead to reduced fecundity, poor animal health, and in-
creased rates of mortality, ultimately impacting research
outcomes and reproducibility. Commercial pellet and flake
foods can also be a source of unwanted compounds such as
isoflavones, antinutritional factors, and dyes.” Testing feed
for such pathogens and compounds is an uncommon practice
in most zebrafish facilities due to its high cost, lack of data
pertaining to what is satisfactory for zebrafish husbandry, and
the assumption that the feed is free of these contaminants.
Heavy metals, an example of such hazardous compounds,
accumulate in fish tissue through food consumption or uptake
from surrounding water.® Once in the body, heavy metals have
been demonstrated to alter enzyme synthesis and activity, act as
endocrine disruptors, and cause osmotic disturbances in devel-
oping fish.” Exposure to heavy metals can ultimately result in
developmental retardation, disruption of metabolic processes,
morphological abnormalities, and death.® This report describes
the pathological symptoms that were observed in zebrafish
embryos and larvae at the University of Minnesota Zebrafish
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Core Facility (ZCF) and the University of Utah Centralized
Zebrafish Animal Resource (CZAR), the steps that were taken
to identify chromium as a contaminant introduced through food,
and the steps that were taken to remedy the problem.

Materials and Methods
Animal care

Adult and juvenile zebrafish were maintained at the Uni-
versity of Minnesota ZCF and the University of Utah CZAR
with a photoperiod of 14-h light/10-h dark cycle. Recirculating
water system parameters recorded during the course of the
study are described in Table 1. Embryos and larvae were raised
in Petri dishes containing 60 pg/mL Instant Ocean (Blacksburg,
VA) Sea Salt in 28.5°C incubators. For raising embryos/larvae
in lighted conditions, an incubator with a fluorescent lamp on a
14-h light/10-h dark cycle was used. Embryos/larvae raised in
dark conditions were either placed in an opaque box inside of a
lighted incubator or in an unlit incubator with a tinted glass
door. All animal care protocols were approved by the Uni-
versity of Minnesota and University of Utah Institutional An-
imal Care and Use Committees.

Hatching brine shrimp nauplii

Hatched brine shrimp nauplii were harvested 24 h after
seeding 60 g of cysts into 17 L of 33 ppm sodium chloride and
grown at 28°C overnight with aeration. Unhatched cysts and
shells were separated from hatched nauplii by collecting
differentially settled fractions from the cone. Nauplii were
rinsed thrice under running reverse osmosis (RO) water be-
fore shipping for analysis.

Imaging

Images of unanesthetized embryos and larvae were col-
lected with a Sony (Tokyo, Japan) DCR-SR300 digital video
camera and an AmScope (Irvine, CA) MU1000 camera
mounted to a Leica Microsystems (Wetzlar, Germany)
MZ9.5 stereomicroscope. Brightness and contrast adjust-
ments were made to entire panels using Photoshop CS5
(Adobe Systems, San Jose, CA).

Carotenoid testing

Two lots of nonhatching decapsulated brine shrimp cysts
(Decaps; Brine Shrimp Direct, Ogden, UT) were submitted to
the University of Missouri Experiment Station Chemical

TABLE 1. RECIRCULATING SYSTEM WATER CONDITIONS

ZCF CZAR
Temperature 27.4-29.5°C 27.4-29.5°C
Ammonia 0ppm Oppm
Nitrate <60 ppm <30 ppm
Nitrite <0.5 ppm <0.5 ppm
Hardness 75-200 ppm 120 ppm
Chlorine O0ppm O0ppm
Alkalinity 0-80 ppm —
pH 7.2-17.6 7.2-7.6
Conductivity 700-750 uS/cm 500-650 uS/cm

ZCF, zebrafish core facility; CZAR, centralized zebrafish animal
resource.
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Laboratories (Columbia, MO) from the ZCF for carotenoid
testing. Total carotenoids were tested using colorimetric
method AOAC Official Method 938.04.

Heavy metal testing

All feeds tested by the ZCF were submitted to Pace Analy-
tical Services, LLC (Minneapolis, MN) for heavy metal anal-
ysis. The CZAR submitted Decaps from two suppliers (Brine
Shrimp Direct and Your Fish Stuff, Lebanon, NJ) to Pace
Analytical Services, LLC. Heavy metal analysis of feeds at
Pace Analytical Services, LLC was completed using induc-
tively coupled plasma-mass spectrometry (EPA Method 6020).
The CZAR also submitted unhatched brine shrimp cysts
(INVE, Salt Lake City, UT) and frozen 24 h-old (first instar
stage) nauplii hatched from the cysts to Analytical Laboratories
(Boise, ID). Heavy metal testing at Analytical Laboratories was
conducted using inductively coupled plasma-atomic emission
spectrometry (U.S. EPA Method 200.7). Embryos and water
samples from the ZCF were sent to Pace Analytical Services,
LLC, where they were tested for heavy metals using induc-
tively coupled plasma-mass spectrometry (EPA Methods 6020
and 200.8, respectively). Appropriate controls and adjusted
method detection limits (MDLs) were provided for each
sample by the testing laboratories. Heavy metal concentrations
in all feed and tissue samples tested above their respective
MDL unless specified otherwise (indicated as <MDL, with
MDL for the sample provided).

Case Report
Symptoms

The yolks of zebrafish embryos from the University of
Minnesota ZCF began to exhibit an orange color, which was
markedly different from normal yolks that are clear or have
only a pale yellow tint (Fig. 1). This color change was ob-
served across all genetic lines (wild type, transgenic, and
mutant) in the facility and was not observed in larvae brought
into the ZCF from outside facilities (data not shown). Ab-
normal yolk color and size were readily observable in all
embryos and larvae, with greater defects evident after 3 days
postfertilization (dpf). These defects included morphological
deformities, behavioral abnormalities, and developmental
delays. The morphological deformities observed in the em-
bryos/larvae included cardiac edema, misshapen and en-
larged yolks, and the absence of an inflated swim bladder
(Fig. 1F). Behaviorally, larvae did not maintain buoyancy
(sank when not actively swimming) and demonstrated a
general reduction in swimming activity.

Some ZCF users also reported that larvae raised at the ZCF
had anecdotally reduced rates of survival to adulthood. In ad-
dition, larval survival rates (up to 7 dpf), although not quantified,
were highly variable and depended upon the incubator in which
they were raised. Some incubators contained fluorescent lights
running on a standard 14-h light/10-h dark schedule, while
others were unlit, with embryos and larvae only receiving low-
level ambient light through tinted incubator doors. Therefore,
we tested the effects of lighting condition on development and
mortality rates of embryos and larvae with orange-colored yolks.

Larvae reared entirely in darkness (Dark-reared) exhibited
cardiac edema and were developmentally delayed, yet typi-
cally maintained equilibrium and were motile (Fig. 2A).
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Comparison of yolk coloration and morphological deformities between progeny of adults that were fed de-

capsulated brine shrimp cysts (Decap-fed) and progeny of adults that were not fed decapsulated brine shrimp cysts (Decap-
free). (A-C) Progeny of Decap-free adults exhibited clear or pale yellow yolks and normal morphological features. Low (A)
and high (A”) magnification of 5-7 hpf embryos. Lateral (B) and ventral (B”) views of 1 dpf embryos. (C) Lateral view of a
5 dpf larva with normal inflated swim bladder (arrow), cardiac sac (white arrowhead and inset, enlarged 200%), and pale-
yellow yolk (black arrowhead). (D-F) Progeny of Decap-fed adults exhibited orange coloration in yolks and abnormal
morphological features. Low (D) and high (D) magnification of 5-7 hpf embryos with orange-colored yolks. Lateral (E)
and ventral (E’) views of 1 dpf embryos, which continued to exhibit orange coloration in the yolk and yolk extension. (F)
Lateral view of a 5dpf larva that appeared developmentally delayed with an uninflated swim bladder (arrow), cardiac
edema (white arrowhead and inset, enlarged 200%), and an enlarged orange-colored yolk (black arrowhead). Scale
bars=1mm (A applies to A and D; A” applies to A’, B, B’, D', E, and E’; C applies to C and F). Hours postfertilization, hpf;

days postfertilization, dpf.

Interestingly, larval clutch mates that were raised in normal
14-h light/10-h dark conditions (Light-reared) possessed
gross morphological and developmental defects, were unable
to maintain equilibrium along the transverse axis, and were
largely immotile (Fig. 2B).

Mortality rates, defined as death or severe morphological
defects (as shown in Fig. 2B), were quantified from 12 clut-
ches of embryos. Between 4 and 8h postfertilization, un-
fertilized embryos were removed and the remaining fertilized
embryos were split into Dark-reared and Light-reared groups.
By 7dpf, 1.1% of Dark-reared larvae either had died or ex-
hibited gross morphological defects, while 96.1% of Light-
reared larvae had died or exhibited gross defects. Further-
more, the severity of symptoms appeared to be greater in
larvae that had darker orange yolk coloration. Thus, orange
yolk color was an indicator of poor larval health, and the
severity of symptoms was exacerbated by light.

Water quality analysis

Since heavy metal contaminants in water are known to
cause developmental defects in ﬁsh,9 the ZCF’s recirculat-
ing system water and water source were tested for the
presence of heavy metals. Testing showed that arsenic,
barium, and chromium were present in the system water,

although below the concentrations experimentallg shown to
affect zebrafish reproduction and development,'®™'* and at
levels well below the maximum permitted for human con-
sumption according to the U.S. Environmental Protection
Agency National Primary Drinking Water Regulations
(Table 2). These contaminants were not detected in water
collected from the ZCF’s reverse osmosis source; therefore,
we concluded that they were introduced from an external
source, potentially diet.

Dietary analysis

At the time that the symptoms appeared, zebrafish adults in
the ZCF were fed Decaps (Brine Shrimp Direct, Ogden, UT)
twice per day at ~ 3.3 mg/fish/feeding and supplemented
with Zebrafish Select Food (Aquaneering, San Diego, CA)
thrice per week at ~ 12 mg/fish/feeding. The Zebrafish Select
Food was eliminated from the feeding regimen to determine
if it was the cause of the observed symptoms. This diet was
chosen for elimination because it was used as a supplemental
feed and was therefore the simplest change to implement.
However, the yolk coloration and larval health issues were
still evident 2 months after its discontinuation. Thus, it was
unlikely that the Zebrafish Select Food was the cause of the
symptoms.
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FIG. 2. Gross morphological differences between clutch
mate larvae reared in dark and light conditions. Progeny of
adult zebrafish that were fed decapsulated brine shrimp cysts
were raised either in complete darkness (Dark-reared) or
under a normal 14-h light/10-h dark cycle (Light-reared),
and larvae were compared at 5 dpf. (A) Dark-reared larvae
were developmentally delayed and exhibited cardiac edema
and enlarged orange-colored yolks, but typically maintained
equilibrium and were motile. (B) Light-reared larvae ex-
hibited gross morphological and developmental defects,
were unable to maintain equilibrium along the transverse
axis, and were mostly immotile. Scale bar=1mm. Days
postfertilization, dpf.

Salmonid fish produce eggs with distinctive yellow, or-
ange, or red coloration if carotenoids are present. However,
carotenoids must be exposed to salmonids through diet, as
they are not synthesized internally.'> Once ingested, carot-
enoids are stored in muscle and are later transferred into ova
upon sexual maturation.'® The emergence of orange colora-

TABLE 2. HEAVY METAL CONCENTRATIONS
IN THE RECIRCULATING SYSTEM WATER
AT THE UNIVERSITY OF MINNESOTA ZCF
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tion in embryonic zebrafish yolks was noted ~2-3 weeks
after the onset of feeding the adult fish in the ZCF a new lot of
Decaps. Therefore, we reasoned that the change in yolk
coloration from pale yellow to orange might have been due to
carotenoids present in the Decaps. The ZCF obtained a
sample of a previous lot of Decaps (Brine Shrimp Direct,
Ogden, UT) to compare carotenoid concentrations between
lots. Testing revealed that carotenoid concentrations of the
new lot were lower (18 mg/kg) than in the old lot (25 mg/kg),
eliminating excess carotenoids as a potential cause of the
observed symptoms.

Next, to test if the presence of other potential contaminants
in the Decaps contributed to the poor health and orange-
colored yolks in the embryos, we acquired adult zebrafish
from the University of South Carolina Aiken (USCA) zeb-
rafish facility. While at the USCA facility, these adult fish
received live brine shrimp nauplii (Artemia International,
Fairview, TX), hatched in-house, in addition to a blend of dry
foods: a base of Zeigler Adult Zebrafish Diet (Zeigler Bros.,
Gardners, PA) supplemented with Golden Pearls Fry and
Coral Reef Food (Your Fish Stuff), spirulina flake food
(Ocean Star International, Snowville, UT), and Thera+ A
Sinking Pellets (New Life International, Homestead, FL).
Once acquired and placed in the ZCF, these fish were not fed
Decaps (Decap-free). Rather, they were fed exclusively
GEMMA Micro feed (Skretting USA, Tooele, UT) and were
exposed to the same system water as were fish native to the
ZCF that had regularly been fed Decaps (Decap-fed).

Incrosses of the Decap-free adult fish resulted in healthy
embryos and larvae without orange yolk coloration (Fig. 1A-
C). Crosses of Decap-free adult females to Decap-fed males
also produced healthy offspring without coloration in the
yolks. However, offspring from crosses of the Decap-free adult
males to Decap-fed females produced orange-colored yolks
and exhibited all of the deformities and behavioral deficits
described above. Thus, orange-colored yolks and poor larval
health were only present in offspring of female fish that were
raised in the ZCF and were fed a diet that included Decaps.

Since the Decaps were associated with orange yolk col-
oration and poor larval health, and heavy metals were de-
tected in the ZCF system water (Table 2), the Decaps were
tested for the presence of heavy metals. We found that ar-
senic, barium, and chromium were present in the Decaps
(Table 3), and although the concentration of chromium ap-
peared to be high, there was not a frame of reference for
zebrafish diets. Therefore, we also tested for heavy metals in

TABLE 3. HEAvY METAL CONCENTRATIONS
IN DECAPSULATED CYSTS, HATCHABLE INVE CyYSTS,
AND HATCHED NAUPLII

Heavy metal (mg/kg)

Heavy metal (1g/L) Arsenic  Barium  Chromium
Arsenic  Barium Chromium  ZCF Decaps (Brine 8.1 53 69.6
shrimp direct)
System Water 1.0, 3.2 3.5 = CZAR Decaps (Brine 9.4 7.3 62.5
Minimum concentration 50 80 21000 shrimp direct)
shown to affect zebrafish CZAR Decaps (Your 9.3 4.2 63.5
National primary drinking 10 2000 100 fish stuff)
water regulations® INVE cysts, unhatched 18.1 1.7 <0.5
INVE nauplii, hatched 2.3 <0.5 <0.5

“U.S. Environmental Protection Agency.
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several common zebrafish feeds, which included brine
shrimp cysts (nonhatchable Decaps and hatchable cysts),
commercially available diets, and live rotifers (Fig. 3).

The concentration of arsenic (Fig. 3A) was lower in the
Decaps (8.1 mg/kg) than in hatchable brine shrimp cysts (12.9—
15.0 mg/kg), but was greater than other commercial diets (0.1—
2.2 mg/kg) and live rotifers (<adjusted MDL; 0.011 mg/kg).
The concentration of barium (Fig. 3B) was greater in the
Decaps (5.3 mg/kg) than in hatchable brine shrimp cysts (1.1—
1.5mg/kg) and live rotifers (<MDL; 0.018 mg/kg), but was
similar to commercial diets (1.1-5.4mg/kg). However, the
concentration of chromium (Fig. 3C) was more than 30 times
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greater in the Decaps (69.6 mg/kg) than in hatchable brine
shrimp cysts (<MDL; 0.18-0.19 mg/kg each), commercial
diets (0.3-2.1 mg/kg), or live rotifers (0.04 mg/kg). These re-
sults revealed elevated concentrations of chromium in the
Decaps, potentially introduced during processing, since mea-
surable concentrations of chromium were not detected in any
of the hatchable brine shrimp cysts that were tested.

Tissue analysis

Finally, to determine if the presence of heavy metal-
contaminated Decaps in the diet of the adult breeding
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population corresponded to elevated concentrations of
chromium in embryos, heavy metal concentrations were
measured and compared between a clutch of embryos ob-
tained from Decap-fed adults (with orange-colored yolks)
and a clutch of embryos obtained from Decap-free adults
(with noncolored yolks). The concentration of arsenic did not
exceed the MDL (0.011 mg/kg each) in either clutch. The
concentration of barium was lower in the clutch collected from
Decap-fed adults (<MDL; 0.019 mg/kg) than in the clutch from
Decap-free adults (0.034 mg/kg). Finally, the concentration of
chromium was over three times higher in the clutch of embryos
collected from Decap-fed adults (0.17 mg/kg) than in the clutch
from Decap-free adults (0.048 mg/kg). Altogether these data
suggested that feeding chromium-contaminated Decaps to fe-
male adult zebrafish led to transmission of chromium to off-
spring and corresponded to orange yolk color and poor larval
health and survival.

Reclamation

Once it was determined that the Decaps were contaminated
with high concentrations of the heavy metal chromium, the
Decaps were immediately eliminated from the ZCF feeding
regimen. All tank lids were cleaned, and floors were swept
and scrubbed to remove any remnants of Decaps from the
facility. The University of Minnesota Department of Health
and Safety was immediately contacted to assess exposure
levels of the facility staff. It was determined that human
exposure due to handling was limited. However, fish expo-
sure was of concern as ingestion is one of the ;)rimary routes
of heavy metal accumulation in the body.'”"'® Therefore,
Decaps were replaced by a commercially produced pellet
food (GEMMA Micro, Skretting USA, Tooele, UT). Within
3 weeks, the orange color of the yolks began to diminish, the
morphological abnormalities began to subside, and larval
survival began to increase in new clutches.

Clutches of embryos with orange-colored yolks, develop-
mental delays, and behavioral defects were occasionally
found in spawning tanks up to 10 months after the change in
diet. Interestingly, these embryos were progeny of adult fe-
males that had not routinely spawned since the diet change.
Over a period of several months, subsequent spawning ses-
sions from those individuals resulted in a gradual return to the
normal, pale yellow yolk in embryos. These results suggest
that chromium accumulated in the ova of adult females that
were fed the contaminated food and the effects of the heavy
metal contamination could persist for several months fol-
lowing its elimination from the diet regimen.

Finally, to determine if the heavy metal levels in the re-
circulating system had changed, water samples were col-
lected 5 months after Decaps were removed from the diet
regimen. The concentrations of chromium (3.5-0.4 ug/L),
barium (3.2-1.7 ug/L), and arsenic (1.0-0.7 ug/L) were re-
duced in the recirculating system water 5 months after
elimination of Decaps from the feeding regimen (Fig. 4).

The University of Utah CZAR

Similar symptoms, such as discoloration of embryos and
cardiac edema, were observed during the same time period at
the CZAR. The CZAR fed adult fish a combination of Decaps
(Your Fish Stuff), hatched nauplii (INVE, Salt Lake City,
UT), and Tropical Flakes (Drs. Foster and Smith, Rhine-
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FIG. 4. Comparison of heavy metal concentrations in the
recirculating system water before (Before) and 5 months
after (After) cessation of feeding with decapsulated brine
shrimp cysts (Decaps). The concentrations of barium and
chromium were reduced in the recirculating system water
5 months after elimination of Decaps from the feeding
regimen.

lander, WI). The CZAR submitted INVE cysts and 24 h-old
(first instar stage) INVE nauplii for heavy metal testing. An
eightfold decrease in arsenic concentration was measured
between the cysts (18.1 mg/kg) and their hatched nauplii
(2.3 mg/kg; Table 3). This indicated that the high concen-
tration of arsenic present in the cysts was reduced following
hatching of the nauplii. The CZAR also tested two brands of
Decaps, which revealed concentrations of arsenic, barium,
and chromium that corresponded to those at the ZCF (Ta-
ble 3). Similarly, symptoms in embryos produced at the
CZAR diminished approximately 1 month after removing the
Decaps from the diet regimen.

Discussion

The morphological deformities, orange yolk coloration,
and increased mortality are presumed to be a result of feeding
adult zebrafish Decaps that were contaminated with heavy
metals, specifically chromium. Although some aquatic
pathogens are associated with altered behavior in larval
zebraﬁsh,19 there is no evidence in the literature that known
pathogens are capable of producing the symptoms observed
in larvae at the ZCF and the CZAR, particularly the orange
yolk coloration. After elevated concentrations of arsenic,
barium, and chromium were detected in the ZCF recirculat-
ing system water (Fig. 4 and Table 2), feeds were tested as a
potential exogenous source of heavy metal contamination.
Decaps, the primary component of the diet regimen at the
ZCF, contained elevated concentrations of chromium com-
pared to the other feeds tested (Fig. 3). Upon removing the
Decaps from the diet regimen, yolk color quickly returned to
normal and health slowly improved.

Arsenic concentrations for all types of brine shrimp cysts
(hatchable and Decaps) were over four times higher than
commercial diets and rotifers, ranging from 8 to 15 mg/kg
(Fig. 3A). Brine shrimp cysts are often harvested from the
wild and, thus, may be susceptible to bioaccumulation of
environmental contaminants such as arsenic.” The European
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Union Directive on undesirable substances in animal feeds
(2002/32/EC) states that the arsenic concentration in com-
plete feeds for fish should not exceed 10 mg/kg,*" lower than
concentrations measured in all three brands of hatchable
brine shrimp cysts tested (Fig. 3A). Some arsenic compounds
are lethal in mice at doses as low as 0.9 g/kg,?* above the
8 mg/kg found in the Decaps. Lake whitefish (Coregonus
clupeaformis) and rainbow trout exhibit decreased growth
and food consumption when fed arsenic at 100 mg/kg and
26 mg/kg, respectively.>*** Chronic inflammation of the
gallbladder in rainbow trout was evident when they were fed
arsenic in amounts as low as 33 mg/kg.>® Additional research
on specific arsenic compounds and their effects on zebrafish
development is needed to determine what levels are accept-
able for zebrafish culture.

The high concentrations of arsenic in hatchable cysts
were of concern since newly hatched nauplii, which are
derived from hatchable cysts, are a primary food source for
many zebrafish facilities. With this in mind, the CZAR
tested arsenic in both the INVE hatchable cysts and the
nauplii derived from the INVE hatchable cysts. A higher
concentration of arsenic was present in the unhatched cysts
(18.1 mg/kg) than in hatched nauplii (2.3 mg/kg; Table 3),
which suggested that arsenic was either excreted during
hatching and early development of the nauplii or that it was
concentrated in the chorion. Additional data on the arsenic
levels in hatched nauplii from other suppliers are needed to
confirm this finding.

Elevated barium is not a likely cause of the symptoms
observed in the ZCF and the CZAR. First, the concentration
of barium in Decaps was similar to other common zebrafish
diets (Fig. 3B). Second, the symptoms described above were
alleviated in progeny when adult fish in the facility were
switched to other feed sources, which contained similar
concentrations of barium (Fig. 3B). Finally, the concentration
of barium detected in Decaps (5.3 mg/kg at ZCF and 4.2 mg/
kg at the CZAR) was much lower than what was found to be
toxic to mice (4000 mg/kg).*®

Chromium is carcinogenic, can disturb embryo develop-
ment, and causes mutations in numerous organisms.>’ Fur-
thermore, chromium is neurotoxic, interferes with cellular
metabolic activity, and inhibits glutathione S-transferase
activity in larval zebrafish when exposed to high levels
in the water.'® Research focused on chromium oral toxic-
ity in fish is quite limited. Dietary hexavalent chromium
above 60mg/kg perturbs cholinergic signaling in juve-
nile rock fish (Sebastes schlegelii),”® while 3.2 mg/kg has
little effect on Japanese medaka.”” More is known about
dietary chromium toxicity in rodents. Incidence of ade-
noma and carcinoma in mice increased when 30 mg/L
chromium was consumed through their drinking water.*®
Depending on the chromium compound, oral acute toxicity
for rats ranges between 50 and 12,000 mg/kg.*' The total
chromium concentration found in the Decaps (69.6 mg/kg)
was within the range of these studies, yet further research
on specific chromium compounds is needed to determine
their effects on zebrafish development and transmission
to offspring.

Tissue analysis of ZCF embryos revealed that embryos
with orange-colored yolks that were obtained from Decap-
fed adults contained over three times more chromium than
embryos with noncolored yolks obtained from Decap-free
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adults. The correlation between chromium and yolk colora-
tion could be explained by the fact that chromium compounds
can be intensely colored and are used as an industrial diye to
create colors such as yellow, red, green, and orange.3 We
hypothesize that the high concentration of chromium found
in zebrafish embryos resulted from adult female consumption
of chromium-contaminated food, which then accumulated in
the ova. Consistent with this hypothesis, maternal transfer of
chromium was reported in Japanese medaka (Oryzias latipes)
and is an important pathway for chromium deposition into
offspring.*?

The severity of symptoms observed at the ZCF appeared to
be greater in embryos and larvae that had darker orange yolk
coloration, and symptoms were exacerbated by exposure to
light (Fig. 2). Chromium significantly increases the incidence
of skin tumors in hairless mice that are exposed to ultraviolet
radiation,* and it has been suggested that synergism occurs
between the two.>> This is consistent with our findings and
presents an intriguing avenue for future work, particularly
using transparent zebrafish larvae or pigment-free mutant
adults, such as casper.36

Chromium concentrations in Decaps were over 30 times
higher than all other feeds analyzed (Fig. 3C) and are thought
to be the cause of the symptoms observed at the ZCF and the
CZAR. The high concentrations of chromium in the Decaps
(69.5 mg/kg) were not likely due to environmental bioaccu-
mulation, as other brine shrimp cysts contained <0.19 mg/kg
chromium, and the highest level reported in crustaceans
harvested from the wild was 0.6 mg/kg.” The chromium
concentration in the Decaps was at least 100 times higher
than that measured in hatchable brine shrimp cysts (Fig. 3)
and what has been reported in the wild, which suggests that
contamination occurred after harvesting. However, we were
unable to test the cysts before decapsulation and therefore
could not determine if chromium contamination was the re-
sult of processing and distribution or harvesting of contam-
inated cysts.

Most zebrafish facilities use a combination of feeds, and
the feeds used within a facility often change due to feed
availability and the process of optimizing diets to improve
fish health and reproduction. Feed quality is not well reg-
ulated, and the standards of suppliers are quite variable.
The incidents that occurred at the ZCF and the CZAR
provide an example of how the implementation of a stan-
dardized diet and feed quality control may benefit zebrafish
health, thereby reducing the likelihood of introducing
contaminants that may affect the rigor and reproducibility
of research.
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