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Abstract

Genome-wide association studies on alcohol dependence, by themselves, have yet to

account for the estimated heritability of the disorder and provide incomplete mechanistic

understanding of this complex trait. Integrating brain ethanol-responsive gene expression

networks from model organisms with human genetic data on alcohol dependence could aid

in identifying dependence-associated genes and functional networks in which they are

involved. This study used a modification of the Edge-Weighted Dense Module Searching for

genome-wide association studies (EW-dmGWAS) approach to co-analyze whole-genome

gene expression data from ethanol-exposed mouse brain tissue, human protein-protein

interaction databases and alcohol dependence-related genome-wide association studies.

Results revealed novel ethanol-responsive and alcohol dependence-associated gene net-

works in prefrontal cortex, nucleus accumbens, and ventral tegmental area. Three of these

networks were overrepresented with genome-wide association signals from an independent

dataset. These networks were significantly overrepresented for gene ontology categories

involving several mechanisms, including actin filament-based activity, transcript regulation,

Wnt and Syndecan-mediated signaling, and ubiquitination. Together, these studies provide

novel insight for brain mechanisms contributing to alcohol dependence.

Introduction

Alcohol Use Disorder [1], which spans the spectrum from abusive drinking to full alcohol

dependence (AD), has a lifetime prevalence of 29.1% among adults in the United States [2].

Alcohol misuse ranks third in preventable causes of death in the U.S. [3] and fifth in risk
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factors for premature death and disability, globally [4]. Although pharmacological therapy for

AUD exists [5], the effectiveness is limited and the relapse rate is high. Improvement in AUD

treatment requires research on the underlying genetic and biological mechanisms of the pro-

gression from initial exposure to misuse, and finally to dependence.

Twin studies estimate that AUD is roughly 50% heritable [6, 7]. Multiple rodent model

studies have used selective breeding to enrich for ethanol behavioral phenotypes or have iden-

tified ethanol-related behavioral quantitative trait loci [8–10], further confirming the large

genetic contribution to alcohol behaviors. Recent studies have also documented genetic factors

influencing the effectiveness of existing pharmacological treatments for AD, further substanti-

ating genetic contributions to the mechanisms and treatment of AUD [11]. Genome-wide

association studies (GWAS) in humans have identified several genetic variants associated with

alcohol use and dependence [12–15]. However, they have yet to account for a large portion of

the heritability estimated by twin studies. Lack of power, due to a large number of variants

with small effects, is believed to the source of this “missing heritability”” [16]. Although recent

large-scale studies have shown promise in identifying novel genetic contributions to alcohol

consumption, these studies do not contain the deep phenotypic information necessary for

identifying variants associated with dependence [14, 15]. Further, such GWAS results still gen-

erally lack information about how detected single gene variants are mechanistically related to

the disease phenotype.

Genome-wide gene expression studies are capable of improving the power of GWAS by

providing information about the gene networks and biological mechanisms in which GWAS

variants function [17–20]. Although gene expression in brain tissue has been studied in AD

humans [17, 18], these studies are often difficult to conduct and interpret, due to lack of con-

trol over experimental variables and small sample sizes. However, studies have found high con-

servation in gene expression correlation patterns between mice and humans, particularly in

brain tissue [21]. Furthermore, extensive studies in rodent models have successfully identified

ethanol-associated gene expression differences and gene networks in brain tissue [22–26].

Multiple ethanol-behavioral rodent models exist to measure different aspects of the develop-

mental trajectory from initial exposure to compulsive consumption [27]. Acute administration

to naïve mice models the response of initial alcohol exposure in humans, which is an impor-

tant predictor of risk for AD [28, 29]. Wolen et al. used microarray analysis across a mouse

genetic panel to identify expression correlation-based networks of acute ethanol-responsive

genes (genes whose expression levels change after ethanol consumption or treatment), along

with significantly associated expression quantitative trait loci in brain regions subserving the

mesolimbocortical dopamine reward pathway—the prefrontal cortex (PFC), nucleus accum-

bens (NAc), and ventral tegmental area (VTA) [25]. Furthermore, specific networks also corre-

lated with ethanol behavioral data derived from the same mouse genetic panel (BXD

recombinant inbred lines) [10]. Importantly, these gene expression responses to acute ethanol

in BXD mice were later shown by our laboratory to have highly significant overlap with

expression responses in a chronic ethanol exposure model known to mimic aspects of alcohol

dependence in humans [30], and also contained a gene expression network associated with

alcohol dependence thatwe recently identified Gsk3b as a potential candidate gene for treat-

ment of alcoholism [31]. Together, these results support our premise that acute ethanol-

exposed rodent brain gene expression could provide insight into relevant mechanistic frame-

works and pathways underlying ethanol behaviors and risk for dependence in humans.

Several studies have integrated GWAS and gene expression or gene network data to cross-

validate behavioral genetic findings [17]. For instance, the Psychiatric Genomics Consortium

[32] tested for enrichment of nominally significant genes from human GWAS in previously

identified functional pathways, and found shared functional enrichment of signals for
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schizophrenia, major depression disorder, and bipolar disorder in several categories. These

pathways included histone methylation, neural signaling, and immune pathways [32]. Mam-

dani et al. reversed this type of analysis by testing for significant enrichment of previously

identified GWAS signals in gene networks from their study. They found that expression quan-

titative trait loci for AD-associated gene expression networks in human nucleus accumbens

tissue had significant enrichment with AD diagnosis and symptom count GWAS signals from

the Collaborative Study on the Genetics of Alcoholism dataset [17]. Additional approaches

have taken human GWAS significant (or suggestive) results for AD and provided additional

confirmation by showing that expression levels for such genes showed correlations with etha-

nol behaviors in rodent models [33]. Such methods are informative with respect to analyzing

the function of genes that have already reached some association significance threshold. How-

ever, they do not provide information about genes not reaching such statistical thresholds, but

possibly still having important contributions to the genetic risk and mechanisms of AUD.

Dense module searching for GWAS (dmGWAS) is an algorithm for directly integrating

GWAS data and other biological network information so as to identify gene networks contrib-

uting to a genetic disorder, even if few of the individual network genes exceed genome-wide

statistical association thresholds [34]. The initial description of this approach utilized Protein-

Protein Interaction (PPI) network data to identify networks associated with a GWAS pheno-

type. Modules derived from protein-protein interactions were scored from node-weights

based on gene-level GWAS p-values. This approach was used to identify AD-associated PPI

networks that replicated across ethnicities and showed significant aggregate AD-association in

independent GWAS datasets [35], thus demonstrating the potential utility of the method. A

more recent iteration of the dmGWAS algorithm, termed Edge-Weighted dense module

searching for GWAS (EW-dmGWAS), allows integration of gene expression data to provide a

direct co-analysis of gene expression, PPI, and GWAS data [36].

Utilization of the EW-dmGWAS algorithm would allow for identification of gene networks

coordinately weighted for GWAS significance for AD in humans and ethanol-responsiveness

in model organism brain gene expression data. We hypothesized that such an approach could

provide novel information about candidate gene networks likely contributing to the genetic

risk for AUD, while also adding mechanistic information about the role of such networks in

ethanol behaviors. We show here the first use of such an approach for the integration of

human PPI connectivity with mouse brain expression responses to acute ethanol and human

GWAS results on AD. Our design incorporated the genome-wide microarray expression data-

set derived from the acute ethanol-exposed mouse brain tissue used in Wolen et al. [10, 25],

human protein-protein interaction data from the Protein Interaction Network database, and

AD GWAS summary statistics from the Irish Affected Sib-Pair Study of Alcohol Dependence

[33]. Importantly, we validated the identified ethanol-responsive and AD-associated networks

by co-analysis with an additional, independent AD GWAS study on the Avon Longitudinal

Study of Parents and Children dataset. Our results, although requiring further detailed investi-

gation, could provide important methodological and biological function insight for future

studies on the mechanisms and treatment of AUD.

Materials and methods

Samples

Mouse gene expression data. In order to maximize the utility of the mouse model by

minimizing effects of behavioral and environmental variation, and to afford the identification

of dependence-contributing genes involved in initial ethanol response, this study utilized gene

expression data from ethanol-naïve mice treated with a single dose of acute ethanol. All mouse
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brain microarray data (Affymetrix GeneChip Mouse Genome 430 2.0) are from Wolen et al.,

2012 [25] and can be downloaded from the GeneNetwork resource (www.genenetwork.org),

via accession numbers GN135-137, GN154-156 and GN228-230, respectively for PFC, NAc

and VTA data. Treatment and control groups each contained one sample (pooled RNA from 3

mice) from each strain and were given IP injections of saline or 1.8 g/kg of ethanol, respec-

tively. Euthanasia and brain tissue collection took place 4 hours later. Data used for edge

weighting in EW-dmGWAS analysis included Robust Multi-array Average (RMA) values,

background-corrected and normalized measures of probe-wise expression, from the PFC,

VTA, and NAc of male mice in 27–35 BXD recombinant inbred strains and two progenitor

strains (DBA/2J and C57BL/6J).

Ethanol-responsive genes are predicted to be involved in pathways of neural adaptations

that lead to dependence [25]. We predicted they would also be involved in mechanistic path-

ways from which GWAS signals are being detected. We therefore filtered for ethanol-respon-

sive gene expression as done in Wolen et al.[25] prior to EW-dmGWAS so as to ensure edge

weighting focused on ethanol responsiveness. Probe-level expression differences between con-

trol and ethanol-treated groups using the S-score algorithm which performs a probe-level anal-

ysis of expression between two groups [23, 37, 38] were obtained from the Wolen study [25]

(S1 Table). Fisher’s Combined Test determined S-score significance values for ethanol respon-

siveness of each probeset across the entire BXD panel, and empirical p-values were calculated

by 1,000 random permutations. Finally, q-values were calculated from empirical p-values to

correct for multiple testing[25]. We defined an ethanol responsive gene set using a S-score pro-

beset-level threshold of qFDR<0.1 for differential expression, in any one of the three brain

regions. Genes associated with these probesets were carried forward in our analysis (Fig 1).

Multiple probesets from single genes were reduced to single gene-wise expression levels within

a particular brain region by selecting the maximum brain region-specific RMA value for each

gene. After removing genes that were absent from the human datasets, 6,050 genes remained

with expression values across all three brain regions (Fig 1).

Human GWAS data. Although many GWAS datasets now exist for AD, alcohol con-

sumption and other ethanol responses, we chose two AD-related datasets for our analysis

because of the phenotypic and methodological similarity between the studies and their avail-

ability at the time this work was initiated. The Irish Affected Sib-Pair Study of Alcohol Depen-

dence (IASPSAD) AD GWAS dataset was used for the EW-dmGWAS analysis. It contains

information from 1,748 unscreened controls (43.2% male) and 706 probands and affected sib-

lings (65.7% male) from a native Irish population, after quality control [33]. Samples were gen-

otyped on Affymetrix v6.0 SNP arrays. Diagnostic criteria for AD were based on the DSM-IV,

and probands were ascertained from in- and out-patient alcoholism treatment facilities. Asso-

ciation of each Single Nucleotide Polymorphisms (SNP) with AD diagnosis status was tested

by the Modified Quasi-Likelihood Score method [39], which accounts for participant related-

ness. SNPs were imputed using IMPUTE2 [40] to hg19/1000 Genomes, and gene-wise p-val-

ues were calculated using Knowledge-Based mining system for Genome-wide Genetic studies

Fig 1. Data pipeline for determining ethanol-responsiveness and merging datasets. Pipeline used to prepare the data for the present analysis. The first cell contains

the starting number of genes in the BXD mouse PFC, NAc, and VTA gene expression dataset.

https://doi.org/10.1371/journal.pone.0202063.g001
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(KGG2.5) [41]. This dataset was chosen because of its deep phenotyping and its theoretical

consistency with findings from mouse experiments. The expression of the top-scoring genes in

IASPSAD (COL6A3, RYR3, and KLF12) in mouse brain correlates with handling-induced con-

vulsions, anxiety-like behavior, and acute functional tolerance to ethanol, respectively[33].

The Avon Longitudinal Study of Parents and Children (ALSPAC) GWAS gene-wise p-val-

ues were used to examine the ability of EW-dmGWAS to validate the EW-dmGWAS net-

works. This GWAS tested SNP association with a factor score calculated from 10 Alcohol Use

Disorder Identification Test items for 4,304 (42.9% male) participants from Avon, UK. Sam-

ples were genotyped by the Illumina HumanHap550 quad genome-wide SNP platform [42].

This dataset was chosen because of its overall similarity to IASPSAD. Although the analyzed

phenotypes were not identical between these two datasets, they were similar in that they both

studied dependence symptoms, as opposed to non-diagnostic drinking measures. Additionally

like IASPSAD, ALSPAC possessed the following important qualities: 100% of the sample was

from the United Kingdom; the male to female ratio was roughly 1:1; SNPs were imputed to

hg19/1000 Genomes; and gene-wise p-values were calculated by KGG2.5. No other GWAS

dataset is as similar to IASPSAD to our knowledge, with respect to ancestral origin, genotyp-

ing, and phenotyping.

Protein network data. The Protein-Protein Interaction (PPI) network was obtained from

the Protein Interaction Network Analysis (PINA 2.0) Platform (http://omics.bjcancer.org/

pina/interactome.pina4ms.do). This platform was chosen because it includes PPI data from a

wide array of databases, including: Intact, MINT, BioGRID, DIP, HPRD, and MIPS/Mpact.

The Homo sapiens dataset was used for this analysis, due to it having much more content

(166,776 binary interactions) than the mouse repository (only 13,865 binary interactions) [43,

44]. Uniprot IDs were used to match protein symbols to their corresponding gene symbols

[45].

Statistical methods

EW-dmGWAS. The edge-weighted dense module searching for GWAS (dmGWAS_3.0)

R package was used to identify treatment-dependent edge-weighted modules (small, constitu-

ent networks) nested within the background network(s) of non-weighted, binary interactions

(https://bioinfo.uth.edu/dmGWAS/). We used the PPI framework for the background net-

work, IASPSAD GWAS gene-wise p-values [33] for the node-weights, and RMA values from

acute ethanol- and saline-exposed mouse PFC, VTA, and NAc genomic data for edge-weights

[25]. For the remainder of this manuscript, we will use the term “network” to refer to the back-

ground PPI framework, and “module” to refer to the resulting groups of interrelated genes

nested within this larger network. By the EW-dmGWAS algorithm, higher node-weights rep-

resent lower (i.e. more significant) GWAS p-values, whereas higher edge-weights represent a

greater difference in the correlation of two genes between ethanol and control groups. This is

calculated by taking the difference of correlations in RMA expression values of the two genes

in control vs. ethanol treated BXD lines. The module score algorithm incorporated edge- and

node-weights, which were each weighted to prevent bias towards representation of nodes or

edges in module score calculations. Such bias could cause some modules to be identified based

almost solely on edge-weights or node-weights, as opposed to the two combined, which would

defeat the purpose of integration. The respective weighting depends upon a parameter (λ)

which is calculated prior to module searching, based on the entire set of node- and edge-

weights and used across all module score calculations, as part of the EW-dmGWAS algorithm.

Higher module scores thus represent higher edge- and node-weights. Genes were kept in a

module if they increased the standardized module score (Sn) by 0.5%. Sn corresponding to a
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permutation-based, empirical qFDR<0.05 were considered significant. A significant Sn (i.e.

more significant qFDR values) indicates that a module’s constituent genes are more highly asso-

ciated with AD in humans, and their interactions with each other are more strongly perturbed

by acute ethanol exposure in mice than randomly constructed modules of the same size.

Due to the redundancy of genes between modules, we modified the EW-dmGWAS output

by iteratively merging significant modules that overlapped >80% until no modules had>80%

overlap, for each brain region. Percent overlap represented the number of genes contained in

both modules (for every possible pair) divided by the number of genes in the smaller module.

We call the final resulting modules “mega-modules”. Standardized mega-module scores

(MM-Sn) were calculated using the algorithms employed by EW-dmGWAS. MM-Sn corre-

sponding to qFDR<0.05 were considered significant (S1 Fig). Finally, connectivity (k) and

Eigen-centrality (EC) were calculated using the igraph R package for each gene in each module

to identify hub genes. Nodes with EC>0.2 and in the top quartile for connectivity for a module

were considered to be hub genes.

Overlap with ALSPAC. Genes with an ALSPAC GWAS gene-wise p<0.001 were consid-

ered nominally significant, and will be referred to as “ALSPAC-nominal genes”. We used lin-

ear regression to test MM-Sn’s prediction of mean ALSPAC GWAS gene-wise p-value of each

mega-module. Given our hypothesis that EW-dmGWAS would identify alcohol-associated

gene networks and prioritize them by association, we predicted that higher MM-Sn’s would

predict lower (i.e. more significant) mean GWAS p-values. Empirical p-values<0.017, reflect-

ing Bonferroni correction for 3 independent tests (one per brain region): α = 0.05/3, were con-

sidered to represent significant association.

Overrepresentation of ALSPAC-nominal genes within each mega-module was analyzed for

those modules containing >1 such gene. For each of these mega-modules, 10,000 modules

containing the same number of genes were permuted to determine significance. Empirical p-

values< 0.05/n (where n = total number of mega-modules tested) were considered significant.

Functional enrichment analysis. To determine if mega-modules with significant over-

representation of ALSPAC-nominal genes represented an aggregation of functionally related

genes, ToppGene (https://toppgene.cchmc.org/) was used to analyze functional enrichment.

Categories of biological function, molecular function, cellular component, mouse phenotype,

human phenotype, pathways, and drug interaction were tested for over-representation. All

genes in the human genome were included in the reference gene set. This set was not limited

to the ethanol-responsive genes included in this analysis, in order to preclude functional bias.

Significant over-representation results were defined as p<0.01 (uncorrected), n�3 genes over-

lap and n�1000 genes per functional group. Given the number of categories and gene sets

tested, our discussion below was narrowed to the most relevant categories, defined as Bonfer-

roni-corrected p<0.1.

Results

Of the initial 45,037 probesets for the mouse gene expression arrays, 16,131 were associated

with human-mouse homologues and had qFDR<0.1 for ethanol responsiveness (S-score) in at

least one of the three brain regions (Fig 1). These probesets corresponded to a total of 7,730

genes and were trimmed to a single probeset per gene by filtering for the most abundant pro-

beset as described in Methods. After removing genes that were absent from either the PPI net-

work or the IASPSAD dataset, the final background PPI network for EW-dmGWAS analysis

contained 6,050 genes (nodes) and 30,497 interactions (edges). The nodes contained 25 of the

78 IASPSAD-nominal genes and 24 of the 100 ALSPAC-nominal genes. There was no overlap

between the IASPSAD and ALSPAC nominal gene sets.
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Prefrontal cortex

For analysis using PFC expression data for edge-weights, results revealed 3,545 significant

modules (qFDR<0.05) containing a total of 4,300 genes, with 14 ALSPAC-nominal genes and

18 IASPSAD-nominal genes. These modules were merged to form 314 mega-modules, all with

significant MM-Sn. Twelve mega-modules contained at least one ALSPAC-nominal gene, and

160 contained at least one IASPSAD-nominal gene. However, MM-Sn did not significantly

predict mean ALSPAC GWAS gene-wise p-value (β = -0.003, p = 0.327, Fig 2).

Two mega-modules, Aliceblue and Cadetblue, contained multiple ALSPAC-nominal genes

(Table 1). Because overrepresentation was tested for 2 mega-modules, p<0.025 (α = 0.05/2)

was considered significant. Cadetblue, was significantly overrepresented with ALSPAC-nomi-

nal genes (Table 1). Each of Cadetblue’s ALSPAC- and IASPSAD-nominal genes was con-

nected to one of its most highly connected hub genes, ESR1 (estrogen receptor 1; connectivity

(k) = 31, Eigen-centrality (EC) = 1) and ARRB2 (beta-arrestin-2; k = 13, EC = 0.25) (Fig 3).

Although the ALSPAC-nominal gene overrepresentation was not significant for Aliceblue, it

approached significance (Table 1). Further, Aliceblue had the second-highest MM-Sn in the

PFC and contained 3 ALSPAC-nominal genes and 3 IASPSAD-nominal genes (Table 1). For

these reasons, Aliceblue was carried through to functional enrichment analysis. Aliceblue’s

two hub genes were ELAVL1 ((embryonic lethal, abnormal vision)-like 1; k = 165, EC = 1) and

CUL3 (cullin 3; k = 75, EC = 0.21), which were connected to two of the three ALSPAC-nomi-

nal genes. Of these, CPM’s (carboxypeptidase M’s) only edge was with ELAVL1, and EIF5A2’s

(eukaryotic translation initiation factor 5A2’s) only edge was with CUL3 (Fig 3).

Both Cadetblue and Aliceblue showed significant enrichment in several functional catego-

ries (S3 Table). In sum, top functional enrichment categories for Aliceblue were related to

actin-based movement, cardiac muscle signaling and action, increased triglyceride levels in

mice, cell-cell and cell-extracellular matrix adhesion, and syndecan-2-mediated signaling. In

contrast, Cadetblue’s top enrichment categories involved transcription-regulatory processes,

specifically: RNA splicing, chromatin remodeling, protein alkylation and methylation, DNA

replication regulation, several immune-related pathways, NF-κβ and Wnt signaling pathways,

and reductase activity (Tables 2 and 3; S3 Table).

Nucleus accumbens

Using NAc acute ethanol expression data for edge-weights yielded 3,460 significant modules

containing a total of 4,213 genes, 15 of which were ALSPAC-nominal and 16 of which were

IASPSAD-nominal. After merging by content similarity, there were 171 significant mega-

modules. Nineteen MM contained at least one ALSPAC-nominal gene, and 73 MM contained

at least one IASPSAD-nominal gene. However, MM Sn did not significantly predict MM mean

ALSPAC GWAS gene-wise p-value (β = 0.003, p = 0.390). Two MMs, Cadetblue2 and Gray26,

each contained two ALSPAC-nominal genes (Table 1). Because there were 2 tests for overrep-

resentation, p<0.025 (α = 0.05/2) was considered significant. Gray26, was significantly over-

represented with ALSPAC-nominal genes, and Cadetblue2 showed a trend towards

overrepresentation with significance before correcting for multiple testing (Table 1).

Gray26’s most central hub gene was HNRNPU (heterogeneous nuclear ribonucleoprotein

U; connectivity = 6, Eigen-centrality = 1), followed by RBM39 (RNA binding motif protein 39;

k = 3, EC = 0.46) and CSNK1A1 (k = 3, EC = 0.37). The two ALSPAC-nominal genes BCAS2
(breast carcinoma amplified sequence 2) and PCDH7 (protocadherin 7), shared their only

edges with RBM39 and HNRPNPU, respectively (Fig 4A). As seen in the PFC’s Aliceblue,

EAVL1 was a hub gene of Cadetblue2. ELAVL1 (k = 136, EC = 1) was connected to both of the

ALSPAC-nominal genes, and served as the only connection for CPM and one of two
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connections for MGST3 (microsomal glutathione S-transferase 3) (Fig 4B). Strikingly, PFC

Aliceblue and NAc Cadetblue 2 showed a highly significant overlap in their gene content, with

72 overlapping genes (S2 Table; p = 2.2 x 10−16).

Both Cadetblue2 and Gray26 were significantly enriched with several functional categories

(S3 Table). Like PFC Cadetblue, NAc Cadetblue2 was functionally enriched for gene groups

Fig 2. Mega module score v. module average ALSPAC GWAS p-Value. Correlation between each Mega Module’s score and average ALSPAC gene-wise

GWAS p-value, for the Prefrontal Cortex (PFC) (β = -0.003, p = 0.327), Nucleus Accumbens (Nac) (β = 0.003, p = 0.390), and Ventral Tegmental Area (VTA)

(β = -0.02, p = 0.003). Blue lines represent the line of best fit, estimated by linear regression, surrounded by their 95% confidence intervals (shaded gray).

https://doi.org/10.1371/journal.pone.0202063.g002
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related to nuclear function with transcription regulation pathways, particularly those involving

RNA polymerase activity. Gray26 was most significantly enriched with genes related to func-

tions involving: telomere maintenance, organelle organization, ribonucleoprotein complexes,

and syndecan-mediated signaling (Tables 4 and 5; S3 Table).

Ventral tegmental area

Use of VTA control/ethanol gene expression responses for edge weighting initially resulted in

3,519 significant modules containing a total of 4,188 genes in EW-dmGWAS analysis. Merging

by content similarity, resulted in 276 MMs, each with a significant MM Sn. Seventeen

Table 1. ALSPAC nominal gene overrepresentation.

Brain Region Mega-modules kg MM-Sn MM-Sn qFDR Overrep. p Gene IASPSAD GWAS p ALSPAC GWAS p
PFC aliceblue 392 11.19 <1E-16� 0.063 CPM 0.493 6.48E-05�

CACNB2 0.978 4.97E-04�

EIF5A2 0.163 8.06E-04�

RSL1D1 3.48E-04� 0.217

SMARCA2 4.91E-04� 0.877

KIAA1217 8.84E-04� 0.904

cadetblue 125 6.30 1.08E-06� 0.013� BCAS2 0.029 4.65E-04�

PIK3C2A 0.432 9.52E-04�

RSL1D1 3.48E-04� 0.217

AKT2 3.90E-05� 0.980

NAc cadetblue2 195 8.04 8.06E-16� 0.042 CPM 0.493 6.48E-05�

MGST3 0.358 4.62E-04�

gray26 12 6.39 9.95E-11� <0.001� PCDH7 0.007 2.10E-04�

BCAS2 0.029 4.65E-04�

VTA coral 399 4.78 1.00E-06� 0.068 CPM 0.493 6.48E-05�

DENND2C 0.018 4.33E-04�

BIRC7 0.930 4.37E-04�

MGST3 0.358 4.62E-04�

PIK3CA 7.06E-05� 0.007

TNN 3.00E-04� 0.018

ANO6 6.32E-04� 0.780

SMARCA2 4.91E-04� 0.877

SIMC1 2.04E-04� 0.977

limegreen 220 5.22 1.19E-07� 0.054 DENND2C 0.018 4.33E-04�

EIF5A2 0.163 8.06E-04�

RSL1D1 3.48E-04� 0.217

CCND2 1.94E-04� 0.603

AKT2 3.90E-05� 0.980

bisque 89 6.22 7.57E-10� 0.006� ACLY 0.701 2.21E-04�

PRKG1 0.647 8.26E-04�

AKT2 3.90E-05� 0.980

The following characteristics are displayed for each mega-module that contained >1 ALSPAC-nominal gene: affiliated brain region; total number of constituent genes

(kg); constituent ALSPAC- and IASPSAD-nominal genes; empirical p-values for ALSPAC-nominal overrepresentation (Overrep. p); MM-Sn,and the associated False

Discovery Rate (MM-Sn qFDR).

� Significant p-values: p<0.05 for MM Sn; p<0.05/n for ALSPAC overrepresentation, where n = number of tests per brain region; p<0.001 for IASPSAD and ALPSAC

GWAS.

https://doi.org/10.1371/journal.pone.0202063.t001
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ALSPAC-nominal genes and 19 IASPSAD-nominal genes were spread across 25 and 156

mega-modules, respectively. Furthermore, MM-Sn significantly predicted mean ALSPAC

GWAS gene-wise p-value (β = -0.02, p = 0.003).

Mega-modules with the highest representation of ALSPAC-nominal genes included Coral,

Limegreen, and Bisque (Table 1). Because there were 3 tests for overrepresentation, p<0.017

(α = 0.05/3) was considered significant. Although overrepresentation of ALSPAC-nominal

genes was not significant in Coral and Limegreen, it was significant in Bisque, which has the

highest MM-Sn of the three (Table 1; Fig 5). Bisque contained four highly interconnected

genes: USP21 (ubiquitin specific peptidase 21; k = 10, EC = 1), USP15 (ubiquitin specific pepti-

dase 15; k = 10, EC = 0.65), TRIM25 (tripartite motif-containing 25; k = 10, EC = 0.49), and

HECW2 (HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2; k = 12,

EC = 0.48). HECW2 and TRIM25 shared edges with this MM’s IASPSAD-nominal genes

PRKG1 (protein kinase, cGMP-dependent, type I) and ACLY (ATP citrate lyase), respectively.

However, none of the hub genes shared an edge with Bisque’s ALSPAC nominal gene, AKT2
(AKT serine/threonine kinase 2). Finally, Bisque had significant enrichment in several func-

tional categories (S3 Table). It was most significantly enriched with genes associated with ubi-

quitination, ligase and helicase activity, and eukaryotic translation elongation (Table 6; S3

Table).

Discussion

To our knowledge, this is the first study to directly co-analyze human GWAS with mouse

brain ethanol-responsive gene expression data to identify ethanol-related gene networks rele-

vant to AD. Unlike previous studies that have employed cross-species validation methods for

specific genes or gene sets, this study analyzed human and mouse data in tandem to identify

gene networks across the entire genome, using the EW-dmGWAS algorithm. This approach

successfully identified significantly ethanol-responsive and AD-associated gene networks, or

modules. We further improved the existing EW-dmGWAS algorithm by merging highly

Fig 3. Prefrontal cortex mega modules aliceblue and cadetblue. Prefrontal Cortex Mega Modules Cadetblue (a) and Aliceblue (b). Solid black arrows point to

ALSPAC GWAS nominal genes, and dotted black arrows represent IASPSAD nominal genes. Edge-width is proportional to the difference in correlation

strength between treatment and control mice, and node color represents IASPSAD GWAS p-values.

https://doi.org/10.1371/journal.pone.0202063.g003
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Table 2. Top gene ontology enrichment results for pfc mega module cadetblue.

Category Name p-value q-value

Bonferroni

Hit Count

in Query

List

Hit Count

in Genome

Hit in Query List

GO: Biological

Process

chromatin organization 1.50E-

09

4.12E-06 23 776 SMYD1, ESR1, KAT6A, ASH1L, PAGR1, CBX4,

KDM6B, ASH2L, MYSM1, PHF21A, BPTF, UBN1,

CBX6, SUPT16H, SMARCD3, H3F3B, PAX5, PAX7,

BRD1, CABIN1, MGEA5, NR1H4, CBX8

histone modification 1.97E-

06

5.40E-03 14 453 SMYD1, KAT6A, ASH1L, PAGR1, KDM6B, ASH2L,

MYSM1, PHF21A, PAX5, PAX7, BRD1, MGEA5,

NR1H4, CBX8

covalent chromatin modification 2.87E-

06

7.89E-03 14 468 SMYD1, KAT6A, ASH1L, PAGR1, KDM6B, ASH2L,

MYSM1, PHF21A, PAX5, PAX7, BRD1, MGEA5,

NR1H4, CBX8

chromatin remodeling 1.47E-

05

4.04E-02 8 165 SMYD1, ESR1, ASH2L, MYSM1, BPTF, SMARCD3,

H3F3B, PAX7

RNA splicing 1.60E-

05

4.40E-02 12 403 SRSF6, NUDT21, BCAS2, RBM39, RALY, RBM5,

PRPF19, AKT2, CPSF2, SNRPD3, WDR77, AQR

protein alkylation 2.44E-

05

6.71E-02 8 177 SMYD1, ASH1L, ASH2L, PAX5, PAX7, SNRPD3,

WDR77, NR1H4

protein methylation 2.44E-

05

6.71E-02 8 177 SMYD1, ASH1L, ASH2L, PAX5, PAX7, SNRPD3,

WDR77, NR1H4

GO: Cellular

Component

nucleoplasm part 2.23E-

05

7.49E-03 16 738 MMS22L, SRSF6, NUDT21, KAT6A, PAGR1, CBX4,

ELMSAN1, ASH2L, RBM39, PHF21A, UBN1, TONSL,

PRPF19, SPOP, CPSF2, BRD1

chromosome 1.21E-

04

4.07E-02 17 943 MMS22L, PSEN2, BCAS2, ESR1, KAT6A, ASH1L,

ZNF207, ASH2L, ESCO2, CBX6, TONSL, SUPT16H,

PRPF19, SMARCD3, H3F3B, NR1H4, CBX8

ribonucleoside-diphosphate

reductase complex

1.24E-

04

4.17E-02 2 3 RRM2B, RRM2

DNA replication factor A complex 1.39E-

04

4.67E-02 3 16 BCAS2, TONSL, PRPF19

nuclear replication fork 1.40E-

04

4.71E-02 4 41 MMS22L, BCAS2, TONSL, PRPF19

catalytic step 2 spliceosome 2.96E-

04

9.94E-02 5 90 BCAS2, RALY, PRPF19, SNRPD3, AQR

GO: Molecular

Function

oxidoreductase activity, acting on

CH or CH2 groups

3.32E-

05

1.62E-02 3 10 CYP2C8, RRM2B, RRM2

oxidoreductase activity, acting on

CH or CH2 groups, disulfide as

acceptor

1.31E-

04

6.38E-02 2 3 RRM2B, RRM2

ribonucleoside-diphosphate

reductase activity, thioredoxin

disulfide as acceptor

1.31E-

04

6.38E-02 2 3 RRM2B, RRM2

ribonucleoside-diphosphate

reductase activity

1.31E-

04

6.38E-02 2 3 RRM2B, RRM2

chromatin binding 1.69E-

04

8.24E-02 12 516 ESR1, KAT6A, ASH1L, RELB, CBX4, KDM6B, ASH2L,

PHF21A, TLE4, SMARCD3, H3F3B, CABIN1

Mouse

Phenotype

increased immunoglobulin level 1.16E-

06

2.92E-03 14 307 TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1, SPTA1,

ASH1L, BIRC3, RELB, MYSM1, CD4, PIK3C2A,

RABGEF1, CABIN1

abnormal humoral immune

response

5.52E-

06

1.39E-02 18 566 TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1, SPTA1,

MAP3K14, ASH1L, BIRC3, RELB, TNFRSF11A,

MYSM1, CD4, PIK3C2A, CD38, RABGEF1, PAX5,

CABIN1

abnormal immunoglobulin level 7.68E-

06

1.93E-02 17 522 TRAF3IP2, GADD45B, SEMA4B, PSEN2, ESR1, SPTA1,

MAP3K14, ASH1L, BIRC3, RELB, TNFRSF11A,

MYSM1, CD4, PIK3C2A, RABGEF1, PAX5, CABIN1

(Continued)
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redundant modules to create more parsimonious mega-modules, thus decreasing complexity

without sacrificing significance. Additionally, we validated these results by testing for overrep-

resentation with, and mega-module score prediction by, signals from an independent GWAS

dataset. Overall, our findings suggest that such direct integration of model organism expres-

sion data with human protein interaction and GWAS data can productively leverage these

data sources. Furthermore, we present initial evidence for novel, cross-validated gene networks

warranting further study for mechanisms underlying AUD.

Identification of network-level associations across GWAS datasets

One major concern with existing GWAS studies on AD had been the relative lack of replica-

tion across studies. Although some very large GWAS studies on alcohol consumption have

shown replicable results [13–15], those do not account for all previously identified associa-

tions. We reasoned that our integrative gene network-querying approach might identify net-

works that shared signals from different GWASs on AD, even if the signals were not from the

same genes across GWASs. Concordant with this hypothesis, VTA mega-module scores signif-

icantly predicted average gene-wise p-values from an independent GWAS dataset, ALSPAC

(Fig 2). This suggests that ethanol-responsive gene expression networks in this brain region

may be particularly sensitive to genetic variance and thus are highly relevant to mechanisms

contributing to genetic risk for AD. This is possibly attributable to the involvement of VTA

dopaminergic reward pathways in the development of AD [46]. Further investigation of dopa-

minergic neuronal response to acute ethanol administration, and the association between this

response and proclivity for developing dependence is needed.

Although scores did not prioritize mega-modules with respect to ALSPAC results in PFC

and NAc, individual mega-modules were overrepresented with ALSPAC signals (Table 1). The

ALSPAC-overrepresented VTA and PFC mega-modules also contained nominally significant

Table 2. (Continued)

Category Name p-value q-value

Bonferroni

Hit Count

in Query

List

Hit Count

in Genome

Hit in Query List

increased IgG level 9.35E-

06

2.35E-02 11 225 TRAF3IP2, GADD45B, SEMA4B, ESR1, SPTA1, ASH1L,

BIRC3, MYSM1, CD4, PIK3C2A, CABIN1

cortical renal glomerulopathies 1.18E-

05

2.96E-02 10 188 TRAF3IP2, GADD45B, PSEN2, MYO1E, ESR1, SPTA1,

RRM2B, ASH1L, RELB, PIK3C2A

abnormal lymph node morphology 1.85E-

05

4.66E-02 14 390 SELL, TRAF3IP2, TRAF1, PSEN2, ESR1, SPTA1,

RRM2B, MAP3K14, BIRC3, RELB, TNFRSF11A, CD4,

PIK3C2A, PIP

glomerulonephritis 1.95E-

05

4.91E-02 8 121 TRAF3IP2, GADD45B, PSEN2, ESR1, SPTA1, ASH1L,

RELB, PIK3C2A

abnormal B cell physiology 3.21E-

05

8.07E-02 18 644 MYO1G, TRAF3IP2, GADD45B, SEMA4B, PSEN2,

ESR1, SPTA1, MAP3K14, ASH1L, BIRC3, RELB,

TNFRSF11A, MYSM1, CD4, PIK3C2A, RABGEF1,

PAX5, CABIN1

Pathway Signaling by Wnt 2.78E-

06

2.47E-03 13 340 LGR4, ASH2L, FZD4, ARRB2, ZNRF3, TLE4, VPS35,

H3F3B, AKT2, GNAO1, FZD2, MOV10, RAC3

NF-kappa B signaling pathway 1.07E-

04

9.44E-02 6 95 GADD45B, TRAF1, MAP3K14, BIRC3, RELB,

TNFRSF11A

Apoptosis 1.13E-

04

9.97E-02 7 138 GADD45B, TRAF1, SEPT4, SPTA1, MAP3K14, BIRC3,

AKT2

Functional enrichment results from ToppFun for Prefrontal Cortex Mega Module Cadetblue, where Bonferroni-corrected p<0.1.

https://doi.org/10.1371/journal.pone.0202063.t002
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Table 3. Top gene ontology enrichment results for pfc mega module aliceblue.

Category Name p-value q-value

Bonferroni

Hit Count

in Query

List

Hit Count

in Genome

Hit in Query List

GO: Biological

Process

regulation of actin filament-based

movement

4.76E-

08

2.07E-04 9 37 FXYD1, ATP1A2, DBN1, GJA5, JUP, KCNJ2, DSC2,

DSG2, DSP

cardiac muscle cell-cardiac muscle cell

adhesion

7.53E-

08

3.27E-04 5 7 CXADR, JUP, DSC2, DSG2, DSP

regulation of cardiac muscle cell

contraction

1.64E-

07

7.11E-04 8 31 FXYD1, ATP1A2, GJA5, JUP, KCNJ2, DSC2, DSG2,

DSP

actin filament-based process 3.57E-

07

1.55E-03 36 688 CDC42EP4, ACTN1, MYOZ1, MKLN1, FXYD1,

RHOF, SDC4, CUL3, PRR5, CRYAA, ARHGDIA,

ATP2C1, CCDC88A, STAU2, DYNLL1, DIXDC1,

ATP1A2, CXADR, DBN1, PTGER4, GJA5, JUP,

CDK5R1, NF1, KCNJ2, CACNB2, DSC2, DSG2, DSP,

ARHGEF5, CASP4, LCP1, CSRP3, LIMK1, LDB3,

LRP1

cell communication involved in

cardiac conduction

4.34E-

07

1.89E-03 9 47 PRKACA, ATP1A2, CXADR, GJA5, JUP, CACNB2,

DSC2, DSG2, DSP

desmosome organization 8.59E-

07

3.73E-03 5 10 SNAI2, JUP, DSG2, DSP, PKP3

cardiac muscle cell action potential 1.07E-

06

4.65E-03 9 52 ATP1A2, CXADR, GJA5, JUP, KCNJ2, CACNB2,

DSC2, DSG2, DSP

cardiac muscle cell contraction 1.07E-

06

4.65E-03 9 52 FXYD1, ATP1A2, GJA5, JUP, KCNJ2, CACNB2,

DSC2, DSG2, DSP

bundle of His cell to Purkinje myocyte

communication

1.55E-

06

6.72E-03 5 11 GJA5, JUP, DSC2, DSG2, DSP

regulation of cardiac muscle cell

action potential

2.30E-

06

9.99E-03 6 20 CXADR, GJA5, JUP, DSC2, DSG2, DSP

bundle of His cell-Purkinje myocyte

adhesion involved in cell

communication

2.63E-

06

1.14E-02 4 6 JUP, DSC2, DSG2, DSP

regulation of heart rate by cardiac

conduction

2.65E-

06

1.15E-02 7 31 GJA5, JUP, KCNJ2, CACNB2, DSC2, DSG2, DSP

cardiac conduction 3.37E-

06

1.46E-02 13 131 FXYD1, PRKACA, ATP1A2, ATP1A4, CXADR,

GJA5, JUP, KCNJ2, CACNB2, CACNB4, DSC2,

DSG2, DSP

cardiac muscle cell action potential

involved in contraction

7.69E-

06

3.34E-02 7 36 GJA5, JUP, KCNJ2, CACNB2, DSC2, DSG2, DSP

regulation of actin filament-based

process

1.05E-

05

4.58E-02 21 343 CDC42EP4, FXYD1, SDC4, ARHGDIA, CCDC88A,

STAU2, DIXDC1, ATP1A2, DBN1, PTGER4, GJA5,

JUP, CDK5R1, KCNJ2, DSC2, DSG2, DSP,

ARHGEF5, CSRP3, LIMK1, LRP1

lipoprotein localization 1.34E-

05

5.83E-02 5 16 APOB, APOC2, MSR1, CUBN, LRP1

lipoprotein transport 1.34E-

05

5.83E-02 5 16 APOB, APOC2, MSR1, CUBN, LRP1

regulation of cardiac muscle

contraction

1.36E-

05

5.91E-02 9 70 FXYD1, PRKACA, ATP1A2, GJA5, JUP, KCNJ2,

DSC2, DSG2, DSP

GO: Cellular

Component

intercalated disc 2.90E-

06

1.53E-03 9 59 ACTN1, ATP1A2, CXADR, GJA5, JUP, KCNJ2,

DSC2, DSG2, DSP

cell-cell contact zone 1.56E-

05

8.21E-03 9 72 ACTN1, ATP1A2, CXADR, GJA5, JUP, KCNJ2,

DSC2, DSG2, DSP

desmosome 1.61E-

04

8.49E-02 5 26 JUP, DSC2, DSG2, DSP, PKP3

GO: Molecular

Function

protein binding involved in

heterotypic cell-cell adhesion

8.62E-

07

7.88E-04 5 10 CXADR, JUP, DSC2, DSG2, DSP

(Continued)
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genes from the GWAS dataset used for the network analysis, IASPSAD. These results suggest

that the integration of acute ethanol-related expression data from mice and human PPI can

identify functional networks that associate signals from different GWAS datasets.

Table 3. (Continued)

Category Name p-value q-value

Bonferroni

Hit Count

in Query

List

Hit Count

in Genome

Hit in Query List

protein binding involved in cell

adhesion

1.15E-

06

1.05E-03 6 18 CXADR, ITGA2, JUP, DSC2, DSG2, DSP

protein binding involved in cell-cell

adhesion

2.62E-

06

2.39E-03 5 12 CXADR, JUP, DSC2, DSG2, DSP

cell adhesive protein binding involved

in bundle of His cell-Purkinje

myocyte communication

2.64E-

06

2.41E-03 4 6 JUP, DSC2, DSG2, DSP

Human

Phenotype

Dilated cardiomyopathy 4.35E-

05

3.89E-02 9 87 ACAD9, CRYAB, UBR1, JUP, DSG2, DSP, LAMA4,

CSRP3, LDB3

Right ventricular cardiomyopathy 8.82E-

05

7.90E-02 4 13 JUP, DSC2, DSG2, DSP

Mouse

Phenotype

increased circulating triglyceride level 1.27E-

05

4.77E-02 16 179 ALPI, COL1A1, VLDLR, AGPAT2, WRN, APOB,

APOC2, TXNIP, RSBN1, CSF2, PRKACA, BGLAP,

MED13, LEPR, LIPC, LRP1

Pathway Non-integrin membrane-ECM

interactions

3.41E-

05

4.72E-02 7 46 ACTN1, SDC2, SDC4, ITGA2, LAMA3, LAMA4,

LAMB3

Syndecan-2-mediated signaling events 4.44E-

05

6.14E-02 6 33 SDC2, CSF2, PRKACA, ITGA2, NF1, LAMA3

Functional enrichment results from ToppFun for Prefrontal Cortex Mega Module Aliceblue, where Bonferroni-corrected p<0.1.

https://doi.org/10.1371/journal.pone.0202063.t003

Fig 4. Nucleus accumbens mega modules Gray26 and Cadetblue2. Nucleus Accumbens Mega Modules Gray26 (a) and Cadetblue2 (b). Solid black arrows point to

ALSPAC GWAS nominal genes. These modules did not contain IASPSAD nominal genes. Edge-width is proportional to the difference in correlation strength treatment

and control mice, and node color represents IASPSAD GWAS p-values.

https://doi.org/10.1371/journal.pone.0202063.g004
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Table 4. Top gene ontology enrichment results for nucleus accumbens mega module cadetblue2.

Category Name p-value q-value

Bonferroni

Hit Count

in Query

List

Hit Count

in Genome

Hit in Query List

GO:

Biological

Process

negative regulation of transcription from

RNA polymerase II promoter

9.38E-

06

2.93E-02 23 810 TGIF2, ZBTB20, SREBF2, E2F7, FOXL2, NFIB,

NFIC, NFIX, MITF, MNT, TBX2, MLX, YBX3,

TFAP2C, MXD4, E2F8, ZBTB14, MLXIPL, UHRF1,

TNF, ELK4, PAX3, LEF1

GO:

Molecular

Function

RNA polymerase II transcription factor

activity, sequence-specific DNA binding

1.80E-

09

1.20E-06 27 678 ZBTB20, SREBF2, GATA4, E2F7, CSRNP1, FOXL2,

NFIB, NFIC, NFIX, MITF, NFYA, MNT, HAND2,

TBX2, TFEB, TEAD2, MLX, YBX3, FOXJ3,

TFAP2C, E2F8, MLXIPL, KLF13, ELF2, ELK4,

PAX3, LEF1

transcriptional repressor activity, RNA

polymerase II transcription regulatory

region sequence-specific binding

3.04E-

06

2.03E-03 11 182 ZBTB20, SREBF2, E2F7, MITF, MNT, TBX2, MLX,

YBX3, TFAP2C, E2F8, MLXIPL

transcription factor activity, RNA

polymerase II core promoter proximal

region sequence-specific binding

6.11E-

06

4.08E-03 15 365 ZBTB20, SREBF2, FOXL2, NFIB, NFIC, MITF,

NFYA, HAND2, TBX2, TFEB, TFAP2C, E2F8,

MLXIPL, KLF13, LEF1

RNA polymerase II regulatory region

sequence-specific DNA binding

8.95E-

06

5.98E-03 20 632 SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX,

MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX,

YBX3, TFAP2C, E2F8, MLXIPL, KLF13, LEF1

transcription regulatory region DNA

binding

9.52E-

06

6.36E-03 24 862 SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX,

MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX,

YBX3, TFAP2C, E2F8, ZBTB14, MLXIPL, KLF13,

UHRF1, TNF, ELK4, LEF1

regulatory region DNA binding 1.01E-

05

6.74E-03 24 865 SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX,

MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX,

YBX3, TFAP2C, E2F8, ZBTB14, MLXIPL, KLF13,

UHRF1, TNF, ELK4, LEF1

RNA polymerase II regulatory region

DNA binding

1.03E-

05

6.87E-03 20 638 SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX,

MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX,

YBX3, TFAP2C, E2F8, MLXIPL, KLF13, LEF1

regulatory region nucleic acid binding 1.07E-

05

7.14E-03 24 868 SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX,

MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX,

YBX3, TFAP2C, E2F8, ZBTB14, MLXIPL, KLF13,

UHRF1, TNF, ELK4, LEF1

transcription regulatory region sequence-

specific DNA binding

1.32E-

05

8.82E-03 21 705 SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX,

MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX,

YBX3, TFAP2C, E2F8, MLXIPL, KLF13, UHRF1,

LEF1

sequence-specific double-stranded DNA

binding

2.50E-

05

1.67E-02 21 736 SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX,

MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX,

YBX3, TFAP2C, E2F8, MLXIPL, KLF13, UHRF1,

LEF1

core promoter proximal region

sequence-specific DNA binding

7.08E-

05

4.73E-02 14 399 SREBF2, GATA4, FOXL2, NFIB, NFIC, MITF,

NFYA, TBX2, TFEB, E2F8, MLXIPL, KLF13,

UHRF1, LEF1

core promoter proximal region DNA

binding

7.47E-

05

4.99E-02 14 401 SREBF2, GATA4, FOXL2, NFIB, NFIC, MITF,

NFYA, TBX2, TFEB, E2F8, MLXIPL, KLF13,

UHRF1, LEF1

transcriptional activator activity, RNA

polymerase II transcription regulatory

region sequence-specific binding

9.15E-

05

6.11E-02 13 358 GATA4, CSRNP1, FOXL2, NFIB, NFIC, NFIX,

MITF, NFYA, HAND2, TFEB, TFAP2C, KLF13,

LEF1

double-stranded DNA binding 1.25E-

04

8.37E-02 21 824 SREBF2, GATA4, E2F7, FOXL2, NFIB, NFIC, NFIX,

MITF, NFYA, MNT, HAND2, TBX2, TFEB, MLX,

YBX3, TFAP2C, E2F8, MLXIPL, KLF13, UHRF1,

LEF1

(Continued)
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Composition and structure of mega-modules

Functional composition of mega-modules varied between brain regions for the most part. For

example, although Aliceblue (PFC) and Cadetblue2 (NAc) shared the hub gene ELAVL1,

ALSPAC-nominal gene CPM, and had a significant overlap in their gene content, their func-

tional enrichment results were very different (Tables 3 and 4). These results suggest that brain

regional ethanol-responsive gene expression results likely had an important impact on compo-

sition of networks, thus leveraging protein-protein interaction network information and

GWAS results.

Despite such differences, the mega-modules presented in Table 1 shared certain structural

similarities. Most of the IAPSAD- and ALSPAC-nominal genes in these modules shared edges

with hub genes (Figs 3–5). These hub genes included: CUL3 and ELAVL1 from PFC Aliceblue;

ESR1 from PFC Cadetblue; ELAVL1rom NAc Cadetblue2; TRIM25 and HECW2 from VTA

Bisque. Further, GWAS nominally significant genes (IASPAD or ALSPAC) generally were not

hub genes in the derived networks (see Figs 3–5; S2 Table). This may be consistent with the

general tenet that genetic variation in complex traits does not produce major alterations in cel-

lular function, but rather modulation of cellular mechanisms for maintaining homeostasis.

Hub genes may be more functionally more closely related to a given trait, but likely have such

widespread influence so as to be evolutionarily resistant to genetic variation in complex traits.

This is also consistent with the hypothesis that omnigenic influences are an important feature

of complex traits such as AUD [47].

Table 4. (Continued)

Category Name p-value q-value

Bonferroni

Hit Count

in Query

List

Hit Count

in Genome

Hit in Query List

Human

Phenotype

Synophrys 3.61E-

05

2.06E-02 5 48 ZBTB20, NFIX, MITF, KLF13, PAX3

Mouse

Phenotype

absent coat pigmentation 2.38E-

05

6.28E-02 4 15 MITF, TFEB, TFEC, PAX3

Functional enrichment results from ToppFun for Nucleus Accumbens Mega Module Cadetblue2, where Bonferroni-corrected p<0.1.

https://doi.org/10.1371/journal.pone.0202063.t004

Table 5. Top gene ontology enrichment results for nucleus accumbens mega module Gray26.

Category Name p-value q-value

Bonferroni

Hit Count in

Query List

Hit Count in

Genome

Hit in Query List

GO: Biological

Process

negative regulation of telomere maintenance via

telomerase

2.46E-

05

2.92E-02 2 12 HNRNPU, PML

negative regulation of organelle organization 4.65E-

05

5.52E-02 4 340 PRKCD, FGFR2,

HNRNPU, PML

negative regulation of telomere maintenance via

telomere lengthening

5.06E-

05

6.00E-02 2 17 HNRNPU, PML

GO: Cellular

Component

ribonucleoprotein complex 8.99E-

04

8.99E-02 4 751 CSNK1A1, RPS18, BCAS2,

HNRNPU

intracellular ribonucleoprotein complex 8.99E-

04

8.99E-02 4 751 CSNK1A1, RPS18, BCAS2,

HNRNPU

Pathway Syndecan-4-mediated signaling events 2.67E-

04

7.44E-02 2 31 PRKCD, ITGA5

Syndecan-2-mediated signaling events 3.03E-

04

8.44E-02 2 33 PRKCD, ITGA5

Functional enrichment results from ToppFun for Nucleus Accumbens Mega Module Gray26, where Bonferroni-corrected p<0.1.

https://doi.org/10.1371/journal.pone.0202063.t005
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One hub gene was found to influence network structure in both PFC and NAc. ELAVL1 is a

broadly expressed gene that acts as a RNA-binding protein in AU-rich domains, generally local-

ized within 3’-UTRs of mRNA. As such, ELAVL1 has been shown to alter mRNA stability by

altering binding of miRNA or other factors influencing mRNA degradation [48] and has been

implicated in activity-dependent regulation of gene expression in the brain with drug abuse

[49]. The large interaction space for ELAVL1 in PFC Alice Blue and NAc Cadetblue 2 and the

multiple nominal GWAS hits within these genes suggest that ELAVL1 could have an important

modulatory function on the network of genes susceptible to genetic variation in AUD.

Functional aspects of mega-modules

This theory regarding network structure is further supported by our functional enrichment

analysis, which revealed several small groups of functionally related genes within each mega-

module. All of the mega-modules discussed above (Table 1) contained at least one GWAS-

nominal gene in the top enrichment groups, except Cadetblue2, which still had GWAS-nomi-

nal genes in its significant enrichment groups (S3 Table).

Another unifying feature across these mega-modules, except Aliceblue, was significant

functional enrichment for pathways that regulate gene expression. Specifically, these pathways

were related to chromatin organization, RNA splicing, and translation- and transcription-

related processes (S3 Table). This is not surprising, as alterations in gene expression have long

been proposed as a mechanism underlying long-term neuroplasticity resulting in ethanol-

dependent behavioral changes, and eventually dependence [50].

Fig 5. Ventral tegmental area mega module bisque. Ventral Tegmental Area Mega Modules Bisque. Solid black

arrows point to ALSPAC GWAS nominal genes, and dotted black arrows represent IASPSAD nominal genes. Edge-

width is proportional to the difference in correlation strength between treatment and control mice, and node color

represents IASPSAD GWAS p-values.

https://doi.org/10.1371/journal.pone.0202063.g005
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In contrast, the largest functional enrichment groups unique to Aliceblue were related to

actin-based filaments and cardiac function (Tables 2 and 3). Actin not only provides cytoskele-

tal structure to neurons, but also functions in dendritic remodeling in neuronal plasticity,

which likely contributes to AD development [51, 52]. Aliceblue was also significantly enriched

for the syndecan-2 signaling pathway, and contained the SDC2 gene itself, which functions in

dendritic structural changes together with F-actin [53]. Additionally, the most significant

Table 6. Top gene ontology enrichment results for ventral tegmental area mega module bisque.

Category Name p-value q-value

Bonferroni

Hit Count

in Query

List

Hit Count

in Genome

Hit in Query List

GO: Cellular

Component

nucleolus 6.41E-

07

1.24E-04 17 894 ZNF106, NEK2, EEF1D, RPL36, PNKP,

SELENBP1, ZNF655, RPS9, WRN, GATA3,

ZFHX3, RORC, DGCR8, TTC3, ARNTL2,

NEK11, RPL18

eukaryotic translation elongation factor 1

complex

1.27E-

04

2.47E-02 2 4 EEF1D, EEF1A2

GO: Molecular

Function

ubiquitin-protein transferase activity 4.98E-

07

1.33E-04 12 414 RC3H2, TRAF4, UBE2K, TRIM2, TRIM25,

TRIM9, HECW2, TRIM8, UBE2S, RNF114,

TTC3, TRIM37

ubiquitin-like protein transferase activity 9.70E-

07

2.59E-04 12 441 RC3H2, TRAF4, UBE2K, TRIM2, TRIM25,

TRIM9, HECW2, TRIM8, UBE2S, RNF114,

TTC3, TRIM37

acid-amino acid ligase activity 3.42E-

06

9.12E-04 9 259 RC3H2, TRIM2, TRIM25, TRIM9, HECW2,

TRIM8, RNF114, TTC3, TRIM37

ligase activity, forming carbon-nitrogen

bonds

9.78E-

06

2.61E-03 9 295 RC3H2, TRIM2, TRIM25, TRIM9, HECW2,

TRIM8, RNF114, TTC3, TRIM37

tubulin-glycine ligase activity 1.87E-

05

5.00E-03 8 244 RC3H2, TRIM2, TRIM9, HECW2, TRIM8,

RNF114, TTC3, TRIM37

protein-glycine ligase activity 1.87E-

05

5.00E-03 8 244 RC3H2, TRIM2, TRIM9, HECW2, TRIM8,

RNF114, TTC3, TRIM37

protein-glycine ligase activity, initiating 1.87E-

05

5.00E-03 8 244 RC3H2, TRIM2, TRIM9, HECW2, TRIM8,

RNF114, TTC3, TRIM37

coenzyme F420-0 gamma-glutamyl ligase

activity

1.87E-

05

5.00E-03 8 244 RC3H2, TRIM2, TRIM9, HECW2, TRIM8,

RNF114, TTC3, TRIM37

ribosomal S6-glutamic acid ligase activity 1.87E-

05

5.00E-03 8 244 RC3H2, TRIM2, TRIM9, HECW2, TRIM8,

RNF114, TTC3, TRIM37

coenzyme F420-2 alpha-glutamyl ligase

activity

1.87E-

05

5.00E-03 8 244 RC3H2, TRIM2, TRIM9, HECW2, TRIM8,

RNF114, TTC3, TRIM37

UDP-N-acetylmuramoylalanyl-D-glutamyl-

2,6-diaminopimelate-D-alanyl-D-alanine

ligase activity

1.87E-

05

5.00E-03 8 244 RC3H2, TRIM2, TRIM9, HECW2, TRIM8,

RNF114, TTC3, TRIM37

protein-glycine ligase activity, elongating 1.87E-

05

5.00E-03 8 244 RC3H2, TRIM2, TRIM9, HECW2, TRIM8,

RNF114, TTC3, TRIM37

tubulin-glutamic acid ligase activity 2.05E-

05

5.46E-03 8 247 RC3H2, TRIM2, TRIM9, HECW2, TRIM8,

RNF114, TTC3, TRIM37

protein-glutamic acid ligase activity 2.17E-

05

5.79E-03 8 249 RC3H2, TRIM2, TRIM9, HECW2, TRIM8,

RNF114, TTC3, TRIM37

ligase activity 2.38E-

05

6.35E-03 10 415 LIG3, RC3H2, TRIM2, TRIM25, TRIM9,

HECW2, TRIM8, RNF114, TTC3, TRIM37

DNA helicase activity 2.43E-

04

6.49E-02 4 65 ERCC2, GTF2H4, RAD54B, WRN

Pathway Eukaryotic Translation Elongation 1.67E-

04

8.37E-02 5 98 EEF1D, RPL36, RPS9, EEF1A2, RPL18

Functional enrichment results from ToppFun for Ventral Tegmental Area Mega Module Bisque, where Bonferroni-corrected p<0.1.

https://doi.org/10.1371/journal.pone.0202063.t006
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enrichment group unique to Cadetblue was the Wnt signaling pathway, which also regulates

actin function [54, 55]. Of note, a prior study has shown that ARRB2 (a Cadetblue hub gene

and member of Wnt signaling pathway) knockout rats display significantly decreased levels of

voluntary ethanol consumption and psychomotor stimulation in response to ethanol [56].

These findings highlight the potential importance of postsynaptic actin-related signaling and

dendritic plasticity in PFC gene networks responding to acute ethanol and contributing to

genetic risk for AD. Future studies may aim to confirm this association by investigating

changes in actin and dendritic processes in response to acute ethanol exposure, and whether

or not the degree of these changes is associated with development of dependence.

Finally, although the NAc Cadetblue2 mega-module was highly enriched for functions

related to transcriptional regulation, it also contained the gene FGF21 within its interaction

space (S2 Table and Fig 4B). FGF21 is a member of the fibroblast growth factor gene family

and is a macronutrient responsive gene largely expressed in liver. Importantly FGF21 has been

shown to be released from the liver by ethanol consumption and negatively regulates ethanol

consumption by interaction with brain FGF-receptor/beta-Klotho complexes. Beta-Klotho, a

product of the KLB gene, is an obligate partner of the FGF receptor and has recently been

shown to have a highly significant association with alcohol consumption in recent very large

GWAS studies [14, 15]. Although the role of FGF21 and KLB in AD are not currently known,

the association of FGF21 with the Cadetblue2 mega-module, containing nominally associated

genes from AD GWAS studies, is a possible additional validation of the utility of our studies

integrating protein-protein interaction information (tissue non-specific), AD GWAS (tissue

non-specific) and brain ethanol-responsive gene expression.

Potential weaknesses and future studies

The studies presented here provide evidence for the utility of integrating genomic expression

data with protein-protein interaction networks and GWAS data in order to gain a better

understanding of the genetic architecture of complex traits, such as AD. Our analysis also gen-

erated several testable hypotheses regarding gene networks and signaling mechanisms related

to ethanol action and genetic burden for AD. However, these studies utilized acute ethanol-

related expression data in attempting to identify mechanisms of AD, a chronic ethanol expo-

sure disease. Use of a chronic exposure model could provide for a more robust integration of

the expression data and GWAS signals. However, we feel the current study is valid, since acute

responses to ethanol have been repeatedly shown to be a heritable risk factor for AD [57–59].

Further, large GWAS studies have recently shown significant genetic correlation and overlap-

ping significant genes between alcohol consumption and alcohol dependence phenotypes [60,

61]. We have also recently demonstrated a very high degree of overlap in mouse brain expres-

sion changes between acute ethanol exposure and a chronic ethanol vapor exposure model

thought to mimic aspects of alcohol dependence [30]. Our laboratory has also recently

reported that an acute ethanol-responsive gene network from the same microarray data used

for studies in this manuscript showed significant association, at a network level, with AD in

data from the COGA GWAS analysis of AD [31]. Finally, the cross-species analysis of acute

ethanol responses and AD allowed us to explore networks involved in specific brain regional

initial response to ethanol that are also related to dependence. Therefore, our findings may

have implications for mechanistic activations or changes occurring upon initial ethanol expo-

sure, and ultimately contributing to the development of dependence.

A potential shortcoming for this work regards the limited size of the GWAS studies utilized

and differences in phenotypic assessment. The IASPSAD study was based on AD diagnosis,

whereas ALSPAC was based on a symptom factor score. Had we used larger GWAS studies
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based on the same assessment criteria, it is possible that greater overlap of GWAS signals

within mega-modules would have been observed. Recent large GWAS studies on ethanol have,

to date, generally concerned measures of ethanol consumption, rather than a diagnosis of alco-

hol dependence per se [14, 15]. For this reason, we focused this initial effort on GWAS studies

concerned with alcohol dependence. However, using the IASPAD and ALSPAC studies

allowed us to identify gene networks that are robust across both the severe end of the pheno-

typic spectrum (i.e. diagnosable AD), and for symptoms at the sub-diagnostic level.

Overall, this analysis successfully identified novel ethanol-responsive, AD-associated, func-

tionally enriched gene expression networks in the brain that may play a causal role in the

developmental pathway from first ethanol exposure to AD. This is the first analysis to identify

such networks by directly co-analyzing brain regional gene expression data, protein-protein

interaction data, and GWAS summary statistics. The identified modules provided insight into

common pathways between differing signals from independent, largely underpowered, yet

deeply phenotyped GWAS datasets. This supports the conjecture that the integration of differ-

ent GWAS results at a gene network level, rather than simply looking for replication of indi-

vidual gene signals, could make use of previously underpowered datasets and identify

common genetic mechanisms relevant to AD. Future expansion of such approaches to inte-

grate additional model organism chronic ethanol-responsive gene sets with the rapidly evolv-

ing GWAS literature on alcohol consumption and dependence, together with validation of key

targets by gene targeting in animals models, may provide both novel insight for the neurobiol-

ogy of AD and the development of improved therapeutic approaches.

Supporting information

S1 Fig. Analytical pipeline of steps following EW-dmGWAS. Empirical p-values were calcu-

lated from standardized module scores based on a Z-distribution. The original EW-dmGWAS

module score, permutation, and score standardization algorithms were used to calculate the

respective Mega Modules parameters. Modules were considered to have>80% overlap if

>80% of the genes in the smaller module was contained in the larger module. False Discovery

Rates were calculated based on the Benjamini-Hochberg algorithm, using the “stats” package

in R. Intramodular connectivity was defined as the number of edges (i.e. connections) attached

to that node (i.e. gene). Eigen-Centrality was calculated using the “igraph” package in R.

(PDF)

S1 Table. Brain region-specific S-score values. One table per brain region, containing each of

the following values: RMA values and S-scores from the maximally expressed probeset per

gene, for each BXD strain; the associated probeset IDs, human gene symbols, and mouse gene

symbols; and the Fisher’s combined False Discovery Rate (q-value) for each probeset.

(XLSX)

S2 Table. Mega module characteristics. One table per brain region, containing each of the

following characteristics, for all significant Mega Modules: name; constituent genes; ALPSAC

and IASPSAD p-values for each gene; Mega Module score (Sn), p-value (Sn_p), and False Dis-

covery Rate (Sn_qFDR); and intramodular eigencentrality and connectivity. Significance

values< 10−16 are rounded to 0.

(XLSX)

S3 Table. Mega module gene ontology enrichment. One table for each ALSPAC-overrepre-

sented Mega Module, containing ToppFun output for gene ontology enrichment groups with

p<0.01 and minimum group size of 3 genes and maximum size of 1,000 genes, for the follow-

ing categories: Biological Process, Cellular Component, Molecular Function, Human
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Phenotype, Mouse Phenotype, and Pathways.

(XLSX)
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