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Abstract: Hypertrophic cardiomyopathy (HCM) is a genetic heterogeneous disorder and the main
cause of sudden cardiac death in adolescents and young adults. This study was aimed at identifying
potential diagnostic biomarkers and biological pathways to help to diagnose and treat HCM through
bioinformatics analysis. We selected the GSE36961 dataset from the Gene Expression Omnibus
(GEO) database and identified 893 differentially expressed genes (DEGs). Subsequently, 12 modules
were generated through weighted gene coexpression network analysis (WGCNA), and the turquoise
module showed the highest negative correlation with HCM (cor = −0.9, p-value = 4 × 10−52). With
the filtering standard gene significance (GS) < −0.7 and module membership (MM) > 0.9, 19 genes
were then selected to establish the least absolute shrinkage and selection operator (LASSO) model,
and LYVE1, MAFB, and MT1M were finally identified as key genes. The expression levels of these
genes were additionally verified in the GSE130036 dataset. Gene Set Enrichment Analysis (GSEA)
showed oxidative phosphorylation, tumor necrosis factor alpha-nuclear factor-κB (TNFα-NFκB),
interferon-gamma (IFNγ) response, and inflammatory response were four pathways possibly related
to HCM. In conclusion, LYVE1, MAFB, and MT1M were potential biomarkers of HCM, and oxidative
stress, immune response as well as inflammatory response were likely to be associated with the
pathogenesis of HCM.

Keywords: hypertrophic cardiomyopathy; biomarkers; WGCNA; LASSO; GSEA

1. Introduction

Hypertrophic cardiomyopathy (HCM) is a genetic heterogeneous disorder resulting
in left ventricular hypertrophy, myocardial hypercontractility, reduced compliance, my-
ofibrillar disarray, and fibrosis [1]. Epidemiologic studies have shown that the prevalence
of HCM is estimated to be 0.2% (1 case per 500 persons) in the general population, but
much higher (0.5%; 1 case per 200 persons) when both clinical and genetic diagnoses,
including those in family members, are taken into account [2]. HCM has been the main
cause of sudden cardiac death among adolescents and young adults, especially athletes [3].
Current therapies for HCM have been effective in reducing morbidity; however, it is still
hard to reverse this disease. With the advent of embryonic gene editing, it is possible
to correct underlying genetic mutations and prevent the transmission of mutations to
future generations [1]. Previously, HCM was thought to be mainly associated with genetic
variants which occurred in nine sarcomeric genes, especially MYH7 and MYBPC3 [3,4].
Nevertheless, there are still a large number of underlying mutations undetermined, and
the signaling pathways and regulatory networks underlying the pathogenesis of HCM
are also not fully understood [5,6]. Thus, it is vital to explore and identify potential genes
and biological pathways related to the pathogenesis of HCM for diagnosis, treatment,
and prevention.
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Recently, microarray and high-throughput techniques, along with bioinformatics anal-
yses, have promoted the identification of novel key genes and pathways involved in disease
pathogenesis. The Gene Expression Omnibus (GEO) database is a public database that
contains a large resource of high-throughput gene expression data submitted by researchers
around the world. Weighted gene coexpression network analysis (WGCNA) is a systems
biology method for describing the correlation patterns among genes across microarray
samples, and this method can be employed to identify candidate biomarkers or therapeutic
targets [7], which has been widely used in various disease research studies [8–10]. The
least absolute shrinkage and selection operator (LASSO) is a machine learning method to
identify the best feature from high-dimensional data with a high predictive value and low
correlation [11], which can significantly improve the accuracy and predictive value of key
genes identified from microarray and high-throughput data [12].

Herein, we obtained the HCM dataset GSE36961 from the GEO database and identified
differentially expressed genes (DEGs). Subsequently, WGCNA was conducted to filter
key module and hub genes. Furthermore, the above genes were used to establish the
LASSO model and three key genes were then identified as biomarkers in HCM. Functional
enrichment analysis was also performed to explore the potential biological process in
HCM (Figure 1). Such findings could provide insights into the biomarkers and biological
pathways in HCM, and may help to diagnose, treat and prevent HCM in the future.
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Figure 1. Workflow to identify potential biomarkers and biological pathways in hypertrophic
cardiomyopathy (HCM). We firstly obtained differentially expressed genes (DEGs) from GSE36961
dataset, and then conducted WGCNA, LASSO, and GSEA step by step to find potential biomarkers
and biological pathways in HCM.



Genes 2022, 13, 530 3 of 16

2. Materials and Methods
2.1. Data Sources and Searches

We searched gene expression profiling datasets for HCM using the term “hypertrophic
cardiomyopathy” in the GEO database (https://www.ncbi.nlm.nih.gov/geo/, accessed
on 1 December 2021), and the eligible datasets must meet the following inclusion criteria:
(i) the dataset should comprise genome-wide expression mRNA microarray data, (ii) the
samples were cardiac tissues from HCM and non-HCM controls/healthy subjects, (iii) the
organism was restricted to Homo sapiens, and (iv) the sample sizes should be sufficient for
analysis. Finally, this study selected GSE36961 based on the GPL15389 platform for further
analysis, which included 109 HCM samples and 39 control samples. The utilization of data
in the GEO database is free of charge and does not require ethical approval.

2.2. Identification of DEGs

The raw data were normalized and used to identify DEGs between HCM and control
groups by the “limma” package in R software (version 3.6.0) [7]. Genes with p-value < 0.05
and |(log2FC)| > 0.5 were considered as DEGs in this study. A volcano plot for DEGs was
drawn using “ggplot” package under the R software platform.

2.3. WGCNA Network Construction and Hub Genes Identification

The “WGCNA” package in R software was used to construct the gene coexpression
network to explore the expression and interaction of DEGs in HCM samples [13]. Firstly,
the soft threshold was used to ensure a scale-free network. Subsequently, the network
interconnectedness was built by topological overlap matrix (TOM), and gene modules
were identified based on the hierarchical clustering method. Next, each first principal
component of each gene module was identified as the module eigengenes (MEs). We then
looked for correlations between clinical features and MEs [14] and identified the module
with the highest correlation with HCM as the key one.

Gene significance (GS) was used to identify the relationships between genes and traits,
and module membership (MM) represented the correlation between MEs and gene expres-
sion profiles. Genes having high GS and MM in the key module were highly interrelated
with the clinical features. In the present study, we selected genes with GS < −0.7 and
MM > 0.9 to be hub genes in the key module.

2.4. LASSO Model Establishment and Key Genes Identification

By using the “glmnet” package in R software, we constructed the LASSO model based
on the gene expression profiles of hub genes. The minimum lambda (lambda.min) and
one standard error of the minimum lambda (lambda.1se) were used as references to identify
the variables in models, which were two suitable lambda values for modeling. The dataset
was randomly divided into train set (60%) and test set (40%) to perform receiver operator
characteristic (ROC) curve analysis, which was achieved by utilizing the “ROCR” package
in R software, so as to evaluate the stability and sensitivity of the two LASSO models based
on lambda.min and lambda.1se in identifying HCM. After that, genes obtained from the
LASSO models had their intersection taken to be key genes by Venn diagram [15].

2.5. Validation of Key Genes

GSE130036, containing human myocardial tissues from 28 HCM patients and 9 healthy
donors based on the GPL20795 platform, was retrieved from the GEO database and severed
as a validation dataset. Student’s t-test from the R software was used to compare the key
genes expression variances between HCM and control groups, and the “ggplot2” R package
was employed to draw plots of the expression of key genes.

2.6. Gene Set Enrichment Analysis (GSEA)

GSEA is routinely used to analyze and interpret coordinate pathway-level changes
in transcriptomics experiments [16], which was used to investigate the potential mech-

https://www.ncbi.nlm.nih.gov/geo/
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anisms of the key genes according to their correlations with other coding genes calcu-
lated by Spearman’s correlation. We utilized the “clusterProfiler” package in R software
to perform GSEA [17], and the visualizations were conducted by using “ggplot2” and
“enrichplot” packages in R software. The whole gene expression values of the sam-
ples were analyzed based on the h.all.v7.4.entrez.gmt [Hallmarks] gene set database
(https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#H, accessed on 18 December
2021), and gene sets were considered meaningful when they satisfied p.adjust-value < 0.05.

3. Results
3.1. Identification of DEGs between HCM and Control Groups

A total of 893 DEGs were identified between patients with HCM and controls, includ-
ing 387 upregulated genes and 506 downregulated genes. The results were visualized using
volcano plots in which each dot corresponded to a gene (Figure 2).
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Figure 2. Volcano plots of DEGs. The x-axis represents the log2 fold change (log2FC) value, and the
y-axis represents significant difference. The red dots represent significantly upregulated genes, while
the green dots represent significantly downregulated genes.

3.2. Construction of WGCNA and Identification of Hub Genes

WGCNA was conducted on the coexpression network of the 893 DEGs. In the present
study, 20 was selected to be the soft threshold for the construction of the scale-free topology
module (Figure 3A). A gene coexpression network was then constructed based on the
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Genes 2022, 13, 530 5 of 16

hierarchical clustering method, and 12 modules were generated (Figure 3B). Moreover,
we also performed a correlation analysis between the modules and phenotypes of clinical
traits. The turquoise module had the highest negative correlation with HCM (cor = −0.9,
p-value = 4 × 10−52), while the black module exhibited the highest positive correlation
with HCM (cor = 0.87, p-value = 1 × 10−45) (Figure 3C). We then focused on the turquoise
module for further study, which had the greatest absolute correlation among all modules.
Figure 3D displays the correlation analysis between MM and GS in the turquoise module,
whose correlation value was −0.88 (p-value = 3.3 × 10−80). If the genes in the turquoise
module met the requirements of GS < −0.7 and MM > 0.9, they would be designated as
hub genes and used for further analysis. Finally, 19 genes satisfied the above requirements,
which were CD163, FCER1G, S100A9, FPR1, MAFB, LYVE1, SERPINA3, CTSC, ALOX5,
CMTM7, LCP1, SLA, WAS, HAVCR2, CORO1A, HCK, MT1M, HCLS1, and EBI2, respectively.
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Figure 3. Results of WGCNA. (A) Soft threshold analysis. Each power corresponds to scale inde-
pendence and mean connectivity. A soft threshold of 20 (red horizontal line) was chosen for the
construction of the scale-free topology module. (B) Cluster dendrogram. Each branch represents
one gene, and each color at the bottom represents one coexpression module. (C) Module-trait rela-
tionships between MEs and clinical phenotype. The upper number in the color grid represents the
correlation as well as its p-value. Red indicates a positive correlation, and blue indicates a negative
correlation. (D) The scatterplot of module membership and gene significance in turquoise module.
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3.3. Establishment of LASSO Model and Identification of Key Genes

The 19 genes selected from the turquoise module were used to establish the LASSO
models based on the values of lambda.min = 0.01431306 and lambda.1se = 0.07638451
(Figure 4A). The area under the curves (AUCs) according to lambda.min and lambda.1se in
the train set were 0.994 and 0.991 (Figure 4B), while the AUCs in the test set became 0.972
and 0.983, respectively (Figure 4C). In the LASSO model based on lambda.min, five genes
were then screened, including CORO1A, LYVE1, MAFB, MT1M and WAS, and another
five genes were also filtrated from the LASSO model based on lambda.1se, containing
LYVE1, MAFB, MT1M, S100A9, and SERPINA3. A Venn diagram was then developed to
take the intersection of the above genes to identify key genes in HCM, which were LYVE1,
MAFB, and MT1M, respectively (Figure 4D). These genes were downregulated in HCM
patients compared to controls (all p < 0.001) (Figure 4E).
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Figure 4. LASSO model establishment and key genes identification. (A) The optimal lambda selection
in LASSO model. The left dotted line represented lambda.min, and the right dotted line represented
lambda.1se. (B) Receiver operator characteristic (ROC) curves in train set. The blue line represented
the ROC curve calculated based on the value of lambda.min, and the red line represented the ROC
curve calculated based on the value of lambda.1se. (C) ROC curves in test set. (D) Three common key
genes screened from two LASSO models are shown in Venn diagram. (E–G) Differential expressions
of key genes in GSE36961 dataset. (E) The differential expression of LYVE1 between HCM and
control groups; (F) The differential expression of MAFB between HCM and control groups; (G) The
differential expression of MT1M between HCM and control groups. All p < 0.001.

3.4. Validation of Key Genes

The GSE130036 dataset was adopted for data validation. The distribution of expression
levels of LYVE1, MAFB, and MT1M was shown in Figure 5, and their expressions were
significantly decreased in HCM patients compared to those in control groups (all p < 0.01),
consistent with the situations observed in the GSE36961 dataset.

3.5. Signaling Pathways Identified by GSEA

GSEA was firstly conducted using data from HCM patients and controls in the GSE36961
database, and the results are presented in Figure 6. We found that the oxidative phosphoryla-
tion pathway was mainly enriched in the HCM group among the activated pathways, while
tumor necrosis factor alpha-nuclear factor-κB (TNFα-NFκB), interferon-gamma (IFNγ) re-
sponse, and inflammatory response were three suppressed pathways predominately enriched
in HCM.
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Figure 5. Validation of the differential expressions of three key genes in GSE130036 dataset. (A) The
differential expression of LYVE1 between HCM and control groups; (B) The differential expression of
MAFB between HCM and control groups; (C) The differential expression of MT1M between HCM
and control group. All p < 0.01.
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Commented [M1]: 调整图片的大小，保持一致。 Figure 6. Results of GSEA in HCM of GSE36961 database. (A) Enrichment plots of HCM. The color
intensity of the nodes represents the enrichment degree of pathways. The horizontal axis is gene
ratio representing the proportion of differential genes in the whole gene set. The dot size represents
the gene counts in a certain pathway. Oxidative phosphorylation pathway ranked first among the
activated pathways, while tumor necrosis factor alpha-nuclear factor-κB (TNFα-NFκB), interferon-
gamma (IFNγ) response, and inflammatory response ranked the top three among the suppressed
pathways. (B) Enrichment plot of genes involved in oxidative phosphorylation. (C) Enrichment
plot of genes involved in TNFα-NFκB. (D) Enrichment plot of genes involved in IFNγ response.
(E) Enrichment plot of genes involved in inflammatory response.
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Next, we further explored the potential signaling pathways related to LYVE1, MAFB,
and MT1M based on their positively or negatively coexpressed genes (Tables S1–S3).
The results showed that the oxidative phosphorylation pathway was the predominant
suppressed pathway no matter in LYVE1, MAFB, or MT1M, whereas TNFα-NFκB, IFNγ

response, and inflammatory response pathways were mostly enriched in three key genes
among the activated pathways (Figure 7 and Figures S1–S3).
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Figure 7. GSEA results of three key genes. (A) Enrichment plots of LYVE1. (B) Enrichment plots of
MAFB. (C) Enrichment plots of MT1M. Oxidative phosphorylation pathway ranked first among the
suppressed pathways no matter in LYVE1, MAFB, or MT1M, whereas TNFα-NFκB, IFNγ response,
and inflammatory response pathways ranked the top three among the activated pathways.

4. Discussion

In the present study, a comprehensive analysis of potential biomarkers and biological
processes was carried out using gene profiles from patients with HCM and healthy controls.
We have detected 387 upregulated genes and 506 downregulated genes in the GSE36961
dataset, and subsequently generated 12 modules in WGCNA. The turquoise module was the
one that had the highest correlation with HCM, and then it was chosen for further analysis.
According to results from the LASSO models, LYVE1, MAFB, and MT1M were finally
identified as potential biomarkers in HCM. The three key genes were all downregulated in
HCM, as well as in the validation dataset GSE130036. Additionally, we explored the latent
biological mechanism by GSEA, showing oxidative phosphorylation, TNFα-NFκB, IFNγ

response, and inflammatory response were four pathways possibly participating in the
pathogenesis of HCM.

GSE36961 is a popular dataset in bioinformatics analysis due to its abundant samples,
containing more than 100 HCM patients. Previous research was mostly inclined to use the
GSE36961 dataset as a validation dataset or to construct lncRNA-miRNA-mRNA networks
with other lncRNA and miRNA datasets [18–23]. In addition, the GSE36961 dataset was also
used to combine with other mRNA datasets to obtain DEGs for further study [24,25]. A few
studies mainly focused on the GSE36961 dataset to analyze the mechanism involved in HCM.
Hu et al. have explored GSE36961 by using Gene Ontology (GO) analysis and protein–protein
interaction (PPI) network [26]. In our study, we chose WGCNA, LASSO, and GSEA to identify
the potential biomarkers and biological pathways in HCM and obtained different results
ultimately, which provided a new way of data mining for the GSE36961 dataset.

As one of the key genes found in this study, LYVE1 (lymphatic vessel endothelial
hyaluronan receptor-1) is a homolog of the CD44 hyaluronan receptor and a member of
the Link protein family, with high expression in the overlapping junctions of lymphatic
capillaries [27]. Consistent with another bioinformatics analysis based on the GSE36961



Genes 2022, 13, 530 12 of 16

and GSE141910 datasets [24], we both observed decreased expression of LYVE1 in HCM
patients. Previous research showed that deletion of Lyve1 in mice would prevent docking
and transit of leukocytes through the lymphatic endothelium, resulting in exacerbation of
chronic inflammation and long-term deterioration of cardiac function [28]. Additionally,
another study based on single-cell mRNA sequencing technology demonstrated that the
acute depletion of LYVE1high cardiac resident tissue macrophages (RTMs) using a mouse
model of inducible macrophage depletion during the induction of fibrosis could exacerbate
vessel permeability, immune cell infiltration, and collagen deposition, implying LYVE1
might participate in restraining inflammation and fibrosis [29]. In addition, Jiang et al.
pointed out that the elevated lymphatic microvessel density (LMVD) stained immunohisto-
chemically with LYVE1 antibodies had a close relationship with ventricular septal fibrosis
in hypertrophic obstructive cardiomyopathy (HOCM) patients [30]. Above all, since we
observed a decreased expression of LYVE1 in HCM patients, the existing research hinted at
the possibility that the downregulation of LYVE1 affected the inflammatory process and
impaired its anti-fibrotic function, thereby contributing to the development and progression
of HCM. However, we still need further study to confirm such a hypothesis.

MAFB (MAF basic region leucine zipper transcription factor B) is another key gene
discovered in our research and belongs to the large Maf family. MAFB is specially expressed
in glomerular podocytes, macrophages, and osteoclasts and acts as a switch to initiate gene
transcription, participating in physiological processes such as cell proliferation, differen-
tiation, apoptosis, and migration [31]. Tani-Matsuhana S et al. demonstrated that MAFB
knockdown would reduce the cardiac neural crest stream, whose migration to the heart was
critical for the formation of cardiac outflow tract and ventricles [32]. Additionally, it has
been found that when induced by external stimulus, MAFB could be regulated by inflam-
matory signals such as microRNAs or cytokines and might play a role in anti-inflammation
in various macrophage-related diseases [33]. The expression level of MAFB was downregu-
lated in HCM patients in our study; however, relevant published research regarding the
relationship between MAFB and HCM has not been found up to now. The present study is
the first one focusing on the role of MAFB in HCM, and we wonder whether MAFB affects
HCM by influencing the congenital development of the myocardium or by involving the
inflammatory process induced by an environmental stimulus; regardless, further study is
definitely required to investigate the concrete mechanism.

MT1M (Metallothionein 1M) is an isoform of Metallothioneins (MTs), which are
a family of low-molecular-weight (ranging from 6 to 7 kDa) and cysteine-rich proteins
that bind to heavy metals through the cysteine thiol group [34]. Particularly, MT1M
participates in zinc homeostasis via tightly controlling zinc concentrations by zinc-thiol
binding [35]. It has been reported that MTs would protect cells against oxidative stress by
scavenging free radicals and releasing zinc into the cytoplasm [36,37]. Thus, the reduced
availability of MT1M would be expected to enhance oxidative stress by altered regulation
of superoxide radicals, as well as by effects on zinc metabolism [37]. Additionally, previous
research also showed that the expression of MT1M was regulated by pro-inflammatory
cytokines, indicating MT1M might participate in the inflammation process as well [38]. The
relationship between MT1M and HCM has not been reported before; therefore, in-depth
research is needed to reveal the underlying mechanism of MT1M on HCM.

In addition, the results emerging from GSEA demonstrated that the oxidative phos-
phorylation pathway was enriched in the suppressed pathways in LVYE1, MAFB, and
MT1M, whereas TNFα NFκB, IFNγ response, and inflammatory response pathways were
enriched in the activated pathways. Notably, the expressions of the above three genes
were downregulated in HCM, and these four pathways showed an opposite tendency in
HCM, with oxidative phosphorylation pathway activated, TNFα-NFκB, IFNγ response,
and inflammatory response pathways inhibited.

Oxidative phosphorylation is an important process participating in the generation of
reactive oxygen species (ROS) induced by electron transfer in mitochondria [39], and it has
been reported that enhanced mitochondrial oxidative stress due to increased ROS level was
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possibly related to the occurrence of feline HCM [40]. As mentioned above, MTs would
protect cells against oxidative stress and the reduced availability of MT1M could oppositely
enhance oxidative stress [37]. In addition, other research on diabetic nephropathy found
that overexpression of MAFB in diabetic mice would decrease the level of the oxidative
stress marker 8-hydroxydeoxyguanosine in urine [41]. Therefore, we speculated whether
the inhibition of oxidative phosphorylation by M1TM and MAFB could be reversed due
to their downregulated expressions in HCM, then inducing the occurrence of HCM by
affecting the downstream oxidative stress, which needs validation in further study.

TNFα and IFNγ were originally found to be produced by inflammatory cells and
to play important roles in the immune system [42]. NFκB is a well-known downstream
of TNFα [43], and it has proved active in heart’s lymphatic system confirmed by LYVE1
immunohistochemistry [44]. Another study on human blood CDc1+ dendritic cells showed
that the CD5low subset expressed a high level of MAFB, as well as produced a high level
of IFNγ [45]. Together, it indicated that LYVE1 and MAFB might participate in immune
response in the pathogenesis of HCM. Notably, Zhang et al. have proposed that LYVE1+

macrophages might act as a bridge between the heart’s immune system and lymphatic
system by using immune infiltration analysis [24], whose conclusion was similar to our
findings that two immune response-related pathways, TNFα-NFκB and IFNγ response,
were enriched in the GSEA analysis of LYVE1, but with different bioinformatics method-
ologies. Apart from immune-response-related pathways, we also detected inflammatory
response pathways in this study, which represented a chain of organized, dynamic reac-
tions with specific humoral secretions, consisting of proinflammatory systems and anti-
inflammatory systems [46]. As discussed above, LYVE1, MAFB, and MT1M all possibly
participated in the inflammatory process; particularly, LYVE1 and MAFB might play roles
in the anti-inflammatory process, while we showed the inflammatory process pathway
was activated in these three genes. Previous research showed that proinflammatory and
anti-inflammatory cytokines were both raised in HCM patients, and even the same cy-
tokine performed opposite levels in different observations [47], indicating it was a complex
inflammatory process in the pathogenesis of HCM. The GSEA results reminded us that
the pathogenesis of HCM was likely to relate to oxidative stress, immune response, and
inflammatory response. A scheme is shown in Figure 8 to illustrate the potential relation-
ships between LYVE1, MAFB, MT1M, and the possible biological pathways, providing
orientation for further research.
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Figure 8. A scheme illustrating the potential relationships between LYVE1, MAFB, MT1M and the
possible biological pathways in HCM. The downregulations of LYVE1, MAFB, and MT1M might
induce the development and progression of HCM by activating oxidative stress while suppressing
immune response and inflammatory response.
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However, there were some limitations in our study. Firstly, it should be noted that this
research was based on bioinformatics analysis from the transcriptomic profiles of the public
database, which may be different from actual scenarios. Secondly, the genes and biological
pathways screened in this study were not further investigated. Hence, experimental studies
to elucidate the concrete mechanisms in HCM are necessary in the future.

5. Conclusions

In summary, this study identified LYVE1, MAFB, and MT1M as biomarkers in the
development and progression of HCM using the WGCNA method and the LASSO model,
and pointed out that the pathogenesis of HCM was likely to relate to oxidative stress,
immune response, and inflammatory response by functional enrichment analysis. The
biomarkers and pathways identified in this study may provide valuable information for
further study of the mechanism of HCM, and are promising to be applied in precision
medicine to improve the diagnosis, treatment, and prevention of HCM in the future.
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in HCM; Table S2: Genes correlated with MAFB in HCM; Table S3: Genes correlated with MT1M
in HCM.
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