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Abstract

Aims

The transcriptome of different dissociated pancreatic islet cells has been described in enzy-

matically isolated islets in both health and disease. However, the isolation, culturing, and

dissociation procedures likely affect the transcriptome profiles, distorting the biological con-

clusions. The aim of the current study was to characterize the cells of the islets of Langer-

hans from subjects with and without type 1 diabetes in a way that reflects the in vivo

situation to the highest possible extent.

Methods

Islets were excised using laser capture microdissection directly from frozen pancreatic tis-

sue sections obtained from organ donors with (n = 7) and without (n = 8) type 1 diabetes.

Transcriptome analysis of excised samples was performed using AmpliSeq. Consecutive

pancreatic sections were used to estimate the proportion of beta-, alpha-, and delta cells

using immunofluorescence and to examine the presence of CD31 positive endothelial

regions using immunohistochemistry.

Results

The proportion of beta cells in islets from subjects with type 1 diabetes was reduced to 0%

according to both the histological and transcriptome data, and several alterations in the tran-

scriptome were derived from the loss of beta cells. In total, 473 differentially expressed

genes were found in the islets from subjects with type 1 diabetes. Functional enrichment

analysis showed that several of the most upregulated gene sets were related to vasculature

and angiogenesis, and histologically, vascular density was increased in subjects with type 1

diabetes. Downregulated in type 1 diabetes islets was the gene set epithelial mesenchymal

transition.

Conclusion

A number of transcriptional alterations are present in islets from subjects with type 1 diabe-

tes. In particular, several gene sets related to vasculature and angiogenesis are upregulated
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and there is an increased vascular density, suggesting an altered microvasculature in islets

from subjects with type 1 diabetes. By studying pancreatic islets extracted directly from

snap-frozen pancreatic tissue, this study reflects the in vivo situation to a high degree and

gives important insights into islet pathophysiology in type 1 diabetes.

Introduction

In type 1 diabetes (T1D) endogenous insulin-secretion is lost due to beta-cell destruction and

affected subjects are dependent on exogenous insulin administration. Beta-cells make up the

islet of Langerhans together with alpha-, delta-, PP- and ghrelin cells that are involved in glu-

cose homeostasis, regulation of food intake and metabolism [1–3]. Several studies have been

conducted in order to describe the different pancreatic cell types in subjects with [4, 5] and

without diabetes [6–8]. However, in these studies the pancreatic islets have been obtained

through a rough isolation process that separates them from their natural environment [9].

Although the islets remain functional and usable for transplantation [9], both the islet isolation

process and culturing of islets affect the transcriptome of the cells [10, 11]. Furthermore, to

analyze individual cells, the islets must be dissociated into single-cells and go through a cell-

sorting process, likely increasing the risk of introducing alterations in the transcriptome which

in the end may distort the biological conclusions.

Laser capture microdissection (LCM) ensures excision of islets directly from their natural

environment–i.e. while still being encased in the pancreas. An advantage with this choice of

method for tissue analysis is that the cells have not endured exposure to the islet isolation and

dissociation process. By using LCM, the purpose of this study was to characterize islets in

donors with a long duration of T1D and matched non-diabetic subjects, reflecting the in vivo
situation to as high degree as possible, and thus enable uncovering of important transcriptional

alterations.

Materials and methods

Human pancreatic specimens

Pancreases from heart-beating organ donors treated as for organ transplantation were pro-

cured through the Nordic Network for clinical Islet Transplantation (https://nordicislets.

medscinet.com/en.aspx). Consent for organ donation was obtained verbally from the decea-

sed’s next of kin by the attending physician and was documented in accordance with Swedish

law and approved by the Regional Ethics Committee (DNR 2015/444). The pancreases were

dissected, and biopsies were immediately snap-frozen in liquid nitrogen and subsequently

stored at -80˚C. At the time of the study, the biobank contained biopsies from 12 donors with

long-standing T1D, and more than 2000 non-diabetic donors. Selection of biopsies, stainings,

sectioning strategy and LCM was performed as described in Granlund et. al. [12]. Briefly, the

donors with longstanding T1D were age-, sex- and BMI-matched to non-diabetic donors, and

all biopsies were evaluated for immune infiltration by staining for CD45 and synaptophysin.

Donors with a pronounced immune cell infiltration, or biopsies consisting mainly of fibrotic

or adipose tissue were excluded from the study (described in Granlund et. al. [12]). Out of 24

donors examined (12 donors with long-standing T1D and 12 matched controls), 15 donors

passed the screening and were included in the study. The characteristics of these are shown in

Table 1.
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Sectioning strategy of biopsies and immunofluorescent staining of

endocrine cells

Frozen biopsies were sectioned and consecutive sections were alternately used for immunoflu-

orescence (IF), LCM or immunohistochemistry (IHC), as described in Granlund et al. [12].

The sections intended for IF were stained for insulin, glucagon and somatostatin (S1 Table)

and the slides were scanned on a confocal microscope (LSM700, Zeiss, Oberkochen, Germany)

and used to locate islets that were microdissected on the consecutive PEN membranes. The

methodology was designed to only extract and study insulin-negative islets in T1D subjects,

but it was discovered that all islets were insulin-negative and therefore no selection of islets

was necessary. To estimate the proportion of alpha, beta and delta cells, the cells of ten ran-

domly chosen islets (in one section/donor) were annotated and the area in px2 was determined

for alpha- beta- and delta cells respectively using the polygon tool in Qupath software (0.1.2).

The area in px2 was converted to μm2 (0.8 pixels/μm). The average obtained by two indepen-

dent investigators was calculated for each donor.

Immunohistochemistry of endothelial cells

The consecutive sections were stained for CD31 and synaptophysin. Primary antibodies (S1

Table) were added and thereafter visualized using Dako EnVision Doublestain system (DAB

+/Permanent Red). Sections were counterstained with hematoxylin (Histolab) and photo-

graphed using a Zeiss Palm Microbeam IV microscope at 20× magnification. The CD31 posi-

tive regions within islets was evaluated with assistance of ImageJ software. Ten islets per donor

was analyzed; the islet area (μm2) and the length of all CD31 positive regions (μm) found

within these islets were noted. The total length of CD31 positive regions per total islet area

(vascular density) was calculated.

Table 1. Clinical characteristics of the donors that passed the screening.

Donor No. Age Sex BMI (kg/m2) HbA1c (mmol/mol) Pancreas region frozen biopsies IA2A GADA Cause of death

NDs ND-1 13 M 16 40 tail na na Celebral anoxia due to cardiac arrest

ND-2 35 F 24.7 na body - - Hypoxemia due to cardiac arrest

ND-3 57 F 22.7 45 tail na na Subarachnoid hemorrage

ND-4 45 F 25.4 38.8 tail - - Infarction in the cerebellum

ND-5 21 M 28 38.8 tail - - Head trauma

ND-6 17 F 28.9 na body na na Traumatic subarachnoid hemorrage

ND-7 63 M 24 39.9 tail - - Subarachnoid hemorrage

ND-8 13 M 19.7 33 tail - - Strangulation

Mean 33 23.7 39.3

T1Ds T1D-1 16 M 21.9 na tail na na Trauma subarachnoid hemorrage

T1D-2 36 F 20.9 55.2 tail na na Intracranial hemorrage

T1D-3 60 F 23.9 66.1 tail + + Subarachnoid hemorrage

T1D-4 47 F 27.6 57.4 body - - Cardiac arrest

T1D-5 24 M 27.5 67.2 tail + - Trauma

T1D-6 25 F 26.7 54.1 tail - - Cerebral edema due to hypoglycemia

T1D-7 65 M 24.2 na tail na na Trauma by fall

Mean 39 24.7 60

During the screening, donors with a pronounced immune cell infiltration, or biopsies consisting mainly of fibrotic or adipose tissue were excluded from the study. All

islets in donors with T1D were insulin-negative. NDs: Non-diabetic subjects, T1Ds: Type 1 diabetic subjects. Na: not available. +: present, -: not present.

https://doi.org/10.1371/journal.pone.0276942.t001
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Laser capture microdissection (LCM)

LCM was performed as described in Granlund et al. [12]. In brief, the frozen sections were

thawed and dehydrated after which they were mounted on an Arcturus XT LCM system

(Thermo Fisher Scientific, Massachusetts). Islets were identified based on islet auto-fluores-

cence and verified by the scanned IF slides. The islets were captured on an Arcturus CapSure

HS LCM Cap (LCM0215, Thermo Fisher Scientific, Massachusetts) and incubated in 1% beta-

Mercaptoethanol in a heating block for 30 min at 42˚C, lysing the tissue. The lysates were

stored at -80˚C until RNA extraction. Areas of the cut regions were noted and the diameter of

the islets calculated according to (
p Area

p

� �
� 2 ¼ diameter, S1 Fig).

RNA extraction and transcriptome analysis

The samples were brought to room temperature by short incubation at 37˚C. All LCM

extracted samples were pooled for each donor. RNA was extracted with the RNeasy Plus

Micro kit (Qiagen, Sweden) according to the manufacturer’s protocol for purification of total

RNA from microdissected cryosections. Samples were eluted with RNase-free water and stored

at -80˚C until transcriptome analysis, which was performed using the Ion AmpliSeq Tran-

scriptome Gene Expression Kit (Thermo Fisher Scientific, Massachusetts) and sequencing on

an IonS5XL instrument, as described previously in detail [12]. Acquired reads were analyzed

using the ampliSeqRNA plugin in the Torrent Suite Server version 5.10.1. The reads were

aligned to hg19 AmpliSeq Transcriptome ERCC v1, quantifying expression data for 20,813

genes.

Statistical analysis

Filtering. Data was analyzed with R (v. 4.2.1) in Rstudio (v. 22.02.3) using the edgeR R

package (v. 3.36.0) [13, 14] starting from raw read counts. As the islet samples were extracted,

prepared and sequenced together with several samples from the exocrine portion of the pan-

creas, as described in more detail previously [12], the exocrine libraries were not excluded in

the current data analysis. I.e. the exocrine libraries were included when creating the DGElis-

tobject, as well as subsequent filtering, normalization and creation of the generalized linear

model. Genes with more than 10 counts per million (CPM) in at least 6 samples were retained

using the filterByExp function of edgeR.

Deconvolution analysis. Cell type proportions of the LCM extracted bulk data was esti-

mated with Multi-subject Single Cell (MuSiC) deconvolution using the R package MuSiC(v.

0.2.0) [15]. The raw counts were analyzed with the E-MTAB-5061 human pancreas single-cell

data as reference dataset (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5061/)

[7]. Results were visualized using ggplot2 (v 3.3.0).

Normalization. Raw count normalization was performed using the trimmed mean of M

values (TMM) [16] method with the calcNormFactors- function of EdgeR.

Data structure. TMM- adjusted and log- normalized counts were used to visualize the

data structure by principal component analysis (PCA) using the R- package PCAtools(v.2.6.0)

[17].

Differential gene expression analysis. Differentially expressed genes (DEGs) between

islets from subjects with and without T1D were analyzed using a generalized linear model and

a quasi-likelihood test with the glmQLFit and glmTreat functions of edgeR. Genes differen-

tially expressed in T1D compared with non-diabetic subjects were assessed. FDR-adjusted P-

values were calculated using the Benjamini- Hochberg method in the topTags function in
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edgeR. Criteria for differential expression was FDR-adjusted P-value less than 0.05 while test-

ing for an absolute log fold change� log2(1.2).

Functional enrichment—and overrepresentation analysis. Competitive gene set testing

was conducted with CAMERA (Correlation Adjusted MEan RAnk test) [18] using the CAM-

ERA function in edgeR [13, 14] and the MSigDB Hallmark set [19]. A gene set was considered

significantly enriched if the FDR- adjusted p-value was <0.25. Overrepresentation analysis

(ORA) was done using a hypergeometric test [20, 21]. The ORA was performed by testing the

DEG (FC± log2(1.2), FDR>0.05) against gene ontology: biological processes (GO:BP) [22, 23]

and REACTOME [24, 25] terms using the function g:GOSt in g:Profiler [26]. The g:SCS cor-

rected P- values <0.05 were required for a set to be considered significantly enriched.

Comparison of vascular density in islets. The Mann–Whitney test was used in GraphPad

Prism software (version 6.0h) to compare the islet vascular density in non-diabetic and T1D

subjects. A p-value < 0.05 was considered statistically significant.

Results

The proportion of different endocrine cells was similar in histological and

transcriptional data

The median endocrine area proportion in non-diabetic subjects was histologically determined

to be 26% alpha cells, 60% beta cells and 14% delta cells (Fig 1A and 1C). The median endo-

crine area proportion in subjects with T1D was 76% alpha cells, 0% beta cells and 24% delta

cells (Fig 1B and 1D). Based on estimation from the transcriptome data through a Multi-sub-

ject Single Cell (MuSiC) analysis (Fig 1E and 1F), the proportion of the different endocrine

cells was similar to the histologically estimated endocrine area proportion in non-diabetic and

T1D pancreases. Islet tissue extracted by LCM had only limited contamination of exocrine tis-

sue (acinar median 0.059%, and 0.050%, and ductal median 0% and 0% in tissue extracted

Fig 1. The proportion of different endocrine cells in islets. Images of representative islets, where the composition of islet cells based on immunofluorescent

triple-staining of glucagon (red), insulin (green) and somatostatin (yellow) to represent alpha-, beta- and delta cells respectively, is shown in non-diabetic

subjects (A) and T1D subjects (B). Tukey box-plots of the histologically determined endocrine area proportion in non-diabetic subjects (C) and T1D subjects

(D). Proportions of the area sum to one per sample. Multi-subject Single Cell (MuSiC) utilizes cell-type specific gene expression from single-cell RNA

sequencing data to characterize cell type compositions from bulk data. Deconvolution of the bulk data into alpha, beta, gamma, delta, acinar and ductal cells in

the different tissues is illustrated in non-diabetic subjects (E) and T1D subjects (F). Proportions sum to one per sample and the data is illustrated in a Tukey

boxplot. ND: Non-diabetic subjects, T1D: Type 1 diabetic subjects.

https://doi.org/10.1371/journal.pone.0276942.g001
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from pancreases of non-diabetic and T1D subjects respectively) according to the MuSiC analy-

sis (Fig 1E and 1F).

Gene sets related to vasculature and angiogenesis were upregulated in islets

from subjects with T1D and the gene set epithelial mesenchymal transition

was downregulated

A PCA of the 25% most variable genes across islets shows that islets from T1D and non-diabe-

tes subjects clustered separately (Fig 2). The differential gene expression analysis revealed 347

DEGs that were downregulated and 126 that were upregulated in islets from subjects with T1D

Fig 2. Principal component analysis (PCA)–islets from subjects with and without type 1 diabetes clusters separately. The 25% most variable genes of islet

were used for PCA. Each point corresponds to a sample plotted by PC1 and PC2. PC1 and PC2 describe 30.4% and 18.5% of the islet variation, respectively.

Circles = Non-diabetic subjects, triangles = Type 1 diabetic subjects.

https://doi.org/10.1371/journal.pone.0276942.g002
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(S1 File). Overrepresentation analysis with g:Profiler of these DEGs identified many gene sets

of diverse functions to be upregulated in T1D (g:SCS adjusted p-value <0.05) (S1 File). The

top 10 enriched gene sets using Gene Ontologi: Biological Processes (GO:BP) were mostly

related to vasculature, angiogenesis and anatomical structuring, whereas many of the top 10

gene sets using REACTOME were associated with insulin signalling (Table 2A). The gene sets

that were downregulated in T1D (g:SCS adjusted p-value <0.05) were mainly related to synap-

tic- and cell signalling as well as beta-cell loss (Table 2B and S1 File). Competitive gene set test-

ing with CAMERA, and using the MSigDB Hallmark gene set collection, showed that pancreas
beta cells (Fig 3A) and epithelial mesenchymal transition (Fig 3B) were downregulated in islets

from subjects with T1D.

Vascular density in islets was increased in subjects with T1D

CD31 staining revealed an increased total endothelial length per total islet area (vascular den-

sity) in subjects with T1D compared with non-diabetic subjects (median total endothelial

length per total islet area was 0.015 μm/μm2 and 0.0085 respectively) (p = 0.0263) (Fig 4).

When excluding CD31+ regions shorter than 15 μm to account for the presence of possible

individual macrophages, the vascular density in subjects with T1D was also increased

(p = 0.0263).

Discussion

In the current study, LCM was used to microdissect and analyze islets from subjects with T1D

directly from frozen well-preserved pancreatic tissue obtained from heart-beating organ

donors. As such, artefacts induced by enzymatic islet isolation, dispersion into single-cells, and

culture were avoided, making the analysed transcriptomes to the highest possible extent reflect

the in vivo situation. A hallmark of islets from subjects with T1D is the loss of beta cells. The

islets examined in the current study were devoid of beta cells as determined both by a histolog-

ical and transcriptional evaluation of the islet composition. Transcriptional alterations likely

derived from the beta cell loss was reflected in the data regardless of bioinformatical approach;

the beta cell associated genes insulin, MAFA and PDX1, were found among the downregulated

DEGs, ORA of the downregulated DEGs with REACTOME showed gene sets such as Regula-
tion of gene expression in beta cells, and using competitive gene set testing with CAMERA, the

gene set pancreas beta cells was found to be downregulated. As the beta-cell loss correlates with

expected transcriptional alterations, this finding suggests that the methodology is sound.

In total, 473 DEGs were discovered in the islets from subjects with T1D. Among these, the

top 5 upregulated genes; CIDEC, RSPO3, SLITRK6, TPD52L1 and FGF10, have unclear roles in

islets. Interestingly, ORA of the DEGs using Gene Ontology: Biological Processes showed that

the top 10 enriched gene sets in islets from subjects with T1D were mostly related to vascula-

ture and angiogenesis. Neither these gene sets, nor versions of them, have been reported to dis-

tinguish different pancreatic cell types from each other in single-cell studies [5, 6], suggesting

that these transcriptional alterations of the islets from subjects with T1D were not derived

solely from the loss of beta cells. In support of the notion that the alterations seen in gene sets

related to microvasculature in our study were not an effect of the beta-cell loss, these gene sets

were not found to vary between different sorted islet cell types when running an ORA on the

DEGs reported by Muraro et al. [6], (S2 File). However, gene sets related to anatomical struc-

turing were upregulated in sorted alpha- and delta cells compared to other pancreatic cells [6]

(S2 File), which likely explains the upregulation of these gene sets in the islets from subjects

with T1D in our study.
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Table 2. Top 10 enriched gene sets using g:Profiler.

A

Upregulated gene sets in islets from subjects with T1D

Gene Ontology: Biological Processes Adjusted P-value

Anatomical structure morphogenesis 2.090×10−6

Blood vessel morphogenesis 9.070×10−6

Angiogenesis 3.769×10−5

Regulation of developmental process 6.611×10−5

Blood vessel development 6.953×10−5

Regulation of cellular process 9.713×10−5

Vasculature development 1.335×10−4

Circulatory system development 1.572×10−4

Anatomical structure development 1.909×10−4

Anatomical structure formation involved in morphogenesis 2.708×10−4

Reactome Adjusted P-value

IRS-mediated signalling 4.972×10−3

Signaling by PDGFR in disease 6.897×10−3

IRS-related events triggered by IGF1R 8.108×10−3

IGF1R signaling cascade 8.108×10−3

Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 9.090×10–3

Downstream signaling of activated FGFR1 9.200×10−3

Signaling by FGFR3 fusions in cancer 9.906×10−3

Insulin receptor signalling cascade 1.016×10−2

Downstream signaling of activated FGFR2 1.107×10−2

Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB 1.370×10−2

B

Downregulated gene sets in islets from subjects with T1D

Gene Ontology: Biological Processes Adjusted P-value

Cell-cell signaling 1.653×10−7

Nervous system development 4.565×10−6

System development 6.374×10−5

Multicellular organism development 1.171×10−4

Multicellular organismal process 2.554×10−4

Regulation of cell communication 3.267×10−4

Anterograde trans-synaptic signaling 3.936×10−4

Chemical synaptic transmission 3.936×10−4

Signaling 4.121×10−4

Trans-synaptic signaling 4.545×10−4

Reactome Adjusted P-value

Regulation of gene expression in beta cells 1.108×10−4

Regulation of beta-cell development 1.038×10−3

Amyloid fiber formation 4.418×10−2

347 differentially expressed genes (DEGs) were found to be downregulated and 126 were upregulated in islets from

subjects with T1D. Overrepresentation analysis on the DEGs was done using g:Profiler. Top 10 upregulated gene sets

in donors with type 1 diabetes using Gene Ontology: biological processes and REACTOME is shown in (A). Top 10

downregulated gene sets in donors with type 1 diabetes using Gene Ontology: biological processes and REACTOME

is shown in (B). Padj: Adjusted p-value according to g:SCS.

https://doi.org/10.1371/journal.pone.0276942.t002
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In sections consecutive to those used for LCM, the vascular density (total CD31+ endothe-

lial length per total islet area) was increased in T1D subjects. CD31 is also present on macro-

phages, but during the screening procedure, samples with a pronounced immune infiltration

were excluded. Additionally, gene sets related to inflammation were not present among the

upregulated gene sets, and a macrophage marker, CD68, was not present among the DEGs.

This indicates that the elevated vascular density in T1D subjects was caused by an increased

presence of endothelial cells. Similarly, a previous histological study reported an increase in

the number of islet vessels, but with a reduced diameter [27]. The presence of upregulated

gene sets related to angiogenesis as well as elevated vascular density suggests active angiogene-

sis and vascular remodelling in islets from subjects with T1D. Importantly, islet size is not

altered in subjects with T1D despite the near total loss of beta cells [28], suggesting the

increased vascular density to be due to an absolute increase in islet microvasculature. The islet

endothelial cells play a crucial role in islet function and have been shown to both stimulate

insulin secretion and play a role in beta cell function and proliferation [29–32]. The upregula-

tion of gene sets related to the microvasculature may suggest an effort towards beta cell differ-

entiation to compensate for the loss of beta cells. Another interpretation of the upregulation of

genes related to microvasculature, is that it is a response to a disturbance in islet blood perfu-

sion. If there is an insufficient blood circulation to the islet, this could contribute to the alpha-

cell dysfunction reported in T1D [4, 33, 34].

There is no transcriptional variation between microvascular endothelial cells sorted from

donors with or without impaired glucose metabolism (IGM) [35]. This suggests that the islet

endothelial transcriptome is not per se affected as a consequence of diabetes, i.e. hyperglyce-

mia, which mean that alterations seen in the islet microvasculature could instead be a contrib-

uting cause of T1D. However, the endothelial cells in islets from subjects with T1D could also

be more severely affected than in subjects with IGM. Alternatively, differences in this cell type

are only observable for study in intact, LCM-excised, islets. Indeed, microvascular epithelial

cells are especially sensitive to the islet isolation process and culturing [36, 37].

Fig 3. Heatmap of gene sets significantly altered in type 1 diabetes using CAMERA (Correlation Adjusted MEan RAnk test). Using CAMERA and the

MSigDB Hallmark gene set collection, a gene set was considered significantly enriched if the FDR- adjusted p-value was<0.25. Two gene sets were found to be

downregulated, and the expression of all the genes in the gene set is illustrated in (A) Hallmark Pancreas Beta Cells and (B) Hallmark Epithelial Mesenchymal
Transition. Darker colour indicates higher expression. Black = Non-diabetic subjects, Grey = Type 1 diabetic subjects.

https://doi.org/10.1371/journal.pone.0276942.g003

PLOS ONE Transcriptional analysis of islets in T1D

PLOS ONE | https://doi.org/10.1371/journal.pone.0276942 October 31, 2022 9 / 14

https://doi.org/10.1371/journal.pone.0276942.g003
https://doi.org/10.1371/journal.pone.0276942


Epithelial mesenchymal transition (EMT) is a biological process where epithelial cells are

transitioned to mesenchymal cells, and is, among other things, important during embryogene-

sis and organ development as well as wound healing [38]. However, even fully differentiated

epithelium can change its phenotype through activation of EMT. This enables transdifferentia-

tion of epithelial cells to mesenchymal derivates even during adulthood, and has been shown

to occur in the adult human exocrine pancreas [39, 40]. Through this process, EMT has been

shown to be involved in beta cell differentiation and islet formation. Individual beta cells

Fig 4. Vascular density (length of CD31+ regions [μm] per islet area [μm2]). The total length of CD31 positive

regions within islets, were divided by the total islet area. ND = non-diabetic samples, T1D = type 1 diabetic samples.

https://doi.org/10.1371/journal.pone.0276942.g004
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become insulin-positive in the progenitor epithelium, after which they lose epithelial charac-

teristics and migrate out of the epithelial layer to form islets. As beta cells exit the epithelial

progenitor cell layer, they acquire mesenchymal characteristics [41]. Vimetin, a mesenchymal

cell marker, has been found in adult human islets, indicating that even mature islets might

have a plasticity, which could require a mesenchymal phenotype [41]. Using competitive gene

set testing with CAMERA, the gene set epithelial mesenchymal transition was found to be

downregulated in islets from subjects with T1D. This could suggest that islets from donors

with T1D have a lower degree of plasticity, and a less active EMT, however we cannot exclude

that this is merely an effect of the lost beta cells.

In summary, a large number of transcriptional alterations were discovered in intact LCM-

excised islets from subjects with T1D. Although many of these alterations likely are an effect of

comparing islets devoid of beta cells in T1D with islets dominated by beta cells in non-diabetic

controls, some of the discovered alterations emerge as potentially important for understanding

the pathogenesis of the disease. Among these, there was an upregulation of several gene sets

related to vasculature and angiogenesis, as well as an increased vascular density, demonstrating

microvasculature to be altered in T1D. By studying pancreatic islets directly procured from

frozen pancreatic sections, this study minimizes artifacts induced by handling the cells and

uncovers potentially relevant insights into the pathophysiology of T1D.
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